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Magnetic symmetry groups vs. irreducible
representations
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Facultad de Ciencia y Tecnologia
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- Magnetic ordering is a symmetry break process
« We talk of a “distorted structure” and a “distortion”.

* The paramagnetic structure is the “parent” structure and it has a
higher symmetry: group-subgroup relation. (magnetic groups)

* a symmetry operation of the parent space group transforms in general the
distorted structure into a different structure:

a distorted structure with a different distortion (domain-related), except for the
operations that are maintained in the MSG, which keep it invariant or only change
to opposite spins

* Relation with the original distortion?:
*The relation is described by a “REPRESENTATION” of the symmetry group of the

paramagnetic phase: A matrix for each operation describes the corresponding
transformation of the distortion.



The Magnetic Representation: an arbitrary spin arrangement transforms according
to a representation of the parent symmetry group

g belongs to the parent space group G

&~ \ &;
/ NN T7
&~ \
_>— g = - _>) V4 —> V4 —> V4 w—>
Q = Q;55,+Q,5 - +Q3pSy, Q" = Q'15,+Q’,5, -+ Q33 Sy,
representation T(g)Tf: a?
of G
(matrices) T(g) : one nxn matrix for each operation g of G

n= 3N, N: total number of magnetic atoms

- = . .
{s4,---..,S,} orthonormal basis of spin modes

T(glgz) =T(81) T(gz) Representation



The Magnetic Representation is in general reducible:

T(g) : one nxn matrix for each operation g of G (parent space group)

T(glgz) =T(81) T(gz) Representation

invariant subspaces in the 3N-dim space

—

-[T1(9) O

T,(9) }

T(g) = -

for all g O . : [
Tn(9) }

The magnetic representation is reduced to representations of smaller dimension:

T=T,+T,+...+T,



The Magnetic Representation is in general reducible:

First reduction: WAVES ks g Ky
)1 }[ !/ Loz~ wave vector: k, 92 K,
» n: number of magnetic atoms in the
‘i“ 1 75 o primitive unit cell
4 1 7 number of spin variables: 3n if k,==-k, Ks
'y ‘)‘ f} l} AA 6n if k -k,

*k, = {k,,...,k.} set of k-vectors related by the operations of G (star)

s: number of k-vectors in the staris

A spin wave with wave vector k, transforms into waves with other wave vectors of its
star.... Necessarily the set of wave vectors *k, “go together” in the reduced representation:

Dimension of T*kl(g)= $s*3n xs$*3n

(if =k, is not in the star *k, this dimension is doubled)



The Magnetic Representation is in general reducible:

First reduction: WAVES

subspaces of arrangements with different sets of propagation vectors:

T(g) =Z~,-<k T*k(g) ALL *k within the BZ

*k = {k,,...,k.} set of k-vectors related by the operations of G (star)

s: number of k-vectors in the star

Dimension of T*k(g)= S*3N X S*3N  n: number of magnetic atoms in the
primitive unit cell



T(g) =

[T*k1 (9)

dim: s*3n

T*kz(g)]

0

| [T*kN(g)]

dim: 3N

N= infinity
n = small



Representation based modeling of magnetic structures

Possible spin arrangements for a magnetic structure having space group Pnma in the
paramagnetic phase and a magnetic ordering with propagation vector k=(1/2,0,0)?

CPomat” oMo,

k=(1/2,0,0)

star: only one k!

Mn at WP 4b

?

Magnetic representation reduced to this k: dim 3x4=12. Further reducible in
general

6-dim 6-dim

Decomposition into

¥ . y
M= 3 MX1(2) © 3 mX2(2) irreps

(the m in the irrep label means “odd” for time reversal)



Magnetic REP. : Decomposition of the magnetic
representation into irreps

Magnetic Symmetry and Applications

k-SUBGROUPSMAG

QAGNETIC REP.

Get_mirreps

IDENTIFY MAGNETIC GROUP

MGENPOS General Positions of Magnetic Space Groups
MWYCKPOS Wyckoff Positions of Magnetic Space Groups
MKVEC 4\ The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

BNS20G Transformation of symmetry operations between BNS and OG settings

mCIF2PCR Transformation from mCIF to PCR format (FullProf).

MPOINT Magnetic Point Group Tables

MAGNEXT Extinction Rules of Magnetic Space Groups

MAXMAGN Maximal magnetic space groups for a given space group and a propagation
vector

MAGMODELIZE Magnetic structure models for any given magnetic symmetry

STRCONVERT Convert & Edit Structure Data

(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

MAGNDATA A collection of magnetic structures with portable cif-type files
MVISUALIZE 3D Visualization of magnetic structures with Jmol
MTENSOR 4\ Symmetry-adapted form of crystal tensors in magnetic phases

Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition




MAGNETIC REP: Decomposition of the magnetic representation into irreps.
(for any input wave vector(s) and chosen Wyckoff positions)

Wave-vectors of the star (1 vector):

X:(1/2,0,0)

Wyckoff
position
4b:(0,0,1/2) |3 mX1(2) © 3 mX2(2)
In parentheses the dimensions of the irreducible representations of the little group of k

Decomposition into irreps

CDML notation for the irrep labels: the corresponding irreps are listed in the
Bilbao Crystallographic Server and in the ISOTROPY webpage




6-dim 6-dim

Decomposition into

y V'
M,e,= 3 MX1(2) ® 3 mX2(2) rreps

The reason for the “m” in the irrep label:

(the m in the irrep label means “odd” for time reversal)

{1’|000}

Q =»Q’



Why an “m” in the irrep label:

\ {1’| 000} \
7 NNgoal s
~\ \

k,=(1/2,0,0) O "4

The representation is “odd” for time reversal when considered for the parent grey group G1’

To distinguish from distortions that are even for time reversal: Phonons modes in
the parent phase also transform according to irreps of G, but they are EVEN for

time reversal when considered for the grey group G1’!



T(9) =

Tq(9) =
k1=(1/2,0,0)

[T*k1 (9)

0

T*kz(g)]

| [T*kN(g)]

0

M= 3 mX1(2) ® 3 mX2(2)

- [me1(9)|5| 2x2 O O
O Trx1(9) E
me1(9)]
O i Trx2(9) ] O
[mez(g) ]
O [mez(g) ]

12x12



LANDAU Theory: If transition continuous , then T(g) must be an
IRREDUCIBLE representation (irrep) of G

2 N = O
// Q =»Q’
% \
Q= (11d_1:-...+0\ndn Q‘=Q d+.+Q’ nd_:
T(ga=a

{T(g)} : \RREDUCIBLE REPRESENTATION (irrep)

3= (Q,,Q,,-..,Q,,) -> Order Parameter of the transition

Even if the transition is not continuous, in most cases T(g) is also
IRREDUCIBLE, and in the most complex cases only involves a few irreps




Even if the transition is not continuous, in most cases T(g) is also
IRREDUCIBLE, and in the most complex cases only involves a few
irreps

This is the basis for the REPRESENTATION METHOD

Possible irreps: can be determined mathematically and they are
guite limited both in their number and in their dimension.

The determination of the basis of spin modes or “basis vectors” for each irrep:
also a mathematical problem.



ABOUT LABELS OF IRREDUCIBLE REPRESENTATIONS (IRREPS)

The irrep notation lacks a standard, but there is a couple of alternative
unambiguous irrep labeling systems, supported with computer listings, that can

be recommended:
- CDML notation (A. P. Cracknell, B. L. Davies, S. C. Miller and W. F. Love (1979)):
software: ISOTROPY, Bilbao Crystallographic Server, JANA, FullProf (Basirreps)
- Kovalev notation (O.V. Kovalev 1965-1993):
software: SARAh

It is strongly advised against using arbitrary irrep labels (like those of traditional
software), but if done, then full unambiguous listings of the irrep characters
must be necessarily included. Otherwise the irrep labels mean NOTHING!

Last version of Basirreps gives the CDML labels of the listed irreps!

The irreps are mathematical constructs. They are tabulated or calculated by programs.
They do not depend on you specific system.
You do not need to know how to calculate them but you need to

know what they mean and how to use them.



KSUBGROUPSMAG : Filter with Irreps

Magnetic Symmetry and Applications

MGENPOS
MWYCKPOS

MKVEC A\

BNS20G
mCIF2PCR
MPOINT
MAGNEXT

MAXMAGN
MAGMODELIZE
STRCONVERT

%—SUBGROUPSMAG

MAGNDATA
MVISUALIZE

MTENSOR 4\
MAGNETIC REP.,

Get_mirreps

IDENTIFY MAGNETIC GROUP

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

Transformation of symmetry operations between BNS and OG settings
Transformation from mCIF to PCR format (FullProf).

Magnetic Point Group Tables

Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a propagation
vector

Magnetic structure models for any given magnetic symmetry

Convert & Edit Structure Data
(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

A collection of magnetic structures with portable cif-type files
3D Visualization of magnetic structures with Jmol
Symmetry-adapted form of crystal tensors in magnetic phases
Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition




Symmetry based modeling of magnetic structures

ALL possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

obtained with

Prnmal’
k-SUBGROUPSMAG
P2, /m P2y /e Pymn2, P,na2,
ONVINO;
Psl P021 Pam PCC Pa21
Pgl

(magnetic cell= (2a,,b,,c,))



Symmetry based modeling in magnetic structures

Possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

BUT only those that can be the result of a Landau-type transition
(single irrep order parameter)

obtained with
k-SUBGROUPSMAG: \

| N

Optional: Show only subgroups that can be the result of a Landau-type transition (single irrep order
parameter).




K-SUBGROUPSMAG output:

List of subgroups that can be the result of a Landau-type transition

Get the subgroup-graph

Group-Subgroup

Other members of

Magnetic structure models

Group Symbol Transformation matrix index the Conjugacy Class irreps (MAGMODELIZE)
2 0 0 -1/4 . .
Pana24 (No. 33.149) g (1) (1) g ) 4=2x2 Conjugacy Class Get imeps -
——
0 -2 0 -1/4 . |
2 |Ppmn24 (No. 31.129) (1) g (1) l/g ) 4=2x2 Conjugacy Get irreps B
—
0 0 2 0 . ‘
3| Pg24/c (No. 14.82) ( _‘1’ (1) g g ) 4=2x2 Conjugacy Class Get irreps
2 0 0 1/2 . ‘
4| Pz24/m (No. 11.55) ( g (1) g g ) 4=2x2 Conjugacy Cl Get irreps
0 0 2 0 . .
5 Pcc (No. 7.28) ( _2 é g 1/3 ) 8=2x4 Conjuggfy Class Get irreps -
2 0 0 0 . |
6| Psm(No.6.21) ( g (1) (1) 1/3 ) 8=2x4 njugacy Class Get ireps

Link to Get_mirreps




Get_mirreps: Irreps compatible with a given symmetry bres

Magnetic Symmetry and Applications

MGENPOS
MWYCKPOS

MKVEC 4\

IDENTIFY MAGNETIC GROUP

BNS20G
mCIF2PCR
MPOINT
MAGNEXT

MAXMAGN
MAGMODELIZE
STRCONVERT

k-SUBGROUPSMAG
MAGNDATA
MVISUALIZE

MTENSOR 4\
MAGNETIC REP.

ﬁset_mirreps

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

Transformation of symmetry operations between BNS and OG settings
Transformation from mCIF to PCR format (FullProf).

Magnetic Point Group Tables

Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a propagation
vector

Magnetic structure models for any given magnetic symmetry

Convert & Edit Structure Data
(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

A collection of magnetic structures with portable cif-type files
3D Visualization of magnetic structures with Jmol
Symmetry-adapted form of crystal tensors in magnetic phases
Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition




Get_mirreps: Irreps that are compatible with a given magnetic phase transition

Input: SG of the paramagnetic phase + MSG of the magnetic
phase and their relation

| Group—subgroup | Transformation matrix

0 -2 0 -1/4
for P;mn2, Pnmat' (N. 62.442)—Pymn24 (N. 31.129) ( 1 o0 o 1/4)
0 0 1 0

Representations and order parameters

. . Show the graph of isotropy subgroups
primary irrep

isotropy subgroup

k-vectors transformation matrix

irreps and order parameters link to the irreps

Pnma1' (No. 62.442
\ GM1™: () a b(C'O 0,0 )
GM: (0,0,0) L matrices of the irreps
Pmn241' (No. 31.124
\GMz'i (@) 11" ( ; )

pymn24 (No. 31.1
-2a,c;-1/4,1/

X: (1/2,0,0) mX1: (a,a)

matrices of the irreps




Get_mirreps: Irreps that are compatible with a given magnetic phase transition

Input data

| Group—subgroup | Transformation matrix

2 0 0 0
Pnma1' (N. 62.442)—-P_m (N. 6.21) ( 0 1 0 1/4)
0 0 1

0

for P,m _
Representations and order parameters
Show the graph of isotropy subgroups
k-vectors |irreps and order parameters isotropy sybgroup_ link to the irreps
transformation matrix
rimaryv irre +. Pnma1' (No. 62.442)
P yIrrep \ GM+*: (a) a,b,c;0,0,0
P24/m1' (No. 11.51)
+.
CMs™: (@) a,b,c;0,0,0
3 Pmn211‘ (NO 31 124) matrices of the irreps
GMz™: (a) b,-a,c;1/4,1/4,0
- Pmc241' (No. 26.67)
GM3™: (a) o 1/4
X: (1/2,0,0) mXj: (a,b) Pam (No. 6.2 matrices of the irreps

2a,b,c;0,1/4



Possible Magnetic Space Groups (MSGs) for a single irrep:

epikernels
of the irrep,

isotropy subgroups: depending on

the direction

Invariance equation:

(a,a,...),(3,0,...),

. etc...
a a {R,0]t}is
THR, B[t} b| = |b| ~| conserved
\ by the magnetic '
arrangement kernel of the irrep:
nxn matrix of irrep <P o operations
represented
by the unit matrix.
MSG kept by any
Example: g =(R, 0|t} direction (a,b,...)
0 1 :
3 al _ la g. will belong to the
Te)= |1 0 T(g:) g - B 2 MSG if OP=(a,a)




Symmetry based modeling in magnetic structures

Possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

BUT only those that can be the result of a Landau-type transition
(single irrep order parameter)

—_——

Irrep mX1

~

S
N
7
1
[
i
\\ A
\ PcC / \ Pam
\ / \
~ ,/ \
\\___, N //
\\ P



k-SUBGROUPSMAG determine the epikernels and kernel of any irrep and produce

magnetic structural models complying with them.

| k-Subgroupsmag: Magnetic subgroups compatible with some given propagation vector(s) or

The program k-Subgroupsmag provides the
possible magnetic subgroups of the space
group of a paramagnetic phase (gray group)
which are possible for a magnetic ordering
having a known propagation vector. The
program provides the set of magnetic
subgroups or a graph showing the
subgroup-tree (grouped into conjugacy
classes). In both cases, more information
about the classes or subgroups can be
obtained.

Other alternatives for the input of the program:

¢ An alternative parent (non gray) magnetic
group can be chosen.

¢ Instead of the whole set of subgroups, the
output can be limited to subgroups having a
chosen common subgroup of lowest
symmetry, common point group of lowest
symmetry, or groups which belong to a specific
crystal class.

o Further restrictions on the subgroup list/graph
considering physical properties can be used: it
is possible to ask for only centrosymmetric or
non-centrosymmetri groups, polar or non-polar
groups.

¢ More than one propagation wave-vector can
be chosen.

e The whole (or partial) stars of vectors can be
introduced.

¢ Non magnetic modulation wave-vectors can be

also introduced.
e _Inctead nf nronnanatinn wave-vectare a

a supercell.

Enter the serial number of the space group of the parent choose it
paramagnetic phase: 136

Choose an alternative magnetic group
Alternatively give the operations of the space group in a non-standard setting

Introduce the magnetic wave vector(s)
Alternatively give the basis vectors of the supercell
(Give the components of the wave vectors in a fractional form, n/m)
k1x 0 k1y 0 k1z 0
Show the independent vectors of the star
Choose the whole star of the propagation vector on |y

More wave-vectors needed

commensurate

Optionally give also non-magnetic modulation wave-vectors

Include the subgroups compatible with intermediate cells.
(It is not applied when only the maximal subgroups are calculated)

Optional: refine further the subgroups of the output giving the Wyckoff positions of
atoms

Give the Wyckoff positions

Optional: refine further the subgroups of t giving a set of irreps

Choose the irreps Representations

irreps



Possible MSGs for a magnetic structure with space group Pnma, with propagation vector
k=(1/2,0,0), and a magnetic ordering according to the irrep mX1.

irrep mX1:

3 parameters

Pymn2,q

HoMnO,

kernel of the irrep

P.m

possible competing
phase in the phase diagram

3 parameters

epikernels of the irrep

6 parameters

Moo= 3 MX1(2) © 3 mX2(2)

¥

6 basis vectors: 6 parameters




Symmetry based modeling in magnetic structures

Possible magnetic symmetries for a magnetic phase with
propagation vector (1/2,0,0) and parent space group Pnma

BUT only those that can be the result of a Landau-type transition
(single irrep order parameter)

case 1: The MSG of structure is only
compatible with a single irrep.

@ 3-parameters

2-dim irrep mX2 (k=(1/2,0,0)) 2-dim irrep mX1 (k=(1/2,0,0))

- —-—---
-y

obtained with
k-SUBGROUPSMAG

¥
Moo= 3 MX1(2) © 3 mX2(2)



magnetic space group:

HoMnO; (Magndata #1.20)

transformation from parent structure: (2a,b,c;0,0,0)

parent space group: Pnma, k=(1/2,0,0)

BNS magnetic space group: P,mn2, (#29.104) (non-standard)

Transformation to standard setting: (-b,a,c;1/8,1/4,0)

k-maximal symmetry

-x+3/4,-y,z+1/2,-1

{2001 ]3/401/2}

x+1/2,-y+1/2,z,-1

{m'o101/21/20}

-x+3/4,y+1/2,z+1/2,-1

N (x,y,2) Seitz notation

1 X,y,Z,+1 {110}

2| -x+1/4,-y,z+1/2,+1 {290111/401/2}
3 X,-y+1/2,z,+1 {mg10]01/20}
4 |-x+1/4,y+1/2,z+1/2,+" | { m1p0 | 1/4 1/21/2 }
5 x+1/2,y,z,-1 {1'11/200}

6

7

8

{ m'100 | 3/41/2 1/2}

Label |Atom type| x y z Multiplicity | Symmetry constraints on M| My |My Mz | |M|
Mn Mn 0.00000/0.00000|0.50000 8 My, My, Mz 3.87|0.0|0.0|3.87
3 free parameters NOT symmetry forced

2-dim irrep mX1 but restricted to a special direction:

fixed combination of each pair of spin basis functions
=> half number of degrees of freedom with respect to
the only restriction to the irrep

Does the identification of the irrep bring some additional knowledge or
restriction? ...NO

(case 1: The MSG of structure is only compatible with with a single irrep)




MSGs vs. Irreps

Commensurate magnetic structures:

Representation

Analysis

(irreducible representations,
basis functions...)

?
—

Magnetic Symmetry
(Shubnikov groups,
superspace groups...)

ldentifying the active irrep(s) or the MSG are not alternative

equivalent methods:

In the case of N-dim irreps several MSGs are in general
possible for the same irrep

Only in the case of 1-dim irreps there is a one to one relation




The number of possible epikernels for an irrep increases wih the dimension of the irrep:

Ba;Nb,NiO, i k=(1/3,1/3,1/2)  4-dimirrep mH3

(magndata #1.13)

P.31c P.31m C.2/e C.2/m Ce2fc Ce2/m
1 2 4 6 5 7
P.3 @c @52 C.m Ps1 Ps1 @2
3 8 10 9 13 12 11
Ps1
14

13 distinct epikernels for 4-dim irrep mH3 of P-3m1 (some k-maximal
and some not)



On the use of irreps as an “alternative” description to
the use of the MSG for Case 1 structures

if the MSG of the structure is only compatible with a single irrep (the
majority of cases): A description using irrep spin basis vectors does NOT
bring any advantage:

- If the irrep is 1-dim, the two descriptions will be fully equivalent: the irrep
basis functions will reproduce the same moment constraints and relationships
among the magnetic atoms as the MSG.

- If the irrep is multidimensional, in most cases several alternative MSGs can
realized for the same irrep and the description using the actual MSG
automatically introduces additional constraints that are not included when only
restricting to the basis vectors of the irrep.



Case 2: the MSG is compatible with more than one irrep

Mn;Sn

k=(0,0,0)

P6.,/mmc1’ 5 PP

Mn Wyckoff position: 6h (x,2x,1/4)



Mn,;Sn
k=(0,0,0)

P6,/mmcl1’ 5 P77

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6,/mmc

Only those that can be the result of a Landau-type transition (single irrep order parameter):

Cm'em Cmdm Cm!em/ Cmdm/ Cm'c'm’ Cmem/ Cm/dm Cmem

NS NS N/ N/

P2)/m P2 /m/ P2, /m/ P2,/m




Only those that can be the result of a Landau-type transition (single irrep order parameter):

order parameter irrep (CDML notation):

Mn,;Sn

P6,/mmcl1’

k=(0,0,0)

>

P?

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6,/mmc

mGM3- M4+ GM2+ mGM1+
(rmicS CoomaS ConS > CounD> Lo M5
’_ ~~ ’_-_~~ S A’ \A
, ”V N\ >, ‘4~
/' Cm/cm Cmcdm 7 Cmlem! Cmdm/ \\ ,Jm'c’m' Cmem! N 4 Cm/dm Cmem |\
/ \ ' Y
[ \ / 1 A \ / i
]
\ y; /I
\\ P2\ /m 4 P2,/m ,/
\\ -

~
~.—-_—’

not k-maximal but possible as the result of a single active irrep

~.——_—



Mn,;Sn
k=(0,0,0)

P6,/mmcl1’ 7

>

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6,/mmc

Only those that can be the result of a Landau-type transition (single irrep order parameter):

order parameter irrep (CDML notation): =(0,0,0) at 6h (x,2x,1/4)

MGM3- /.-ma/ M2+ mGM1+
(S (RS e (o> (YR Ce Lomid) L

mGM5+

‘

moMe- mGMb+ mGMS- e
————-- ’_——~~ —— > -~
{ f’ N\ ’>' “~
7 Cm/em Cmcém |™ ¢ Cm'em’ N ,Jm' 'm/ Cmem/ Q'\ V4 Cm'dm Cmem |\
! AV A v} \
/ v/ \" 1 i
[ [ [ ]
\ J /
\ ’\ ’\ / Y
N P2} /m N P2)/m/ ,/ \\ P2, /m/ p \\ P2,/m ,/
N ~ ~ _

~.--_—’



Mn,;Sn

P6,/mmc1’

k=(0,0,0)

order parameter irrep (CDML notation):

"4 !
/ Cm/ecm
\
\\ P2\ /m
\\

e

2-dim irrep mGM6+

J J
M, a+lc; A,
Cmc m  (-b, 2a+b, c; 0,0,0)

or

Cm’'cm’ (-b, 2a+b, c; 0,0,0)

MGM5-

Py = ~
,J m'cd'm’

Cmem

~

;N

N/

P21/m'

~.--_—’

Mn,Sn

M1- MGV
G (ped Craumins>

~.——_—

¥M2+ mGM1+
mGM5+
S
_& ~,
3 ‘4~
V4 Cm/dm Cmem |\
/ \
p 1
1 ]
/I
A P2, /m ’
N .-



Mn,Sn k=(0,0,0)

2-dim irrep mGM6+
Number of free parameters for the

mGM6+ ordering, depending on the
constraint to one of the possible

4 basis functions/vectors

MSGs
2 parameters 2 parameters
@ @ 1)
e P2y /m' | 4parameters

Wave-vectors of the star (1 vector):

GM:(0,0,0)
Descomposition of the magnetic representation(s) into irreps.
6h:(x,2*x,1/4) N

1xmGM1-(1) ® 1xmGM2+(1) ® 1xmGM2-(1) ® 1xmGM3+(1) ®

@® 1xmGM3-(1) ® 1xmGM4+(1) ® 1xmGM5+(2) ® 2xmGM5-(2 ; 1xmGM6-(2)



Mn,Sn (MAGNDATA #0.199)

P6,/mmc1’

_space_group_magn.transform_BNS_Pp_abc '-b,2a+b,c;0,0,0’

_space_group_magn.number_BNS 63.463
_space_group_magn.name_BNS "Cmc'm"

_cell_length_a 5.66500
_cell_length_b 5.66500
_cell_length ¢ 4.53100
_cell_angle_alpha 90.00
_cell_angle_beta 90.00

_cell_angle_gamma 120.00

loop_
_Space_group_symop_magn_operation.id
_Space_group_symop_magn_operation.xyz
1xy,z+1

2 -X,-x+y,-z,+1

3 -X,-y,-z,+1

4 x,x-y,z,+1

5x,x-y,-z+1/2,-1

6 -x,-y,z+1/2,-1

7 -X,-x+y,z+1/2,-1

8x,y,-z+1/2,-1

loop_
_Space_group_symop_magn_centering.id
_Space_group_symop_magn_centering.xyz
1x,y,z,+1

> Cmc’m’ (-b, 2a+b, c; 0,0,0)

loop_

_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x

_atom_site fract_y

_atom_site fract z

Mn1l_ 1 Mn 0.83880 0.67760 0.25000
Mn1l 2 Mn 0.322400.16120 0.25000
Sn1Sn 0.333333 0.666667 0.25000

loop

_atom_site_moment.label
_atom_site_moment.crystalaxis_x
_atom_site_moment.crystalaxis_y
_atom_site_moment.crystalaxis_z
_atom_site_moment.symmform
Mn1_1 3.00(1) 3.00 0.00000 mx,my,0
Mn1_2 0.00000 -3.00 0.00000 0,my,0

/

3 free parameters




Mn,Sn k=(0,0,0)

Number of free parameters for the
mMmGM6+ ordering, depending on the
constraint to one of the possible MSGs

2 parameters

I P2 jmy

Wave-vectors of the star (1 vector):
GM:(0,0,0)

Descomposition of the magnetic representation(s) into irreps.
6h:(x,2*x,1/4)

—

4 parameters

2-dim irrep mGM6+

2 parameters

4 basis functions/vectors
(4 parameters)

2 parameters

m

L4

1xmGM1-(1) ® 1xmGM2+(1) ® 1xmGM2-(1) ® 1xmGM3+(1) ®

1 parameter

@® 1xmGM3-(1) ® 1xmGM4+(1) @ 1xmGM5+(2) ® 2xmGM5-(2 w; 1xmGM6-(2)




k=(0,0,0) 2-dim irrep mGM6+

P6,/mmcl’ 5> Cmc'm’ (-b,2a+b, c; 0,0,0)

2-dim irrep mGM6+

4 basis functions/vectors

2 parameters 2 parameters

pg(l /m’ 4 parameters

Why 3 free parameters when described using the MSG Cmc’ m’ instead of 2 parameters?



Mn,;Sn
k=(0,0,0)

P6,/mmc1’ S5 ?7

Possible magnetic symmetries for a magnetic phase with
propagation vector (0,0,0) and parent space group P6;/mmc (LANDAU)

\
I not k-maximal symmetry

\ P2’1/m’ ,/
\\ P
~y -
~-——_—’

Deséompbsition of the magnetic representation(s) into irreps.
6h:(x,2*x,1/4) — 1xmGM1-(1) @ 1xmGM2+(1) @ 1xmGM2-(1) &

® 1xmGM3-(1) ® 1xmGM4+(1) ® 1xmGM5+(2) ® 2xmGM5-(2) @ 1xmGM86-(2)



Case 2: the MSG of the

structure is compatible with

more than one irrep 1-dim irrep MGM 3+

Cmc'm! | 2-dimirrep mMGM6+

Von Neumann principle:

Everything that keeps the symmetry Cmc’ m’ is allowed and can happen...

Anything that keeps the symmetry P68’ ;/m’ mc’ keeps the symmetry of its subgroup Cmc’ m’
THEREFORE.... a spin arrangement according to the irrep mGM3+ is also allowed in the
structure with MSG Cmc’ m’



Example of an energy map with primary
(Q,) and secondary (Q,) distortion
modes:

E=Eo+'% kK, Q,+ Y KZQZ"'

Why secondary modes

<0 K,>0

Anharmonic allowed coupling

Equivalent ferroic stable structures



We do not have to worry about the coupled secondary irreps, they are
automatically included in the description under the MSG.....

is it an advantage or a nuisance?

It depends .....

- In many cases these induced effects are negligible and we would like to have
these secondary degrees of freedom set to zero from the start, and then some

additional restrictions in the model have to be addedto describe only the primary
mode

- In other cases, we want to be aware of all possible degrees of freedom which are

set free by the primary magnetic ordering and the MSG takes care of all of them
automatically.



A simple example where the automatic inclusion of secondary irreps by the
MSG is advantageous:

UAu2Si2 (#1.0.12)

UAu,Sis (#1.0.12) Im’m’m
view in Jmol k=(2/3,0,0)

Download mcif file
Download vesta file (all atoms)

Download vesta file (magnetic atoms only) Allowed third harmonic with k=0
subit o STROONVERT is automatically included

$ ¢ ¢

Magnetic structure with all atoms Magnetic structure with only magnetic atoms



A complex example where the automatic inclusion of secondary irreps by the
MSG is an advantage:

Tbh,,Ads, (Magndata #1.0.52)

P6/m =p P-6" (2a+b-a+b,c:1/3.-1/3,0)
k, = (1/3,1/3,0)

third harmonic: k, = 3k=(0,0,0)

Active Irreps: Irrep decomposition via  Get_mirreps

label |dim. full irrep |dim. small irrep|direction| action |number of modes |presence

mK4K6 4 2 special | primary 18

mGM2+ 1 1 secondary 4 yes

mGM1- 1 1 secondary 5 yes




How do | know that more than one irrep is compatible with the symmetry
of my structure and therefore they are allowed within the phase (Case 2)?

Method 1: Use ISODISTORT (Method 4) to decompose your structure in
irrep modes (available in the ISOTROPY Software Suite in the web).

Input: CIF and mCIF files of parent and magnetic structure
standard setting ! (use ISOCIF to transform to a standard setting if needed)

Method 4: Mode decomposition of a distorted structure m ©)

Upload distorted structure from CIF file:  Examinar... 0.199 M...rd.mcif

mCIF file of your structure in standard
setting



How do | know that more than one irrep is compatible with the
symmetry of my structure and therefore allowed within the phase
(Case 2)?

Method 1: Use ISODISTORT (Method 4) to decompose your structure in
irrep modes Input: CIF and mCIF files of parent and magnetic structure

ISODISTORT: distortion

Space Group: 194 P6_3/mmc D6h-4, Lattice parameters: a=5.66500, b=5.66500, c=4.53100, alpha=90
Default space-group preferences: monoclinic axes a(b)c, monoclinic cell choice 1, orthorhombic axes a
Mn1 6h (x,2x,1/4), x=-0.16120, Sn1 2c (1/3,2/3,1/4)

Include magnetic Mn distortio

Reading CIF file... Decomposition into irrep components for mGM6+ and
Dore. mGM3+ with zero amplitude for mGM3+

Distorted structure: Magnetic S
(x,y,1/4;mx,my,0), x=-0.24180, y=0.08060 , mx=

000, my=-2.59808, Mn1_2 4c (0,y,1/4;mx,0,0), y=-0

Subgroup: 63.463 Cmc'm’, basis={(1,0,Q)«1,2,0),(0,0,1)}, origin=(0,0,0), s=1, i=6
Lattice parameters of undistorted ercell: a=5.66500, b=9.81207, ¢=4.53100, alpha=90.00000, beta=

Save interactive diffraction @ CIF file i Eii Distortion file @

ULLPROF.pcr @ IR matrices ¢ ) Subgroup tree

© Save interactive distorti
TOPAS.STR

train amplitudes: @

P6_3/mmc[0,0,0)mGM3
0.00000 [Mn1:h:mag]B1(a)

194.269 P6_3'/m'mc"', basis={(0,-1,0),(1,1,0),(0,0,1)}, origin=(0,0,0), s=1 i=2

P6_3/mmc(0,0,0lmGM6+ (0,) 63463 Cmc'm", basis={(1,0,0),(1,2,0),(0,0,1)}, origin=(0,0,0), s=1 i=6, ferrg
-5.1961€ [Mn1:h:mag]A2(a)

-5.1961€ [Mn1:h:mag]B1(a)




How do | know that more than one irrep is compatible with the symmetry
of my structure and therefore allowed within the phase (Case 2)?

Method 2: Use Get_mirreps and MAGNETIC REP in the Bilbao Server
Input: Parent SG, Wyckoff position(s) of magnetic atom(s) and MSG

List of physically irreducible representations and order parameters between a parent group and a given subgroup.

Input data

input

Group—subgroup Transformation matrix

PBymmct’ (N. 194.264)~Cmc'nr (N.63.463) [ -2 1 o o |
‘) 0 J

0 1

Representations and order parameters

output
Ehow e graph of isonogy subgrouds
isotropy subgroup
k-vectors irreps and order parameters tvanafiornsalion madshe link to the irreps
. PB3y/mmc1’ (No. 184.264)
-y . a.5,¢:0.0,0
Cmem1™ (No. 63.458)
-b.2a+b.c;0.0.0
GM: (0,0,0) rairces o the meps
mGM*- ( P84 Im'mc’ (No. 194 .269)
5 (@) ab,¢0.0,0
+ - Cmc'm' (No. 63.463
mGMg*: (a.alv3) -b,Zaib,c;o,O_D )

2 magn. irreps allowed



How do | know that more than one irrep is compatible with the
symmetry of my structure and therefore allowed within the
phase?

Method 2: Use Get_mirreps and MAGNETIC REP in the Bilbao

Server
Input: Parent SG, Wyckoff position(s) of magnetic atom(s) and MSG

MAGNETIC REP output:

Decomposition of the magnetic representation of the magnetic space group P63/mmc1’' (No. 194.264)

(gray group of the paramagnetic phase)
Wave-vector: GM:(0,0,0)

Wave-vectors of the star (1 vector):

GM:(0,0,0)
Wyckoff Decomposition into irreps
position N i P N\
6h:(x,2",1/4)mGM1-(1) © mGM2+(1) ® mGM2-(1) & mGM3+(1) & mGM3-(1) ® mGM4+(1) & mGM5+(2) ® 2 mGM5-(2) ® 2 mGM6+(2] & mGM6-(2)

In parentheses the dimensions of the irreducible representations of the little group of k

The 2 irreps are possible for the WP 6h




How to report combining MSG and irreps in Case 2
fundamental necessary information (the same as in case 1)

Mn;Sn (#0.199)
(BNS setting)
1.1 MSG symbol Cmc'm’
1.2 MSG number 63.463
1.3 Transformation to standard setting (-b,2a+b,c;0,0,0)
of MSG
1.4 Magnetic point group mmZ21’(c,a,b) or mZm1’
1.5 Unit cell parameters (A) a=5.665 =909
b=5.665 [ =90°
c=4.531 y=120°
1.6 MSG symmetry operations X,Y, Zt] | {11000}
jjjj 3 free parameters
X,X-y,z,+1 {mo10]0,050}
XX-y,-z+1/2,-1 {2°210]0,@,%2}
-X,-y,z+1/2,-1 {2°001]0,0,%2}
-X,-x+y,z+1/2,-1 {m’210| 040, %2}
Xy, z+1/2,-1 {m’001/@,0,%2}
1.7 MSG symmetry centering operations | x,y,z,+1 {1]0,0,0}
1.9 Positions of magnetic atoms Mn1l 1 Mn 0.8388 0.6776 0.25
Mn1_2 Mn 0.3224 0.1612 0.25
1.10 Positions of non-magnetic atoms Sn1 Sn 0.333333 0.666667
7, —
1.11 Magnetic moments (ug) of magneticg#| Mn1_1 3.00(1) 3.0 0.0 (mx,my,0)
atoms Mn1_2 0.0 -3.0 0.0 (0,my,0)
and their symmetry constraints \




How to report combining MSG and irreps in Case 2

fundamental information (different than in case 1)

2.1 Parent space group P63/mmc (N. 194)
2.2 Propagation vector(s) k1=(0,0,0)
2.3 Transformation from parent setting (a,b,c;0,0,0)
to the one being used
2.4 Primary irrep(s) labels with mGM6+(2)
2.5 Secondary irrep(s) labels with mGM3+(1)
dimension
if symmetry allowed
2.6 Description of primary irrep(s) mGM6+:
{6001]0,0,1/2}: (% ,-V3J2;V3/2,%)
{-110,0,0}: (1,0;0,1)
. 1 b -1
2.7 Description of secondary irrep(s) if mGM3+:
allowed {6001/0,0,1/2}: -1
{-110,0,0}: 1
{m010|0,0,0}: 1

Second(ary) irrep allowed by
the MSG




Description of the irrep basis vectors involved

2 basis vectors for mGM6+:
1 basis vector for mGM3+: basis vector 1:  basis vector 2:
Mnl_1 (1,0,0) c=0 Mn1_1 5(13,0) 4 P (0,1,0)
Mnl 2 (0,1,0) Mnl 2 (0,-1,0) (0,1,0)
The form of the moments of all The form of the moments of all b=0
atoms in the unit cell is NOT needed! atoms in the unit is NOT needed!
The MSG operations takes care of that The MSG operations takes care of that

mGMé6+, model:
primaty mode(s) and amplitude(s) (in us) | Mn1_1 (a a,0) a=3.00(1)
Mn1_2 (0,-3,0)

2 parameters

mGM6+, mode2: b=0.0
Mnl1_1 (0,b,Q)
Mnl1_2 (0,b,0)

Description of mGM3+, mode 1: .
secondary mode(s) and amplitude(s) (in | Mn1_1 (c,0,0) 1 parameter

) Mn1.2 (0,c,0)

When defined under the MSG symmetry of the structure, the description of the irrep
basis functions/vectors does not require complex functions, nor a full listing of the moments
in the unit cell.



- The secondary irrep mGM3+ spin
mode is absent.

- Only the irrep mGM®6+ mode is
present, but the model includes an
additional constraint (b=0), which is
not forced by the restriction to this
single irrep. It is a FM mode along b
(weak Ferromagnetism ).

Positions of magnetic atoms Mn1_1 Mn 0.8388 0.6776 0.25
Mn1_2 Mn 0.3224 0.1612 0.25

Magnetic moments ([g) of magnetj Mn1_1 3.00(1) 3.0 0.0 (m%
atoms Mn1_2 0.0 -3.0 0.0 (0,my,@
and their symmetry constraints

Description of mGM6+, model:

primary mode(s) and amplitude(s) (inus) | Mn1_1 (a a,0)
Mnl1_2 (0,a,0)

mGM6+, mode2:
Mn1_1 (0,b,0)
Mn1_2 (0,b,0)

Description of mGM3+, mode 1:
secondary mode(s) and amplitude(s) (in | Mn1_1 (c,0,0)
UB) Mn1_2 (0,c0)




FullProf can refine under a MSG with the amplitudes of the

irrep basis functions compatible with the MSG as parameters to
refine, using an output file of ISODISTORT

This is the future already at
your disposal !

! Basis vectors of magnetic symmetry modes for each atom
M_MODES 6

! Nm Atom Irrep Mx My Mz Coeff
1 Mn1_1 GM3 0.0719 0.0000 0.0000 1.00
_ + 0. 0000 0.0719 __0.0000 mode 1 mGM3+ Mn1 1 (aZaO’
2 Mn1_1 mGM6+ 0.0508 0.1017 0.0000 1.00 N mode 2 mMGM6+> — T
2 Mnl 2 mGM6+ 0.0000 0.0000 0.0000 1.00 Mn1_2 (0,0,0)
M mGM6+ D.0508 0.0000 0.0000 00 mode3mGM6+ —

3 Mn1:2 mGM6+ 0.0000 -0.1017 0.0000 1.00
! Amplitudes of Magnetic Symmetry Modes

MA_MODES 3 2
Al_mGM3+ 0.00000 1.00 . .
A2_mGM6+ -5.20716 1.00 Inear combination of
A3_mGM6+ -5.20716 1.00 the two modes chosen

here. Choice is not unique

mGM6+, model:
Mnl_1 (a a,0)
Mn1_2 (0,-3,0)

Description of
primary mode(s) and amplitude(s) (in ws)

2 parameters

mGM6+, mode2:
Mn1_1 (0,b,0)
Mn1_2 (0,b,0)

Description of
secondary mode(s) and amplitude(s) (in

HB)

mGM3+, mode 1:
Mnl1_1 (c0,0)
Mn1_2 (0,c,0)

1 parameter



Conclusions:

e The assignment of MSG should be a must: Whatever method is employed to determine
a commensurate magnetic structure, the final model has necessarily a certain symmetry
that must be given by a MSG, which should be identified.

e The description using the MSG in a crystallographic form is the best “way”: The simpler,
more robust and unambiguous form of describing a commensurate magnetic structure is
to use consistently its MSG and only give the atomic positions and magnetic moments of a
set of symmetry independent atoms with respect to this MSG.

e The MSG is relevant for all properties: Properties of commensurate
magnetic phases are constrained by their MSG, including their atomic
positions. Any possible magneto-structural induced effect is constrained
by the MSG.



Conclusions:

® Representation analysis of magnetic structures is NOT in general equivalent to the use
of magnetic symmetry (i.e. to give an irrep is not equivalent to give the magnetic space
(superspace) group of the system).

e Irrep constraints additional to those of the MSG are not needed in most cases: Only in
the case that the MSG of the structure is compatible with more than one irrep for the
magnetic arrangement, the restriction to a single irrep introduces additional constraints
not taken into account by the MSG, and their existence has to be indicated extra. In these
cases the best approach is to combine magnetic symmetry and representation analysis, as
the description of these constraints can be limited to the magnetic atoms in the
asymmetric unit

* |n the case of incommensurate structures similar considerations
apply but with MSSGs: The symmetry of these systems is described
by the so-called magnetic superspace groups (MSSGs).



