

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

What does diffuse scattering measure?

• Correlated disorder, e.g. ice rules

Water ice

Spin ice

Pauling, J. Am. Chem. Soc. **57**, 2680 (1935) Bramwell & Harris, PRL **79**, 2554 (1997) **Images**: Keen & Goodwin, Nature **521**, 303 (2015)

What does diffuse neutron scattering measure?

- Neutron has magnetic moment \rightarrow correlated **magnetic** disorder

Bramwell & Harris, PRL **79**, 2554 (1997) Left data: Fennell et al., Science **326**, 415 (2009)

Diffuse scattering analysis – an overview

Sectional Laboratory

Left data: Fennell et al., Science 326, 415 (2009) Right image: Castelnovo, Moessner & Sondhi, Nature 451, 42 (2008)

Diffuse scattering analysis – an overview

Left data: Fennell et al., Science 326, 415 (2009) Right image: Castelnovo, Moessner & Sondhi, Nature 451, 42 (2008)

Plan for today

- Overview
- Experiment & Theory
- Magnetic structure refinement: Spinvert
- Magnetic interaction modelling: Spinteract

Neutron scattering

- Consider scattering intensity integrated over energy transfer $I(\mathbf{Q}) = \int_{-\infty}^{\infty} I(\mathbf{Q}, E) dE$
- This measures instantaneous correlations
- Quasistatic approximation:

$$\int \mathrm{d}E \approx \int \mathrm{d}E_{\mathrm{f}} \quad \text{if } E << E_{\mathrm{i}}$$

diffraction ($E_{\rm f}$ not analyzed)

 $Q = |\mathbf{Q}| = \frac{4\pi \sin \theta}{\lambda}$

Single crystals vs polycrystals (powders)

8

Experiment design

Measure wide range of Q (for crystals)
 – e.g. Corelli @ ORNL, SXD @ ISIS...

Measure and subtract background
 Or polarisation to isolate magnetic signal

• Ensure quasistatic approximation is valid – Choose $E_i > |\theta_{CW}|$ (interaction strength)

Centre data: Clark et al., PRL 113, 117201 (2014); Lower data: courtesy J. R. Stewart

Nuclear intensity

Single crystal \succ

$$\left\langle b^2 \right\rangle + \frac{1}{N} \sum_{i,j \neq i} \left\langle b_i b_j \right\rangle \exp\left[\mathrm{i}\mathbf{Q} \cdot (\mathbf{r}_j - \mathbf{r}_i)\right]$$

> Powder

CAK RIDGE National Laboratory

10

$$\left\langle b^2 \right\rangle + \frac{1}{N} \sum_{i,j \neq i} \left\langle b_i b_j \right\rangle \frac{\sin(Qr_{ij})}{Qr_{ij}}$$

Debye formula

 r_{ij} = radial distance b_i = coherent scattering length

Magnetic intensity

> Single crystal

$$C[gf(Q)]^{2} \left\{ \frac{2}{3}S(S+1) + \frac{1}{N} \sum_{i,j \neq i} \left\langle \mathbf{S}_{i}^{\perp} \cdot \mathbf{S}_{j}^{\perp} \right\rangle \exp\left[i\mathbf{Q} \cdot (\mathbf{r}_{j} - \mathbf{r}_{i})\right] \right\}$$
$$C = \left(\frac{\mu_{0}}{4\pi} \frac{\gamma_{n} e^{2}}{2m_{e}}\right)^{2}$$
$$= 0.07265 \text{ barn}$$
$$S^{\perp} = \mathbf{S} - \mathbf{QS} \cdot \mathbf{Q}/Q^{2}$$
$$f(\mathbf{Q}) = \text{magnetic form factor}$$

> Powder

$$C[gf(Q)]^{2} \left\{ \frac{2}{3}S(S+1) + \frac{1}{N} \sum_{i,j \neq i} A_{ij} \left[\frac{\sin Qr_{ij}}{Qr_{ij}} + B_{ij} \left(\frac{\sin Qr_{ij}}{(Qr_{ij})^{3}} - \frac{\cos Qr_{ij}}{(Qr_{ij})^{2}} \right) \right] \right\}$$

$$A_{ij} = \mathbf{S}_{i} \cdot \mathbf{S}_{j} - (\mathbf{S}_{i} \cdot \hat{\mathbf{r}}_{ij}) (\mathbf{S}_{j} \cdot \hat{\mathbf{r}}_{ij})$$

$$B_{ij} = 3 \left(\mathbf{S}_{i} \cdot \hat{\mathbf{r}}_{ij} \right) (\mathbf{S}_{j} \cdot \hat{\mathbf{r}}_{ij}) - \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

Debye, Ann. Phys. (Berlin) 351, 809 (1915) Blech & Averbach, Physics 1, 31 (1964)

Plan for today

- Overview
- Experiment & Theory
- Magnetic structure refinement: Spinvert
- Magnetic interaction modelling: Spinteract

11

Reverse Monte Carlo method

McGreevy, JPCM **13**, R877 (2001) Tucker et al., JPCM **19**, 335218 (2007)

RMC: Proof of principle

• e.g. fit to virtual "data" for spin ice

RMC: Proof of principle

• e.g. fit to virtual "data" for spin ice

RMC: Proof of principle

16

Spinvert program

IOP PUBLISHING	JOURNAL OF PHYSICS: CONDENSED MATTER	
SPINVERT: a program for	refinement of	
paramagnetic diffuse scattering data		

Joseph A M Paddison^{1,2}, J Ross Stewart² and Andrew L Goodwin¹

- Refine "big box" model to magnetic diffuse scattering data
- Structure refinement method no spin Hamiltonian used
- **Download:** joepaddison.com/software

CAK RIDGE National Laborator Andrew GoodwinRoss StewartUniversity of OxfordISIS Neutron Source

Spinvert program

joe.paddison.com/software

Spinvert example 1: Kagome Dy₃Mg₂Sb₃O₁₄

Kagome Dy₃Mg₂Sb₃O₁₄

Siân Dutton Cambridge

Martin Mourigal Georgia Tech

Paromita Mukherjee Cambridge Xiaojian Bai Georgia Tech

19

Sanders et al., J. Mater. Chem. C 4, 541–550 (2016)

Spinvert example 1: Kagome Dy₃Mg₂Sb₃O₁₄

CAK RIDGE

20

Paddison et al., Nature Commun. 7, 13842 (2016)

Spinvert example 2: Manganese oxide, MnO

• Single-crystal magnetic reverse Monte Carlo

Plan for today

- Overview
- Experiment & Theory
- Magnetic structure refinement: Spinvert
- Magnetic interaction modelling: Spinteract

Diffuse scattering analysis – an overview

23 **CAK RIDGE** National Laboratory Left data: Fennell et al., Science 326, 415 (2009) Right image: Castelnovo, Moessner & Sondhi, Nature 451, 42 (2008) Magnetic interaction modelling has a long history

• e.g. paramagnetic MnO; $H = J_1 \sum \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum \mathbf{S}_i \cdot \mathbf{S}_j$

 $\langle i,j \rangle$

 $\langle \langle i,j \rangle \rangle$

24

Spinteract program

Paddison, arXiv:2210.09016 (2022) Brout & Thomas, Physics Physique Fizika **3**, 317 (1967) James & Roos, Comp. Phys. Commun. **10**, 343 (1975)

CAK RIDGE National Laboratory

Spinteract example 1: MnO

• Same data as previously shown (SXD @ ISIS)

Data T = 160 K(a) 3 2 -2 -2_{-1} .

MnO_config.txt — Edited			
TITLE MnO			
CELL 4.4344 4.4344 4.4344 90 90 90			
PATTERSON_GROUP Fm-3m			
SITE 0.0 0.0 0.0			
SPIN_DIMENSION 3 SPIN_LENGTH_SQUARED 8.75 FORM_FACTOR_J0 0.4220 17.6840 0.5948 6.0050 0.0043 -0.6090 -0.0219			
XTAL_SCALE refine XTAL_FLAT_BACKGROUND refine XTAL_TEMPERATURE 160.0			
BZ_POINTS 32 32 32			
ORIGIN -3.0 -3.0 -3.0 X_AXIS 6.0 0.0 0.0 151 Y_AXIS 0.0 6.0 0.0 151 Z_AXIS 0.0 0.0 6.0 151			

Paddison, arXiv:2210.09016 (2022) Data: Paddison, Gutmann, Stewart et al., PRB 97, 014429 (2018)

Spinteract example 1: MnO

• Same data as previously shown (SXD @ ISIS)

Paddison, arXiv:2210.09016 (2022) Data: Paddison, Gutmann, Stewart *et al.*, *PRB* **97**, 014429 (2018)

Spinteract example 2: Skyrmion crystal Gd₂PdSi₃

28

• **Below** T_N : "Giant" topological Hall effect in applied field

Spinteract example 2: Gd₂PdSi₃

• Above T_N : Good fit with 5 interaction parameters – J_c is inter-layer coupling

Ferromagnetic values are +ve Uncertainties 3σ

Paddison et al., PRL 129, 137202 (2022)

Spinteract example 2: Gd₂PdSi₃

30

$$H = -\frac{1}{2} \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + g\mu_{\mathrm{B}} B \sum_i S_i^z + D \sum_{i>j} \frac{\mathbf{S}_i \cdot \mathbf{S}_j - 3\left(\mathbf{S}_i \cdot \hat{\mathbf{r}}_{ij}\right) \left(\mathbf{S}_j \cdot \hat{\mathbf{r}}_{ij}\right)}{\left(r_{ij}/r_1\right)^3}$$

Spinteract example 3: KYbSe₂

• Triangular lattice of Yb³⁺ with effective spin- $\frac{1}{2}$

Allen Scheie Ornl/Lanl

Alan Tennant ORNL/UTK

31

Scheie, Ghioldi, Xing, Paddison *et al.*, arXiv 2109.11527 (2021) Scheie *et al.*, arXiv 2207.14785 (2022)

Spinteract example 3: KYbSe₂

• Fits show <3% deviation from Heisenberg model

Theoretical technique	$J_1 \text{ (meV)}$	J_2/J_1
Onsager reaction field	NA	0.047 ± 0.007
Nonlinear spin waves	0.456 ± 0.013	0.043 ± 0.010
Heat capacity	0.429 ± 0.010	0.037 ± 0.013
Weighted mean:	0.438 ± 0.008	0.044 ± 0.005

Scheie, Ghioldi, Xing, Paddison et al., arXiv 2109.11527 (2021) Scheie et al., arXiv 2207.14785 (2022)

Conclusions

- Magnetic diffuse scattering is a rich source of information
 - Spin correlations (mPDF): Reverse Monte Carlo (Spinvert, RMCProfile, RMCDiscord)
 - Magnetic interactions: Spinteract
- Powder data often more informative than we might expect!
- I'll distribute tutorial files at the tutorial sessions

joepaddison.com/software

Thanks for listening!

Gd₂PdSi₃: Andy Christianson, ORNL, USA Matt Stone, ORNL, USA Stuart Calder, ORNL, USA Drew May, ORNL, USA Binod Rai, SRNL, USA

MnO:

Andrew Goodwin, Oxford Matthias Gutmann, ISIS Matthew Tucker, ORNL David Keen, ISIS Martin Dove, QMUL Spin ice: Andrew Goodwin, Oxford, UK Ross Stewart, STFC-ISIS, UK

Dy₃Mg₂Sb₂O₁₄: Siân Dutton, Cambridge, UK Martin Mourigal, Georgia Tech, USA Xiaojian Bai, ORNL, USA Matt Tucker, ORNL, USA Harapan Ong, Cambridge, UK Claudio Castelnovo, Cambridge, UK James Hamp, Cambridge, UK Nick Butch, NIST, USA KYbSe₂:

Allen Scheie, ORNL, USA Jie Xing, ORNL, USA Cristian Batista, UT, USA D. Alan Tennant, ORNL & UT, USA

Email: paddisonja@ornl.gov

Programs: joepaddison.com/software

Work on bond-dependent interactions was supported by the Laboratory Directed Research & Development Program of Oak Ridge National Laboratory. Work on Gd₂PdSi₃ was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work on spin ice was supported by the EPSRC and STFC. Work on Dy₃Mg₂Sb₂O₁₄ was supported by University of Cambridge and Georgia Tech.

Office of Science

