Refinement of magnetic diffuse scattering data

Joe Paddison

What does diffuse scattering measure?

- Correlated disorder, e.g. ice rules

Water ice

Spin ice
Pauling, J. Am. Chem. Soc. 57, 2680 (1935)
Bramwell \& Harris, PRL 79, 2554 (1997)

What does diffuse neutron scattering measure?

- Neutron has magnetic moment \rightarrow correlated magnetic disorder

Reciprocal space

Diffuse scattering analysis - an overview

Diffuse scattering analysis - an overview

Plan for today

- Overview
- Experiment \& Theory
- Magnetic structure refinement: Spinvert
- Magnetic interaction modelling: Spinteract

Neutron scattering

- Consider scattering intensity integrated over energy transfer $I(\mathbf{Q})=\int_{-\infty}^{\infty} I(\mathbf{Q}, E) \mathrm{d} E$
- This measures instantaneous correlations
- Quasistatic approximation: $\int \mathrm{d} E \approx \int \mathrm{~d} E_{\mathrm{f}}$ if $E \ll E_{\mathrm{i}}$

$$
Q=|\mathbf{Q}|=\frac{4 \pi \sin \theta}{\lambda}
$$

diffraction (E_{f} not analyzed)
(2AK RIDGE
National Laboratory

Single crystals vs polycrystals (powders)

- e.g. spin ice, $\mathrm{Ho}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$

Intensity (arb.)

Single crystal
Powder

Experiment design

- Measure wide range of \mathbf{Q} (for crystals)
- e.g. Corelli @ ORNL, SXD @ ISIS...

- Measure and subtract background
- Or polarisation to isolate magnetic signal
- Ensure quasistatic approximation is valid
- Choose $E_{\mathrm{i}}>\left|\theta_{\mathrm{CW}}\right|$ (interaction strength)

Nuclear intensity

> Single crystal
$\left\langle b^{2}\right\rangle+\frac{1}{N} \sum_{i, j \neq i}\left\langle b_{i} b_{j}\right\rangle \exp \left[\mathbf{i Q} \cdot\left(\mathbf{r}_{j}-\mathbf{r}_{i}\right)\right]$
> Powder
$\left\langle b^{2}\right\rangle+\frac{1}{N} \sum_{i, j \neq i}\left\langle b_{i} b_{j}\right\rangle \frac{\sin \left(Q r_{i j}\right)}{Q r_{i j}}$

Debye formula

$r_{i j}=$ radial distance
$b_{i}=$ coherent scattering length

Magnetic intensity

> Single crystal

$$
\begin{aligned}
& C[g f(Q)]^{2}\left\{\frac{2}{3} S(S+1)+\frac{1}{N} \sum_{i, j \neq i}\left\langle\mathbf{S}_{i}^{\perp} \cdot \mathbf{S}_{j}^{\perp}\right\rangle \exp \left[\mathrm{i} \mathbf{Q} \cdot\left(\mathbf{r}_{j}-\mathbf{r}_{i}\right)\right]\right\} \\
& C=\left(\frac{\mu_{0}}{4 \pi} \frac{\gamma_{\mathrm{n}} e^{2}}{2 m_{e}}\right)^{2} \quad \mathbf{S}^{\perp}=\mathbf{S}-\mathbf{Q S} \cdot \mathbf{Q} / Q^{2} \\
& \quad=0.07265 \text { barn } \quad f(\mathbf{Q})=\text { magnetic form factor }
\end{aligned}
$$

> Powder

$$
\begin{aligned}
& C[g f(Q)]^{2}\left\{\frac{2}{3} S(S+1)\right. \\
& \left.\quad+\frac{1}{N} \sum_{i, j \neq i} A_{i j}\left[\frac{\sin Q r_{i j}}{Q r_{i j}}+B_{i j}\left(\frac{\sin Q r_{i j}}{\left(Q r_{i j}\right)^{3}}-\frac{\cos Q r_{i j}}{\left(Q r_{i j}\right)^{2}}\right)\right]\right\} \\
& A_{i j}=\mathbf{S}_{i} \cdot \mathbf{S}_{j}-\left(\mathbf{S}_{i} \cdot \hat{\mathbf{r}}_{i j}\right)\left(\mathbf{S}_{j} \cdot \hat{\mathbf{r}}_{i j}\right) \\
& B_{i j}=3\left(\mathbf{S}_{i} \cdot \hat{\mathbf{r}}_{i j}\right)\left(\mathbf{S}_{j} \cdot \hat{\mathbf{r}}_{i j}\right)-\mathbf{S}_{i} \cdot \mathbf{S}_{j}
\end{aligned}
$$

Plan for today

- Overview
- Experiment \& Theory
- Magnetic structure refinement: Spinvert
- Magnetic interaction modelling: Spinteract

Can we recover ice rules by fitting to diffuse scattering?

- e.g. spin ice, $\mathrm{Ho}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$

(2AK RIDGE
National Laboratory

Reverse Monte Carlo method

Create $\sim 10^{3}$ spins with random orientations and fixed positions

- Flip a randomly-chosen spin

Calculate change in goodness-of-fit to data

Accept flip if fit improved; otherwise accept flip with some probability

$$
I_{\mathrm{m}}(Q)=C[g f(Q)]^{2}\left\{\frac{2}{3} S(S+1)+\frac{1}{N} \sum_{i, j \neq i} A_{i j}\left[\frac{\sin Q r_{i j}}{Q r_{i j}}+B_{i j}\left(\frac{\sin Q r_{i j}}{\left(Q r_{i j}\right)^{3}}-\frac{\cos Q r_{i j}}{\left(Q r_{i j}\right)^{2}}\right)\right]\right\}
$$

RMC: Proof of principle

- e.g. fit to virtual "data" for spin ice

RMC: Proof of principle

- e.g. fit to virtual "data" for spin ice

RMC: Proof of principle

Spinvert program

$$
\begin{aligned}
& \text { IOP PUBLISHING } \\
& \text { J. Phys.: Condens. Matter } \mathbf{2 5}(2013) 454220(15 \mathrm{pp}) \\
& \text { Journal of PhYSICs: Condensed MATTER } \\
& \text { doi: } 10.1088 / 0953-8984 / 25 / 45 / 454220 \\
& \hline
\end{aligned}
$$

Joseph A M Paddison ${ }^{1,2}$, J Ross Stewart ${ }^{2}$ and Andrew L Goodwin ${ }^{1}$

- Refine "big box" model to magnetic diffuse scattering data
- Structure refinement method - no spin Hamiltonian used
- Download: joepaddison.com/software

Spinvert program

joe.paddison.com/software

IIILE SpInlce

spinice_config.txt - Edited

CELL 10.10010 .10010 .100909090 SITE 0.50000 .50000 .5000 SITE $0.5000 \quad 0.00000 .0000$ SITE $0.0000 \quad 0.0000 \quad 0.5000$ SITE 0.00000 .50000 .0000 SITE 0.50000 .75000 .7500 SITE 0.50000 .25000 .2500 SITE 0.00000 .25000 .7500 SITE 0.00000 .75000 .2500 SITE $0.7500 \quad 0.5000 \quad 0.7500$ SITE 0.75000 .50000 .7500 SITE 0.25000 .00000 .7500 SITE 0.2500 0.00000 .7500 SITE 0.7500 0. 2500 0.0000 SITE 0.7500 0.7500 0.5000 SITE 0.75000 .75000 .5000 SITE 0.25000 .75000 .0000 SITE $0.2500 \quad 0.2500 \quad 0.5000$

SPIN_DIMENSION 1 ANISOTTROPY 11 ANISOTROPY 111 ANISOTROPY 111
ANISOTROPY 111
ANISOTROPY 1-1 -1
ANISOTROPY 1 -1 -1 ANISOTROPY $1-1-1$ ANISOTROPY 1 ANISOTROPY 1 ANISOTROPY -1 1 ANISOTROPY -1 1 -1 ANISOTROPY $-1 \quad 1 \quad-1$ ANISOTROPY -1 1 -1 ANISOTROPY -1 -1 1 ANISOTROPY -1 -1 1 ANISOTROPY -1 -1 1 ANISOTROPY -1 -1

Spinvert example 1: Kagome $\mathrm{Dy}_{3} \mathrm{Mg}_{2} \mathrm{Sb}_{3} \mathrm{O}_{14}$

Pyrochlore $\mathrm{Dy}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$

Space group Fd-3m

Kagome $\mathrm{Dy}_{3} \mathrm{Mg}_{2} \mathrm{Sb}_{3} \mathrm{O}_{14}$

Siân	Martin
Dutton	
Cambridge	Mourigal Georgia Tech
Paromita	Xiaojian Mukherjee Cambridge
Bai Georgia Tech	

Spinvert example 1: Kagome $\mathrm{Dy}_{3} \mathrm{Mg}_{2} \mathrm{Sb}_{3} \mathrm{O}_{14}$

Diffuse scattering

Local magnetic structure

"Emergent charge" correlations

Spinvert example 2: Manganese oxide, MnO

- Single-crystal magnetic reverse Monte Carlo

Paramagnetic MnO, 160 K (SXD, ISIS)

Spin-spin correlation function
~ 3D magnetic PDF

Plan for today

- Overview
- Experiment \& Theory
- Magnetic structure refinement: Spinvert
- Magnetic interaction modelling: Spinteract

Diffuse scattering analysis - an overview

Magnetic interaction modelling has a long history

- e.g. paramagnetic MnO; $H=J_{1} \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+J_{2} \sum_{\langle\langle i, j\rangle\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$

Single-crystal data

Fitted $\mathbf{J}_{\mathbf{1}}=3.3 \mathrm{~K}, \mathbf{J}_{\mathbf{2}}=\mathbf{4 . 6} \mathrm{K}$

Powder data

Blech \& Averbach,
Physics 1, 31 (1964)

Spinteract program

Define spin Hamiltonian and guess interaction values

$$
H=J_{1} \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+J_{2} \sum_{\langle\langle i, j\rangle\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

Calculate diffuse scattering via field theory

Send goodness-of-fit to least-squares optimiser

Receive new values of interactions from optimiser

$$
I(\mathbf{Q}) \propto \frac{[f(Q)]^{2} \chi_{0} T}{1-\chi_{0}[J(\mathbf{Q})-\lambda]} \quad J(\mathbf{Q})=\sum_{j} J_{i j} \exp \left(i \mathbf{Q} \cdot \mathbf{R}_{j}\right)
$$

Spinteract example 1: MnO

- Same data as previously shown (SXD @ ISIS)


```
O- MnO_config.txt - Edited
TITLE MnO
CELL 4.4344 4.4344 4.4344 90 90 90
PATTERSON_GROUP Fm-3m
SITE 0.0 0.0 0.0
SPIN_DIMENSION 3
SPIN_LENGTH_SQUARED 8.75
FORM_FACTOR_J0 0.4220 17.6840 0.5948 6.0050 0.0043 -0.6090 -0.0219
XTAL_SCALE refine
XTAL_FLAT_BACKGROUND refine
XTAL_TEMPERATURE 160.0
BZ_POINTS 32 32 32
ORIGIN -3.0 -3.0 -3.0
X_AXIS 6.0 0.0 0.0 151
Y_AXIS 0.0 6.0 0.0 151
Z_AXIS 0.0 0.0 6.0 151
```


Spinteract example 1: MnO

- Same data as previously shown (SXD @ ISIS)

Data
$T=160 \mathrm{~K}$

Fit

$$
J_{1}=3.26 \mathrm{~K} ; J_{2}=4.45 \mathrm{~K}
$$

Difference

Spinteract example 2: Skyrmion crystal $\mathrm{Gd}_{2} \mathrm{PdSi}_{3}$

- Below T_{N} : "Giant" topological Hall effect in applied field

> Space group P6/mmm $a=4.069 \AA, c=4.088 \AA$

Right image: Kurumaji et al., Science 365, 914 (2019)
OAK RIDGE
National Laboratory
Saha et al., Phys. Rev. B 60, 12162 (1999)

Andrew Christianson Andrew May Binod Rai Stuart Calder Matthew Stone Matthias Frontzek

Spinteract example 2: $\mathrm{Gd}_{2} \mathrm{PdSi}_{3}$

- Above $\boldsymbol{T}_{\mathrm{N}}$: Good fit with 5 interaction parameters
- J_{C} is inter-layer coupling

$J_{c}(\mathrm{~K})$	$J_{1}(\mathrm{~K})$	$J_{2}(\mathrm{~K})$	$J_{3}(\mathrm{~K})$	$J_{4}(\mathrm{~K})$
$1.97(46)$	$0.31(9)$	$0.19(15)$	$0.27(18)$	$-0.21(5)$

Ferromagnetic values are +ve
OAK RIDGE
National Laboratory

Spinteract example 2: $\mathrm{Gd}_{2} \mathrm{PdSi}_{3}$

$$
H=-\frac{1}{2} \sum_{i, j} J_{i j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+g \mu_{\mathrm{B}} B \sum_{i} S_{i}^{z}+D \sum_{i>j} \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}-3\left(\mathbf{S}_{i} \cdot \hat{\mathbf{r}}_{i j}\right)\left(\mathbf{S}_{j} \cdot \hat{\mathbf{r}}_{i j}\right)}{\left(r_{i j} / r_{1}\right)^{3}}
$$

Data: Hirschberger et al., PRB 101, 220401 (R) (2020)

$J_{c}(\mathrm{~K})$	$J_{1}(\mathrm{~K})$	$J_{2}(\mathrm{~K})$	$J_{3}(\mathrm{~K})$	$J_{4}(\mathrm{~K})$
$1.97(46)$	$0.31(9)$	$0.19(15)$	$0.27(18)$	$-0.21(5)$

OAK RIDGE
National Laboratory

Calculation: Classical Monte Carlo

Spinteract example 3: KYbSe_{2}

- Triangular lattice of Yb^{3+} with effective spin-1/2

Allen Scheie ORNL/LANL

Alan Tennant ORNL/UTK

Spinteract example 3: KYbSe_{2}

- Fits show $<3 \%$ deviation from Heisenberg model

Theoretical technique	$J_{1}(\mathrm{meV})$	J_{2} / J_{1}
Onsager reaction field	$N A$	0.047 ± 0.007
Nonlinear spin waves	0.456 ± 0.013	0.043 ± 0.010
Heat capacity	0.429 ± 0.010	0.037 ± 0.013
Weighted mean:	0.438 ± 0.008	0.044 ± 0.005

Conclusions

- Magnetic diffuse scattering is a rich source of information
- Spin correlations (mPDF): Reverse Monte Carlo (Spinvert, RMCProfile, RMCDiscord)
- Magnetic interactions: Spinteract
- Powder data often more informative than we might expect!
- I'll distribute tutorial files at the tutorial sessions
joepaddison.com/software

Thanks for listening!

$\mathrm{Gd}_{2} \mathrm{PdSi}_{3}$:
Andy Christianson, ORNL, USA
Matt Stone, ORNL, USA
Stuart Calder, ORNL, USA
Drew May, ORNL, USA
Binod Rai, SRNL, USA
MnO:
Andrew Goodwin, Oxford
Matthias Gutmann, ISIS
Matthew Tucker, ORNL
David Keen, ISIS
Martin Dove, QMUL

Spin ice:

Andrew Goodwin, Oxford, UK
Ross Stewart, STFC-ISIS, UK
$\mathrm{Dy}_{3} \mathrm{Mg}_{2} \mathrm{Sb}_{2} \mathrm{O}_{14}$:
Siân Dutton, Cambridge, UK
Martin Mourigal, Georgia Tech, USA
Xiaojian Bai, ORNL, USA
Matt Tucker, ORNL, USA
Harapan Ong, Cambridge, UK
Claudio Castelnovo, Cambridge, UK
James Hamp, Cambridge, UK
Nick Butch, NIST, USA
KYbSe_{2} :
Allen Scheie, ORNL, USA
Jie Xing, ORNL, USA
Cristian Batista, UT, USA
D. Alan Tennant, ORNL \& UT, USA

Email: paddisonja@ornl.gov

Programs: joepaddison.com/software

Work on bond-dependent interactions was supported by the Laboratory Directed Research \& Development Program of Oak Ridge National Laboratory. Work on $\mathrm{Gd}_{2} \mathrm{PdSi}_{3}$ was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work on spin ice was supported by the EPSRC and STFC. Work on Dy ${ }_{3} \mathrm{Mg}_{2} \mathrm{Sb}_{2} \mathrm{O}_{14} \mathrm{Was}^{2}$
supported by University of Cambridge and Georgia Tech.

