

# **ESRF** | The European Synchrotron



## Synchrotron PDF Data Acquistion and Reduction G. Vaughan & S. Checchia





#### **GETTING THE PDF FROM THE DIFFRACTION DATA**



$$S(q) = \frac{I(q) - \langle f(q)^2 \rangle}{\langle f(q) \rangle^2} + 1$$

$$F(q) = q(S(q) - 1)$$

## Debye Equation: $F(q) = \frac{1}{N\langle f(q) \rangle^2} \sum_{i \neq j} f_i(q) f_j(q) \frac{\sin q r_{ij}}{r_{ij}}$

$$G(r) = \frac{2}{\pi} \int_{q_{min}}^{q_{max}} F(q) \sin qr \, dq$$
  
$$G(r) = \frac{1}{rN\langle f \rangle^2} \sum_{i \neq j} f_i f_j \delta(r - r_{ij}) - 4\pi r \rho_0$$

ESRF

The European Synchrotron



Continuous Transform on finite data High q – implies high energy Good statistics Particularly at high q; contrary to form factor behaviour Low/well characterized background Minimize inelastic scattering avoid absorption edges (W, Pb, ...) using energy discrimination Clean background – minimize parasitic scattering sample environment tomographic methods



#### **INELASTIC AND PARASITIC BACKGROUNDS**

In the case of X-ray diffraction, only the elastic scattering is modeled (essentially the scattering from valance electrons ≡ atomic positions. Scattering from the nucleus and bonding electrons is generally neglected).

$$I = I_e + I_{ie} + I_p$$

$$I = I_e + (I_{istruct} + I_{Comp} + I_{Fluo}) + I_p$$

Fluorescence comes from all absorption edges below the incident energy Fluorescence can be 80% of the signal at high Q Jablonksi diagram depicting simple 1 photon excitation fluorescence

Compton scattering has a spatial and energy distribution







#### DETECTORS – POINT DETECTOR(S) AND ANALYSER CRYSTAL(S)

## **Scintillators and PMT**

- Angle sensitive
  - Energy discrimination
  - Background elimination
- Good dynamic range
- Photon counting
- Very high angular resolution
  - Accurate lattice parameters
  - Ideal for structure refinement
- Slow







**ID22** 

Mostly Developed for Medical Imaging

Image plates

Flat panel detectors

CCD/CMOS cameras coupled to scintillators

Hybrid Pixel detectors









Page 7 ADD2022 | 18.10.2022 | G.Vaughan

|                                                               | Advantages                                                                                                                             | Disadvantages                                                                                                |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| CCD/CMOS Cameras<br>Phosphor optical fiber<br>or lens coupled | Stable Background<br>Stable Flat Field<br>Stable Distortion                                                                            | High Background<br>Limited Dynamic Range<br>Large PSF<br>Low Sensitivity<br>Integrating<br>Large corrections |
| Flat Panel                                                    | High Sensitivity<br>Stable Flat Field<br>No PSF<br>Cheap                                                                               | Very High Background<br>Variable Background<br>Integrating                                                   |
| Hybrid Pixel Detectors                                        | High Dynamic Range<br>High Sensitivity<br>Photon Counting<br>Zero Background<br>Energy Discrimination<br>Stable Flat Field<br>"No" PSF | Price                                                                                                        |



$$I = (I_0 - D)R$$

$$I = (I_0 - D) \frac{\langle R \rangle}{R_i}$$

## If D is constant:

$$D = \frac{1}{N_D} \sum D_j = \frac{n_D}{N_D} \sum I_{0,j} = n_D I_0$$
$$\sigma_I^2 \cong \sigma_{I_0}^2 \left[ 1 + \frac{n_D}{N_D} + \frac{(1 - n_D)^2}{n_R N_R} \right]$$

$$\sigma_{\langle R \rangle}^2 = \left(\frac{1}{N}\right)^2 N \sigma_{R_i}^2$$
$$= \left(\frac{\sigma_{R_i}^2}{N}\right)$$
$$\approx 0$$



Page 9 ADD2022 | 18.10.2022 | G.Vaughan

#### **COMPARISON OF FLAT PANEL AND PIXEL DETECTOR**

|                                | Pilatus3 X CdTe 2M                    | Perkin Elmer XRD 1621   |
|--------------------------------|---------------------------------------|-------------------------|
| Detection technology           | Hybrid photon counting                | Flat panel              |
| Sensor material                | CdTe                                  | Csl                     |
| Pixel size [µm <sup>2</sup> ]  | 172×172                               | 200×200                 |
| Total number of pixels (H × V) | 1475×1679                             | 2024×2024               |
| Maximum frame rate[Hz]         | 250 (500 with ROI)                    | 15 (30 with 2×2binning) |
| Point Spread Function (FWHM)   | 1 pixel                               | 2 pixels                |
| Energy threshold [keV]         | 8-40                                  | none                    |
| Maximum count rate             | 5×10 <sup>6</sup>                     | Integrating detector    |
| [ph/s/pixel]                   |                                       |                         |
| Non linearity                  | <2% at 10 <sup>6</sup> counts/s/pixel |                         |
| Counter depth                  | 20 bit                                | 16 bit                  |
| Dynamic range                  | 20 bit                                | 12.8 bit                |
| Minimum exposure [ns]          | 200                                   | 3300000                 |
| Image lag                      | 0                                     | ~1% after 100ms         |



Superconducting filament, Ø50 µm, measured at 50 keV, with exposure time of 100ms with a Perkin Elmer XRD 1621 flat panel detector (left) and with the Dectris Pilatus3 X CdTe 300K prototype



## Effect of finite Q-range (truncation)



G(r) is convoluted with a sinc function: PDF resolution  $\approx \pi/Q_{max}$ 

- peak breadth = resolution + thermal broadening
- Use highest available Q containing useful signal



## Effects of Q-resolution and particle size

G(r) intensity falloff:

- Sample independent Q-space resolution [  $\approx e^{-(r\Delta q)^2}$ ]
  - Sample-dependent particle size





## Pilatus3X 2M CdTe



- Pixel size 172μm x 172μm
- Single photon counting
- 20-bit dynamic range
- Linear up to more than 1Mcps
- Maximum frame rate 250Hz (500 with ROI)

Sample Environments: Heating, cooling, pressure, chemical potential (gases, liquids), mechanical modification

Experimental geometry (sampledetector distance, beam centre, tilts) calibrated using a standard sample





The European Synchrotron ESRF

#### **EFFECTS OF SAMPLE GEOMETRY - BROADENING**



Resolution dependent on

- Pixel Size
- Sample Detector Distance
- Beam Size
- Sample Size
- Detector Transparency
- Intrinsic Broadening

Conclusion:

For a given Q-range, best to use **Higher Energy/further distance** 



#### **EFFECTS OF SAMPLE GEOMETRY – ABSORPTION**



Different rays have different path lengths Different angles have different signals Non-trivial absorption correction (needs tomographic reconstruction)

Conclusion: Use high enough energy/thin enough sample to minimize absorption A cylindrical capillary is not a good shape for use with 2d detectors (also with respect to in-plane/out-of-plane scattering)



#### **EFFECTS OF SAMPLE GEOMETRY – 2D CASE**





#### **EFFECTS OF SAMPLE GEOMETRY – BACKGROUND SUBTRACTION**



Self absorption affects background subtraction Difference pattern will slightly over-subtract background contribution



 $0.3 \text{ mol/L } S_8$  in Toluene







Page 23 ADD2022 | 18.10.2022 | G.Vaughan

## Polarization correction depends on

- Scattering angle
- Azimuthal angle (synchrotron plane polarized)
- Optical and sample configuration
  - Every scattering event affects the polarization
  - Right/left symmetry broken by sample scattering

Every talk on powder diffraction must feature this picture of me

'Beloved' Bert Warren



## Sample Geometry affects

- Angular Resolution
- Absorption correction
- Background subtraction

Convolution of (rapidly-varying) scattering pattern means that a proper treatment would require ray-tracing (algebraic reconstruction)

## Achievable but not in general plausible

- Tomographic data collection
- Iterative computation

## Precise polarization correction difficult to implement

- This can be seen with noiseless detectors and good statistics at high Q
- "Solution" i.e., work-around to hide the problems
- Use either 90 or 360 azimuthal degrees



#### **EXAMPLE OF A BMG - MASKING**





Page 26 ADD2022 | 18.10.2022 | G.Vaughan





Page 27 ADD2022 | 18.10.2022 | G.Vaughan

## EFFECT OF NOISE ON G(R)





Page 28 ADD2022 | 18.10.2022 | G.Vaughan

## EFFECT OF NOISE ON G(R)





## THE DREADFUL F(Q) ISSUE





Page 31 ADD2022 | 18.10.2022 | G.Vaughan





Page 32 ADD2022 | 18.10.2022 | G.Vaughan





The European Synchrotron | ESRF

#### **OTHER CORRECTIONS**

#### **Detector transparency**



The precise correction would consider the path length in adjacent pixels, but this effect is swamped by others Other sorts of detectos (i.e., fibreoptic coupled CCD cameras) have

spherical abberation



#### **Module Misalignment**



## Inelastic Backgrounds can be subtracted by either

- Analytical
  - Correct form calculated and removed
- Semi-Empirical
  - Polynomial or spline representation for the effects
  - Form of the function respects analytical form



- Backgrounds (Compton) from detectors with energy cutoff can be difficult to model
- 10<sup>6</sup> diffraction patterns can be time consuming to model



## EXTRACT G(R) FROM SPLINE ON RAW DATA







#### Savitzky-Golay filter of proper width





Calculate statistics on G(r) from repeated measurments or weighted simulations



## PDF IN DIFFICULT CIRCUMSTANCES







Signal from the material of interest is a small fraction of the total signal









Clear changes in local environment can be seen with pressure



#### **3D RECONSTRUCTION OF WORKING BATTERY**



Liu et al, submitted to Nature Comm.





Wragg et al. PCCP in press



#### CONCLUSION

- Every new advance in data quality reveals new problems to resolve
- Data quality from 2d detectors is now approaching that of point detectors/analyser crystal
  - ms resolution is now possible
  - Sub-micron resolution already achieved

