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Outline

1. The calculated profile in neutron powder diffraction (NPD).
2. Components of the general expression for calculating powder 

diffraction patterns
3. Structure Factors and free parameters of crystal and magnetic 

structures
4. Neutron powder diffraction profile functions for CW and TOF
5. The Rietveld Method
6. R-Factors
7. Steps to solve and refine a magnetic structure using NPD



3
T H E  E U R O P E A N  N E U T R O N  S O U R C E

Experimental powder diffraction pattern

A powder diffraction pattern can be recorded in numerical form for a 

discrete set of scattering angles, times of flight or energies. We will refer to 

this scattering variable as : T. 

The experimental powder diffraction pattern is usually given as three arrays

:

The profile can be modelled using the calculated counts:  yci at the ith step by 

summing the contribution from neighbouring Bragg reflections plus the 

background. The standard deviation of the observed counts at i is i

 
1,2,...

, ,i i i i n
T y 


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The calculated
and the observed
profiles of 
powder 
diffraction 
patterns

Powder diffraction 
profile:
scattering variable T: 
2, TOF, Energy

bi

{h}

yci

( )h h

{h}

ci i iy I T T b   

yi-yci

yj

zero

Bragg position Th
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The calculated profile of powder 
diffraction patterns

( )h h

{h}

ci i iy I T T b   

Contains structural information: 

atom positions, magnetic moments, etc h h II I 

( , )h Pix   
Contains micro-structural information: 

instr. resolution, defects, crystallite size…

 Bi ib b  Background: noise, incoherent scattering

diffuse scattering, ...

( ) 1x dx



 

( ) ( ) ( )x g x f x instrumental intrinsic profile    
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Multiple phases contributing to 
the powder diffraction pattern

The scale factor used in the Rietveld method is proportional to the 
quantity of corresponding crystalline phase

( )i i iy S T T b

 

 
    

 
  h h

h

I

( )

WC
S

ZMV








D.L.Bish & S.A.Howard, J.Appl.Cryst. 21, 86 (1988)
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 2

h h
I S L pOACF

Integrated intensities are proportional to the square of 

the structure factor F. The factors are: 

Scale Factor (S), Lorentz-polarization (Lp), preferred 

orientation (O), absorption (A), other “corrections” (C) 

( )h h

{h}

ci i iy I T T b   

Components of the general expression for 
calculating powder diffraction patterns



8
T H E  E U R O P E A N  N E U T R O N  S O U R C E

*

hhhhh MM   *NNI

hM e M(h) e M(h) e (e M(h))      

k Hh   Scattering vector

Intensity (non-polarised neutrons)

Magnetic interaction vector

h
e

h


Magnetic Bragg Scattering
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      
1

2h h t r
n

j j j js
j s

F O f h T exp i S


 
  

( , , ) ( 1,2,... )rj j j jx y z j n 

sin
exp( )j jT B








 

Structure Factors and free parameters of 
crystal and magnetic structures

(isotropic case)
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Structural Parameters
(simplest case) 

( , , )rj j j jx y z Atom positions (up to 

3n parameters)

j

j

m
O k

M
 Occupation factors (up to 

n-1 parameters)

jB Isotropic displacement 

(temperature) factors (up 

to n parameters)
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Structural Parameters
(complex cases) 

As in the simplest case plus additional (or alternative) parameters:

• Anisotropic temperature (displacement) factors

• Anharmonic temperature factors

• Special form-factors (Symmetry adapted spherical harmonics ), TLS for 

rigid molecules, etc.

• Magnetic moments, coefficients of Fourier components of magnetic 

moments , basis functions, etc.
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      
1

( ) 2h h h t r
n

j j j j s js
j s

F O f h T g exp i S


 
  

( )hj sg
Complex form factor of object j

Anisotropic  DPs

Anharmonic DPs

 1,2,...h
T

s s G

s

h h

k S k s N

l l

   
   

     
   
   

The Structure Factor in complex cases
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Structure Factors and free parameters 
of crystal and magnetic structures

Magnetic structure factor 

(without symmetry):

13

*
M MI  

1

( ) ( )exp(2 · )M H m H r
magN

m m m

m

p f H i


 

M e M e M e (e M)      

 
1

( ) det( ) {2 [( { } ]}M H m H t r
n

j j j s s s j s j

j s

p O f H T h h exp i h


    

Using magnetic space group symmetry, we consider n independent magnetic sites labelled 

with the index j. The index s labels the representative symmetry operators of the 

Shubnikov group:                                         is the magnetic moment of the atom sited at the 

sublattice s of site j.

det( )m mjs s s s jh h 

The use of Shubnikov groups implies the use of the magnetic unit cell for 

indexing the Bragg reflections

The maximum number of magnetic parameters np is, in general, equal to 3n

magnetic moment components. Special positions make np< 3n.
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Fwhm

BG

x0

x

I

Comparison of Gaussian and 
Lorentzian peak shapes of the 
same peak height “I” and same 

width “Fwhm”

Constant wavelength neutron powder 
diffraction profiles

( )h h

{h}

ci i iy I T T b   

( ) ( ) ( )x g x f x instrumental intrinsic profile    
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Convolution properties of Gaussian

and Lorentzian functions

1 2 1 2

2 2

1 2 1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

L x H L x H L x H H

G x H G x H G x H H

  

  

( , ) ( , ) ( , , )L G L GL x H G x H V x H H 
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( ) ( ) (1 ) ( )pV x L x G x    

The pseudo-Voigt function

( ) ( ) ( ) ( ) ( )V x L x G x L x u G u du



   

( ) ( , , ) ( , , )L G L GV x V x H H V x   

( ) ( , , )pV x pV x H

The Voigt function
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Properties of the Voigt function

1 2( ) ( ) ( )V x V x V x 

1 2

2 2 2

1 2

L L L

G G G

  

  

 

 

Lorentzian breadths simply 
have to be summed

Gaussian breadths have to 
be summed quadratically

2 2 2

fL hL gL

fG hG gG

  

  

 

 
Correction for 
instrumental broadening

The Voigt function has proven to be a very good 
experimental  approximation in many cases
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2 2 2

2
tan

cos

fG

hG f gG

I
H U H


  

tan
cos

f

hL f gL

Y
H X H


  

Instrument and sample contribution to broadening

Sample Instrument

The Gaussian and 

Lorentzian contributions 

of the instrument must be 

determined 

experimentally with a 

size/strain-free sample
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2 2 2 2

2
( (1 ) ( )) tan tan

cos
α

fG

hG g f f fST D g g

I
H U U D V W  


      

[ ( )]
( ( )) tan

cos

α
α

g f f S

hL g f f fST D

Y Y F
H X X D 



 
   

Modeling the Gaussian and Lorentzian
components for the general anisotropic case in FullProf

 2 2

2 8

2

180
( ) 10  8Ln2 α

hkl

fST D

hkl

M
D

M





  
  

 

Instrument resolution function characterized by: (U, V, W, X, Y)g
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Convolution of back-to-back 
exponentials with a Voigt function

Time of Flight neutron powder diffraction 
profiles

More details in another talk. 
Consult the document 
TOF_FullProf.pdf

( ) ( ) ( ) ( ) ( )x pV x E x pV x t E t dt



    

 

( ) 2 0

( ) 2 0

2

t

t

E t Ne t

E t Ne t

N







 



 

 



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The Rietveld Method consist of refining a crystal (and/or magnetic) 

structure by minimising the weighted squared difference between the 

observed  and the calculated pattern  against the parameter vector: 

 
22

1

( )
n

i i ci

i

w y y 


 

2

1

i
iw




2

i :   is the variance of the "observation" yi

The Rietveld Method
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Least squares: Gauss-Newton (1)
Minimum necessary condition:

A Taylor expansion of                 around       allows the application 

of an iterative process. The shifts to be applied to the parameters 

at each cycle for improving 2 are obtained by solving a linear 

system of equations (normal equations)

2

0









( )icy  0

0

0 0

0

( ) ( )

( )
( )

A b

ic ic
kl i

i k l

ic
k i i ic

i k

y y
A w

y
b w y y

 





 


 


 









 


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Least squares: Gauss-Newton (2)

The new parameters are considered as the starting ones in the next cycle 

and the process is repeated until a convergence criterion is satisfied. The 

variances of the adjusted parameters are calculated by the expression:

The shifts of the parameters obtained by solving the normal equations 

are added to the starting parameters giving rise to a new set

01 0 .m    

1( ) ( )Ak kk

N - P+C

 








  







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Least squares: a local 
optimisation method

• The least squares procedure provides (when it converges) the value of the 

parameters constituting the local minimum closest to the starting point

• A set of good starting values for all parameters is needed

• If the initial model is bad for some reasons the LSQ procedure will not 

converge, it may diverge.
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R-factors and Rietveld Refinement (1)

, ,

,

100
obs i calc i

i
p

obs i

i

y y

R
y








1/ 2
2

, ,

2

,

100
i obs i calc i

i
wp

i obs i

i

w y y

R
w y

 
 

  
 
 





R-pattern

R-weighted pattern

1/ 2

2

,

( )
100exp

i obs i

i

N P C
R

w y

 
  

 
  


Expected R-weighted 

pattern
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R-factors and Rietveld Refinement (2)

Reduced Chi-square

Goodness of Fit indicator

2

2 wp

exp

R

R


 
  
  

wp

exp

R
S

R

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R-factors and Rietveld Refinement (3)

Two important things:

• The sums over “i” may be extended only to the regions where Bragg reflections 

contribute

• The denominators in RP and RWP may or not contain the background contribution
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Crystallographic R-factors 
used in Rietveld Refinement

, ,

,

' '

100
' '

obs k calc k

k
B

obs k

k

I I

R
I







Bragg R-factor

, ,

,

' '

100
' '

obs k calc k

k
F

obs k

k

F F

R
F







Crystallographic RF-factor.
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Crystallographic R-factors 
used in Rietveld Refinement

Provides ‘observed’ 

integrates intensities for 

calculating Bragg R-factor

In some programs the crystallographic 

RF-factor is calculated using just the 

square root of ‘Iobs,k’ 

,

, ,

,

( )( )
' '

( )

i k obs i i

obs k calc k

i calc i i

T T y B
I I

y B

    
  

  


,

,

' '
' '

obs k

obs k

I
F

jLp

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1: Collect a NPD pattern of the sample in the paramagnetic state (T > TN or TC). Refine

the crystal structure using the collected data and get all the relevant structural and profile

parameters. Use FULLPROF and WINPLOTR for doing this task.

2: Collect a NPD pattern below the ordering temperature. Normally additional magnetic 

peaks appear in the diffraction pattern. It is important to make a refinement by fixing all the 

structural parameters, without putting a magnetic model in the PCR file, in order to see clearly 

the magnetic contributions to the diffraction pattern. Get the peak positions of the additional 

peaks using WINPLOTR-2006 and save them in a format adequate to the program K-SEARCH.

3: Determine the propagation vector(s) of the magnetic structure by using the program K-

SEARCH or by trial and error with an additional phase in the PCR file treated in Le Bail Fit 

(LBF) mode (no magnetic model). If there are no additional peaks and only an additional 

contribution to the nuclear peaks is observed, the magnetic structure has as propagation vector 

k = (0, 0, 0).

Steps for determining magnetic structures with NPD (1)
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Steps for determining magnetic structures with NPD (2)

4: Once the propagation vector is determined, use the program BASIREPS in order to get the

basis vectors of the irreps of the propagation vector group Gk. In the case of irreps with

dimensions higher than 1, the user has to select the appropriate combination of basis vectors

because BASIREPS does not make an analysis of the isotropy groups as a function of the order

parameters. For selecting the appropriate symmetry few options are available:

4-1: Commensurate structure: With BASIREPS, one can determine the appropriate

magnetic symmetry operators, or use directly the basis vectors of the irreps. Use the BCS to

obtain mCIF files that can be converted to templates of PCR files. One can also use

ISODISTORT to obtain directly a template of a PCR file for working with displacive and

magnetic symmetry modes. (Warning: ISODISTORT uses the standard setting)
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4-2: Incommensurate structure: One can directly use the output of BASIREPS for

constructing a model of incommensurate magnetic structure using the basis vectors or

complex Fourier coefficients. Other options are those that allows working with

particular forms of magnetic structures (conical structures, real space description of

multi-helical structures, etc.)

4-3: Incommensurate structure in superspace: If the superspace approach is preferred,

the best option currently available for working with FULLPROF is to obtain from

ISODISTORT a magnetic CIF files that can be converted to PCR by using the program

MCIF_TO_PCR. The best way of working is to generate the superspace group using a

setting related to the parent paramagnetic space group without changing the origin.

Steps for determining magnetic structures with NPD (3)
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5: Solve the magnetic structure by using the symmetry information obtained in step 4

using trial and error methods (5-1) or the simulated annealing (SAnn) procedure (5-2)

implemented in FULLPROF.

5-1: In the first case one has to modify the PCR file used in step 2 by adding an

additional magnetic phase by putting Jbt=1 (magnetic phase with Fourier

coefficients/magnetic moments referred to the unitary basis along the unit cell axes), Irf=-1

(only satellites will be generated). The best way to create such additional magnetic phase is to

copy it from an already existing PCR file similar to that of the current case and modify it

using the symmetry information obtained in step 4. Run FULLPROF fixing nearly all

parameters, except the magnetic moments or the coefficients of the basis functions, and check

in the plots if the calculated magnetic peaks have intensities close to the observed ones. If not,

change the magnetic model (use another representation or other magnetic symmetry

operators) and try again. In some cases this is enough to solve the magnetic structure. In case

this does not work use the method described in 5-2.

Steps for determining magnetic structures with NPD (4)
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Steps for determining magnetic structures with NPD (5)

5-2: In the second case one has to modify the PCR file used in step 2 by adding an

additional phase in LBF mode (as for one of the options in step 3). This additional phase
has no atoms and we have to put Jbt=2, Irf= -1 and Jview=11. The nuclear phase has

to be treated with fixed scale factor and structural parameters. This allows getting the

purely magnetic reflections in a separate file that can be used by FULLPROF in SAnn

mode.

6: Refine the magnetic structure using the Rietveld method implemented in

FULLPROF. Once the magnetic model gives a calculated powder diffraction pattern close

enough to the observed one, we start the refinement phase. If we use the trial and error

method (5-1) the refinement step is just the continuation of the previous step. If the

simulated annealing method (5-2) was used we have to translate the final solution, stored

in an automatically generated PCR file, to the file for treating directly the powder

diffraction profile.
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Strategy for setting up a 
Rietveld refinement

Use the best possible starting model: this can be easily done for background 

parameters and lattice constants

Do not start by refining all structural parameters at the same time. Some of 

them affect strongly the residuals (they must be refined first) while others 

produce only little improvement.

Collect all the information available both on your sample (approximate cell 

parameters and atomic positions) and on the diffractometer and 

experimental conditions
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Limits of NPD for magnetic structure 
determination and refinement

Use the best possible starting model: this can be easily done for background 

parameters and lattice constants

Do not start by refining all structural parameters at the same time. Some of 

them affect strongly the residuals (they must be refined first) while others 

produce only little improvement.

Collect all the information available both on your sample (approximate cell 

parameters and atomic positions) and on the diffractometer and 

experimental conditions
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How to perform a Rietveld refinement
A sensible sequence for the refinement of a crystal structure:
Scale factor

Zero point, background parameters (if appropriate) and lattice constants. 

Atomic positions and displacement parameters

Peak shape and asymmetry parameters.

Atom occupancies (if required).

Microstructural parameters: size and strain effects.

A sensible sequence for the refinement of a magnetic structure:

The above steps have been performed for the paramagnetic state

For magnetic structures: FIX structural parameters at first stages and refine components of 

magnetic moments (or coefficients of basis functions). Everything can be refined simultaneously if 

the model is correct and the quality of the data is enough.

It is essential to plot frequently the observed and experimental patterns. 
The examination of the difference pattern is a quick and efficient method to detect blunders in the 

model or in the input file controlling the refinement process. I may also provide useful hints on the 

best sequence to refine the whole set of model parameters for each particular case.
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