Magnetic Scattering, how can we detect it's existence? (1)

E.g.: Refining a neutron diffraction data set using a model for the crystallographic structure which is known from x-ray data

Strong intensity not accounted for by the model on allowed Bragg peaks or in additional Bragg peaks.

Missing intensity stronger at lower scattering angles ---> magnetic scattering
For room temperature data only if transition metals $\left(\mathrm{Fe}, \mathrm{C}_{0}\right)$ are present in the compound.

Magnetic Scattering, how can we detect it's existence? (2)

Measuring the temperature dependence (thermodiffractogram) of the neutron spectrum and look for changes.
I) Ferromagnetism, Ferrimagnetism: Intensity is added to existing Bragg peaks
II) Antiferromagnetism:

1) Magnetic unit cell = Crystallographic unit cell, magnetic propagation vector $\kappa=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$, new Bragg peaks can be created
2) a) Magnetic unit cell \neq Crystallographic unit cell, commensurate magnetic propagation vector, e.g. $\kappa=\left[\frac{1}{2} \frac{1}{2} 0\right]$, new Bragg peaks
b) Magnetic unit cell \neq Crystallographic unit cell, incommensurate magnetic propagation vector, e.g. $\kappa=\left[0 \frac{1}{2} 0.21\right]$, new Bragg peaks

Exclude structural transitions as reasons for changes:

Peak splittings point to structural transitions through distortions.

Appearence of new peaks is accompanied by an intensity reduction of old peaks.

But:
Magnetostructural transitions where the magnetic phase transition triggers a structural transition or vice versa.

When does antiferromagnetism not create new reflections with $\kappa=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$?
e.g.: P2/m, Pmmm, P-62m, P432

When does antiferromagnetism create new reflections with $\kappa=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] ?$
e.g.: $P 2_{1} / m, P n m a$

In general:
Symmetry elements which create systematic extinctions within the crystallographic unit cell:

Lattice centering: A, B, C, F, I, R
Screw axes: $2_{1}, 3_{1}, 4_{1}, 4_{2}, 6_{1}, 6_{2}, 63$
Glide planes: a, b, c, n, d

$$
\text { (e.g.: I ---> }+\frac{1}{2} \frac{1}{2} \frac{1}{2} \text {) }
$$

(Rotation + Translation)
(Reflection + Translation)

In structures where the crystallographic unit cell contains screw axes or glide planes a magnetic propagation vector $\kappa=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ creates new magnetic Bragg reflections for antiferromagnetic structures.

Structures having lattice centering like $I 4 / m, R-3$ create no new reflections for $\kappa=\left[\begin{array}{lll}0 & 0\end{array}\right]$, spins are parallel.
If the centering condition is lost, propagation vectors like $\kappa=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ or $\kappa=\left[\begin{array}{lll}0 & 0 & 1.5\end{array}\right]$ result and new reflections are formed, spins are anti-parallel.

Introduction to the use of the program BASIREPS

Aim: Efficient use of neutron diffraction data to solve magnetic structures

Ideal diffraction data for the determination of magnetic structures:

1) High resolution neutron data of the compound in the paramagnetic phase: Initial structure
2) High intensity neutron thermodiffractogram from $T>T_{C}$ or T_{N} down to lowest possible T :

Appearence of magnetic scattering and its T -dependence
Existence of different transitions? Different magnetic propagation vectors?
3) High resolution neutron data (and synchrotron data) at lowest T :

Final structure, Existence of a structural phase transition?

Clemens Ritter

Introduction to the use of the program BASIREPS

1) Determination of the structure in the paramagnetic phase

Fit at $130 \mathrm{~K}>\mathrm{T}_{\mathrm{N}} \longrightarrow$ Pnma, Mn on $00 \frac{1}{2}$
Paramagnetic.pcr
Paramagnetic.prf
2) Determination of the magnetic propagation vector

Fit at $10 \mathrm{~K}<\mathrm{T}_{\mathrm{N}} \quad$ Structure10K.pcr Structure10K.prf
Difference pattern
Insert Peaks, K-Search Ksearch1.sat Ksearch.kub $\longrightarrow K=(1 / 3,1 / 3,0)$

$$
\kappa=(0,0,0)
$$

Introduction to the use of the program BASIREPS

Finding a magnetic structure by trial and error:
$\kappa=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] \rightarrow$ magnetic unit cell = nuclear unit cell
Refine the magnetic contribution using a second phase in the FULLPROF pcr file
Give all the magnetic atoms separately and imagine the magnetic coupling between the magnetic moments in the cell: $M n$ on ($0,0, \frac{1}{2}$), ($\frac{1}{2}, 0,0$), $\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right)$

Couplings within a 4-fold site:

Site
1 2

3
4
$F A G C$

Introduction to the use of the program BASIREPS

Trial and error 2 (or 41 or 99 or ...)

Introduction to the use of the program BASIREPS

Refine Trial_and_error2.pcr \rightarrow Trial_and_error2.prf
Results looks really good!
Difference plot shows all magnetic peaks to be refined
Trial_and_error2.new
$R_{\text {mag }}$ is low
$A_{x} G_{y} F_{z}$ seems to be the solution, let's publish!

Introduction to the use of the program BASIREPS
Short reminder on the way a magnetic moment is defined:

$$
m_{j}=\sum_{\kappa} S_{\kappa j} e^{-2 \pi i \kappa t}
$$

If only one propagation vector к:

$$
m_{j}=S_{\kappa j} e^{-2 \pi i \kappa t}
$$

$$
\downarrow
$$

$$
S_{\kappa j}=\sum_{n} C_{k j n} S_{\kappa n}
$$

n Coefficients (variables) to be determined for n Basis vectors for spin on atom j
S_{kj} are the Fourier components of atom j in the zeroth unit cell, t is the translation (e.g. $t=(100)$ to neighbouring unit cell in x-direction)

Linear combination of n Basis vectors gives the magnetic moment value and its direction

Examples of Basis vectors:
(100) (0 10) (0 0 1) corresponds to the x, y and z directions of an orthogonal lattice

But can be as well e.g. in a hexagonal unit cell:
(110) or (1 20)

They can be real or complex

Short reminder of the meaning of the term: " magnetic propagation vector"
The magnetic propagation vector describes how the magnetic structure within the nuclear unit cell is periodically repeated in space. It is equivalent to the translations used to describe the periodicity of crystal structures.

> With the use of the propagation vector one can describe the relation between the magnetic moments (size and direction) on equivalent atom sites in different unit cells.

If e.g. there is only one Basis vector $S_{k}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$ and $\kappa=\left[\begin{array}{lll}\frac{1}{2} & 0 & 0\end{array}\right]$ then the magnetic moment in the zeroth unit cell $\left(t=\left(\begin{array}{lll}0 & 0\end{array}\right)\right.$) is:
$m_{\mathrm{j}}=S_{\mathrm{kj}} e^{-2 \pi \mathrm{k} k}=C_{\mathrm{kj}} S_{\mathrm{K}}(\cos 2 \pi \kappa \mathrm{t}+\mathrm{i} \sin 2 \pi \kappa \mathrm{t})=C_{\mathrm{kj}}(100) \cos \underbrace{2 \pi\left(\frac{1}{2} 00\right.}_{1} 0)(000)=C_{\mathrm{kj}}\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$
In the neighbouring unit cell in x-direction one has with $t=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$:
$m_{j}=S_{\mathrm{kj}} e^{-2 \pi \mathrm{k} t}=C_{\mathrm{kj}} S_{\mathrm{k}}(\cos 2 \pi \mathrm{kt}+\mathrm{i} \sin 2 \pi \kappa \mathrm{t})=C_{\mathrm{kj}}(100) \cos \underbrace{2 \pi\left(\frac{1}{2} 00\right)(100}_{-1})=C_{\mathrm{kj}}(-100)$
\rightarrow Antiferromagnetic alignment of magnetic moments in neighbouring unit cells along the x-direction

We know now that a magnetic moment on an atom site is described by a linear combination of Basis vectors (multiplied by their coefficients) and that the periodicity within the crystal lattice is described by the propagation vector.

If one has a crystallographic unit cell where the magnetic atom occupies a site with multiplicity 1 (e.g. Wykoff site $1 d\left(\frac{1}{2} 0 \frac{1}{2}\right)$ in Pmmm) this is all the information we need.

If, however, the magnetic site(s) has(ve) higher multiplicities we have to determine the relation the different sites which are created through the symmetry elements of the spacegroup have to each other.

One has to determine the relation between the moment size and direction of the magnetic moment on site 1 to those on the symmetry related sites 2 and 3 within the crystallographic unit cell

We have seen that it is possible to do this using a trial and error method, however, in most of the cases this will be very tedious or nearly impossible and furthermore lead to often non-physical results. This is the reason why the method of Magnetic symmetry analysis has been developed by E.F. Bertaut in the sixties. Only, however, in the last 20 years the method has been applied routinely due to the availability of easy to use programs like BASIREPS or SARAH.

Introduction to the use of the program BASIREPS

Magnetic symmetry analysis (a simple glimps):

The symmetry of the crystallographic structure is described by its spacegroup and the corresponding symmetry elements.
As the periodicity of the magnetic unit cell is not necessarily the same as the periodicity of the nuclear unit cell its symmetry can be lower.

The symmetry elements of the original crystallographic spacegroup which leave the magnetic propagation vector invariant form a subgroup called the «little group».

The operators (matrixes) of these symmetry elements (permutation matrixes) multiplied by the operators which describe how the magnetic moment components are transformed as axial vectors by the symmetry elements of the little group form the magnetic representation.

This means that the magnetic representation describes the effect of the symmetry operators of the little group on the position of the atoms and on the magnetic moments.

This magnetic representation can be simplified by applying an appropiate rotation bringing the representation in the blockdiagonal form where one is only left with square blocks of matrixes on the diagonal and zeros everywhere else.

Each square block forms a smaller representation and if they cannot be reduced further into a block-diagonal form; they are called irreducibel.

The different irreducible representations contain the information on the possible magnetic structures which fulfill the symmetry restrictions of the crystal structure. This limits dramatically the number of magnetic structures which have to be taken into account for the refinement.

The basis vectors of these irreducible representations can be calculated using existing programs (BASIREPS, SARAH) and will serve for the refinement of the magnetic structures.

Introduction to the use of the program BASIREPS

Landau theorie of second order phase transitions:

The free energy of a system which sees a magnetic ordering with wave vector κ must be invariant under the action of the symmetry elements of the little group of κ.

Or simpler: If a magnetic ordering is of second order only a single irreducible representation should be involved.
This reduces strongly the possible magnetic structures: Group theory has determined a limited number of possible irreducible representations (IREP), Landau theory tells us now that only one IREP should be involved as a magnetic structure is formed.

So we are happy!! But:
I) This is not always valid (higher order terms in the free energy)
II) What happens if we have the Presence of several magnetic sublattices, e.g. A and B :

1) If the intrasite interactions $I_{A A}$ and $I_{B B}$ are large compared to the intersite interaction $I_{A B}$ then one can expect two different transitions and different IREPS for each site.
2) If the intersite $I_{A B}$ is dominant then both sites A and B should order at the same temperature and follow the same IREP
3) If only one intrasite interaction $I_{A A}$ is large and the intersite interaction $I_{A B}$ as well strong then the second site B gets polarized and adopts a magnetic structure similar to site A. At lower temperatures a second magnetic transition will appear for the ordering of site B. Due to the strong $I_{A B}$ its symmetry should still follow the same IREP as A.
III) The long range magnetic order induces a strong magnetostructural effect: first order transition.
E.g.: Strong single-ion anisotropy of the magnetic ion. Especially for rare earth ions which have a strong unquenched orbital angular moment. Interaction with the crystal field leads to easy axis or easy plane anisotropy which can determine the moment orientation in contradiction to the group theory. Does not necessarely lead to a visible structural transition.

Introduction to the use of the program BASIREPS

Intermediate summary:

Magnetic structures are defined by the moment size and direction of a first magnetic site, its relation to the other magnetic atoms on the symmetry related sites within the nuclear unit cell and finally by the magnetic propagation vector.

Thanks to magnetic symmetry analysis and the Landau theory one can normally strongly reduce the number of parameters to be determined for the description of a magnetic structure from $3 \times n$, where n is the number of magnetic atoms in the unit cell.

The solutions will be physically reasonable.
The complicated mathematics and the tedious calculations involved in the magnetic symmetry analysis are nowadays done by easy to use programs.

In the second part of the talk we will learn how to use the program BASIREPS which calculates IREPS and their Basis vectors (BV) using very limited input information.

Introduction to the use of the program BASIREPS

BASIREPS: Included in the Fullprof_Suite of programs

BASIREPS:
calculates through magnetic symmetry analysis the allowed irreducible representations and their basis vectors
needs as input the crystallographic spacegroup, the position of the magnetic atoms and the magnetic propagation vector
creates a file called *.fp which contains the results of the calculations in a form which can be copied directly to the *.pcr file for the refinement and a file called *.bsr which contains details of the calculations.

Introduction to the use of the program BASIREPS

2 Examples:

1) $\mathrm{Y}_{0.1} \mathrm{Ca}_{0.9} \mathrm{Mn}_{0.96} \mathrm{Ga}_{0.04} \mathrm{O}_{3}$

Pnma
Mn on $00 \frac{1}{2} \quad$ (Wykoff site $4 b$)

$$
\kappa=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \quad T_{N}=100 \mathrm{~K}
$$

2) $\mathrm{TbFe}{ }_{3}\left(\mathrm{BO}_{3}\right)_{4}$

$$
P 3_{1} 21
$$

Fe1 on 0.120 .120 (Wykoff site 3a)
Fe 2 on 0.790 .450 .34 (Wykoff site $6 c$)
Tb on 0.660 .660 (Wykoff site $3 a$)

$$
\kappa=\left[\begin{array}{lll}
0 & 0 & \frac{1}{2}
\end{array}\right] \quad T_{N}=40 \mathrm{~K}
$$

Introduction to the use of the program BASIREPS

1) $\mathrm{Y}_{0.1} \mathrm{Ca}_{0.9} \mathrm{Mn}_{0.96} \mathrm{Ga}_{0.04} \mathrm{O}_{3}$

Introduction to the use of the program BASIREPS

One of the possible 4 solutions:
This has to be copied to the FULLPROF pcr file in order to try a refinement


```
! Typ = Magnetic formfactor MMN3 = Mn 3+
! \Mag = Irreducible representation used for this Atom
!
!Atom Typ Mag Vek X y Z Biso Occ C1 C2 C3
! C4 C5 C6 C7 C8 C8 C9 MagPh
MN1 MMN3 1 1 0.00000 0.00000 0.50000 0.22051 0.96000 -0.373 0.290-4.112
    0.00
                                    0.000
                                    0.00
!-------> Profile Parameters for Pattern # 1
! Scale Shape1 Bov Str1 Str2 Str3 Strain-Model
2.8989 0.28936 0.00000 0.00000}00.00000 0.00000 0
    311.00000 121.000 0.000 0.000 0.000
! U V W X Y GauSiz LorSiz Size-Model
    0.122186
    131.000}10141.000 151.000 0.000 0.000 0.000 0.000 
! a b c c alpha beta gamma #Cell Info
    5.300002 7.451008 5.261796 90.000000 90.000000 90.000000
    91.00000 101.00000 111.00000 0.00000 0.00000 0.00000
! Pref1 Pref2 Asy1 Asy2 Asy3 Asy4
    0.00000 0.00000 0.03350 0.01794 0.00000 0.00000
    0.00
! Propagation vectors:
    0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 ~ 0 . 0 0 0 0 0 0 0 ~ P r o p a g a t i o n ~ V e c t o r ~ 1 ~
    0.000000 0.000000 0.000000
```


Introduction to the use of the program BASIREPS

Trying out the 4 different solutions proposed by BASIREPS

Copy the corresponding lines of the manganite.fr file created by BASIREPS into the *.pcr file

Refine and decide from the R-factors and from the visual inspection of the fit whether the solution is correct

Best Fit with couplings:

Manganite_pcr Model1

WinplotR
As this model does not work return to the fp file and copy a different IREP into the par file

Manganite_fp
Manganite_pcr Model2

Manganite_pcr Model3

Introduction to the use of the program BASIREPS

Compare with the intuitively (trial and error) found solution: $A_{x} G_{y} F_{z}$

Pseudosymmetry and not sufficient resolution are causing this situation Only BASIREPS gives you the correct spin direction,

Trial and error: $A_{x} G_{y} F_{z}$

Symmetry analysis: $A_{x} F_{y} G_{z}$

Pseudosymmetry and not sufficient resolution are causing this situation:
$a=5.2998$

Manganite_prf

Introduction to the use of the program BASIREPS

2) $\mathrm{TbFe} e_{3}\left(\mathrm{BO}_{3}\right)_{4}$

位 Bragg peak:
2 sublattices having different Tdependence: Tb and Fe, but only one T_{N}.

Thermodiffractogram of $\mathrm{TbFe}{ }_{3}\left(\mathrm{BO}_{3}\right)_{4}$

Introduction to the use of the program BASIREPS

$\mathrm{TbFe}_{3}\left(\mathrm{BO}_{3}\right)_{4}$

1) Fit at $50 \mathrm{~K}>\mathrm{T}_{\mathrm{N}}$

Nuclear Structure pcr
4) Run K-search from the green version of WINPLOTR

Nuclear Structure prf
2) Compare data at 50 K and 2 K and fit the peak positions of the magnetic peaks
WinplotR
3) Create a *.sat file for K-search, apply the zeroshift of the 50 K refinement to
5) Look at the result file TbFe3(BO3)4_kub the determined peak positions
TbFe3(BO3)4_sat
! Input file for K_SEARCH (created by WinPLOTR)
! Data file : C: \Documents and Settings ritter \backslash Bureau ${ }^{\text {DFPSCHOOL2009_2 }}$
TITLE TbFe3(BO3)4 2 K On7y Nuclear

SPGR	P	31	2	1			
GELL	9.53779	9.53779	7.56713	90.0000	90.0000	120.0000	

SHORT-OUTPUT

K_COMMENSURATE

CWTOL	1.91000	0.300	
K_RANGE	0.0	0.5	0.000 .5
K_DIV	100	100	0.0
! peak_position	peak_intensity	peak_background	
2THETA_LIST	5		
15.07276		2521.21362	109.30181
31.95011	1205.86206	109.30181	
36.36218	1308.35693	109.30181	
46.60749	736.09369	109.30181	
49.85853	1120.44958	109.30181	

$$
\rightarrow K=\left[\begin{array}{lll}
0 & 0 & \frac{1}{2}
\end{array}\right]
$$

Introduction to the use of the program BASIREPS
$\mathrm{TbFe}_{3}\left(\mathrm{BO}_{3}\right)_{4}$

Fullprof Toolbar

TbFe3BO34_fp
Code of files:

Working Directory:
thfe3bo34
C:TRITTER\{FPSCHOOL2009RITTERTAIIK2\{BASIREPS2
Browse...

$\begin{array}{lllll} & 3 \text { IREPS with } & 6, & 1, & 2\end{array} \mathrm{BVs}$

Introduction to the use of the program BASIREPS $\mathrm{TbFe}{ }_{3}\left(\mathrm{BO}_{3}\right)_{4}$

IREP3: TbFe3BO34_fp

IREP 3 ofFe1

```
P -1
! Nsym Cen Laue Ireps N_Bas
! Real(0)-Imaginary(1) indicator for Ci
O
SYMM x,y,z
BASR }\quad1\begin{array}{lllllll}{1}&{-1}&{0}&{0}&{0}&{1}
BASI 0 0 0 0 0 0
SYMM -y,x-y,z+1/3
BASR -1 -2 0
BASI 0 0 0 0 0 0}
SYMM -x+y,-x,z+2/3
BASR -2 -1 0 0 0 0
BASI 0}00000
```

 IREP 3 of Tb
 Both IREPS are identical! This is normal as both atoms are sitting on the same Wykoff site $3 a(x \times 0)$

Introduction to the use of the program BASIREPS

$\mathrm{TbFe}_{3}\left(\mathrm{BO}_{3}\right)_{4}$

P -1
$\begin{array}{rrrrr}\text { ! Nsym } & \text { Cen } & \text { Laue } & \text { Ireps } & \text { N_Bas } \\ 3 & 1 & 1 & -1 & 2\end{array}$
! Real(0)-Imaginary(1) indicator for Ci 00

```
SYMM x,y,z
```

BASR	1	-1	0	0	0	1

BASI 0000000

SYMM -y, x-y,z+1/3
BASR -1 -2 0 $0000-1$
BASI $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
SYMM -x+y,-x,z+2/3
$\begin{array}{lrrrrrr}\text { BASR } & -2 & -1 & 0 & 0 & 0 & 1 \\ \text { BASI } & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

IREP3 of Fe1

Introduction to the use of the program BASIREPS

$\mathrm{TbFe}{ }_{3}\left(\mathrm{BO}_{3}\right)_{4}$
IREP 3 of Fe2 has 6 symmetry operators
and $3 \mathrm{BVs} \rightarrow 3 \mathrm{C}_{\mathrm{i}}$


```
P -1
! Nsym Cen Laue Ireps N_Bas
! Real(0)-Imaginary(1) indicator for Ci
    O
SYMM x,y,z
BASR 1 -1 0 0 0 0 1
BASI 0 0 0 0 0 0}
SYMM -y,x-y,z+1/3
BASR -1 -2 0 0 0 0-1
BASI 0}00\mathrm{ 0}000
SYMM -x+y,-x,z+2/3
BASR -2 -1 0}00000
BASI 0 0 0 0 0 0
The BVs of the Wykoff site \(6 c(\mathrm{Fe} 2)\) are different than those of site \(3 a(\mathrm{Fe} 1, \mathrm{~Tb})\)
```

I)

P -1				
$!$	Nsym	Cen	Laue	Ireps
	N_Bas			
	1	1	-1	2

! Real (0)-Imaginary (1) indicator for Ci 00
SYMM $\mathbf{x , y}, \mathbf{z}$
$\begin{array}{lllllll}\text { BASR } & 1 & -1 & 0 & 0 & 0 & 1\end{array}$
BASI $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
SYMM -y,x-y,z+1/3
$\begin{array}{lllllll}\text { BASR } & -1 & -2 & 0 & 0 & 0 & -1\end{array}$
BASI $0 \begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0\end{array}$
Fe1
SYMM $-x+y,-x, z+2 / 3$
BASR $\quad-2$-1 0000001
BASI $0 \begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}$
P-1
! Nsym Cen Laue Ireps N_Bas
! Real (0)-Imaginary (1) indicator for Ci $0 \quad 0 \quad 0$
SYMM $\mathrm{x}, \mathrm{y}, \mathrm{z}$
$\begin{array}{llllllllll}\text { BASR } & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$
BASI $0 \begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
SYMM $-y, x-y, z+1 / 3$
$\begin{array}{lccccccccc}\text { BASR } & 0 & -1 & 0 & 1 & 1 & 0 & 0 & 0 & -1\end{array}$
BASI $0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
SYMM - $x+y,-x, z+2 / 3$
$\begin{array}{llllllllll}\text { BASR } & -1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
BASI $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
SYMM $y, x,-z$
$\begin{array}{lrrrrrllll}\text { BASR } & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ \text { BASI } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
SYMM $x-y,-y,-z+2 / 3$
$\begin{array}{llllllllll}\text { BASR } & -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{lrllllllll}\text { BASR } & -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ \text { BASI } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
SYMM $-x,-x+y,-z+1 / 3$
$\begin{array}{llllllllll}\text { BASR } & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & -1\end{array}$
BASI $0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
P-1
! Nsym $\begin{array}{rrr} & \text { Cen } \\ 3 & 1 & \text { Laue Ireps N_Bas }\end{array}$
! Real (0)-Imaginary (1) indicator for Ci 00
SYMM x, y, z
$\begin{array}{lllllll}\text { BASR } & 1 & -1 & 0 & 0 & 0 & 1\end{array}$
BASI $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
SYMM $-\mathbf{y}, \mathrm{x}-\mathrm{y}, \mathrm{z}+1 / 3$
$\begin{array}{lrrrrrrr}\text { BASR } & -1 & -2 & 0 & 0 & 0 & -1 & T b\end{array}$
$\begin{array}{lcccc}\text { BASI } & 0 & 0 & 0 & 0 \\ \text { SYMM } & -x+y,-x, z+2 / 3\end{array}$
BASR -2 -1 $0 \quad 0 \quad 0 \quad 1$
BASI $0 \begin{array}{llllll} & 0 & 0 & 0 & 0 & 0\end{array}$

$$
\text { II) } \begin{array}{ll}
\mathrm{P} & -1 \\
! & \text { Nsym }
\end{array} \quad \text { Cen Laue Ireps N_Bas }
$$

! Real (0)-Imaginary(1) indicator for Ci 00

| SYMM $\mathbf{x , y}, \mathbf{z}$ | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASR | 1 | -1 | 0 | 0 | 0 | 1 | | | |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| BASR | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| BASR | 1 | -1 | 0 | 0 | 0 | 1 | | | |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| SYMM | $-\mathrm{y}, \mathrm{x}-\mathrm{y}, \mathrm{z}+1 / 3$ | | | | | | | | |
| BASR | -1 | -2 | 0 | 0 | 0 | -1 | | | |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| BASR | 0 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | -1 |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| BASR | -1 | -2 | 0 | 0 | 0 | -1 | | | |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| SYMM | $-x+y,-\mathbf{x}, \mathrm{z}+2 / 3$ | | | | | | | | |
| BASR | -2 | -1 | 0 | 0 | 0 | 1 | | | |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| BASR | -1 | -1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| BASR | -2 | -1 | 0 | 0 | 0 | 1 | | | |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| SYMM | $y, x,-z$ | | | | | | | | |
| BASR | 0 | -1 | 0 | -1 | 0 | 0 | 0 | 0 | 1 |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SYMM | $x-y,-y,-z+2 / 3$ | | | | | | | | |
| BASR | -1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SYMM | $-x,-x+y,-z+1 / 3$ | | | | | | | | |
| BASR | -1 | -1 | 0 | 0 | 1 | 0 | 0 | 0 | -1 |
| BASI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Group together under the same symmetry operators
III)
P^{-1}
1
! Nsym Cen Laue Ireps N_Bas
! Real (0)-Imaginary (1) indicator for Ci 000
SYMM x, y, z
BASR $\quad 1 \begin{array}{lllllllll}1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$ BASI $\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llllllllll}\text { BASR } & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}$ BASI $0 \begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ SYMM $-\mathbf{y}, \mathrm{x}-\mathrm{y}, \mathrm{z}+1 / 3$
BASR $\quad-1$-2 00 BASI $0 \begin{array}{lllllrlll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llllllllll}\text { BASR } & 0 & -1 & 0 & 1 & 1 & 0 & 0 & 0 & -1\end{array}$ BASI $0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ SYMM $-x+y,-x, z+2 / 3$
BASR $-2 \begin{array}{lllllllll} & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$ BASI $\begin{array}{rrrrrrrrrr}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lrrrrrrrrr}\text { BASR } & -1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \text { BASI } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ SYMM $y, x,-z$
BASR $00 \begin{array}{lllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{llllllllll}\text { BASR } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{rrrrrrrrrr}\text { BASR } & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ \text { BASI } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ SYMM $x-y,-y,-z+2 / 3$
BASR $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
$\begin{array}{llllllllll}\text { BASR } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text { BASI } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lrllllllll}\text { BASR } & -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\end{array}$ BASI $0 \begin{array}{lllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ SYMM -x,-x+y,-z+1/3
BASR $0 \begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lrrrrrrrrr}\text { BASI } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \text { BASR } & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & -1\end{array}$ $\begin{array}{llllllllll}\text { BASR } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
\leftarrow Add zeros to get the same number of BVs

Add zeros under the symmetry operators which do not concern Fe1 and Tb

Remove the identical lines as IREP3 of Fe 1 and Tb are the same

Introduction to the use of the program BASIREPS

$\mathrm{TbFe}_{3}\left(\mathrm{BO}_{3}\right)_{4} \quad$ Refinement

WinplotR

1) Refinement with all 7 coefficients free

TbFe3BO34_free_pcr

TbFe3BO34_free_sum

Fit not stable, large error bars, peak at low angles?
2) Refinement with only 2 coefficients

TbFe3BO34_fixed_pcr

TbFe3BO34_fixed.sum

Fit stable, small error bars if $C 2(\mathrm{Fe} 1)=-C 2(\mathrm{Fe} 2)$, low angle peak not longer there.
$C 1=0.00 \quad C 2=4.34(4) C 3=0.00$
$C 1=0.00 \quad C 2=0.00 \quad C 3=-4.34(4)$
$C 1=0.00 \quad C 2=-8.56(6) C 3=0.00$
3) Refinement with single crystal data

TbFe3BO34_SingleCrystal_free_pcr

```
TbFe3BO34_SingleCrystal_free_prf
```

TbFe3BO34_PowderRefinement_using SingleCrystal_results_prf

```
C1=0.39(5) C2=3.95(5) C3=0.00
C1 =-0.09(6) C2 =-0.07(6) C3 =-3.92(4)
C1=0.16(4) C2=-8.09(3) C3=0.00
```

Introduction to the use of the program BASIREPS
$\mathrm{TbFe}_{3}\left(\mathrm{BO}_{3}\right)_{4} \quad$ Results of magnetic refinements

Powder, 2 Coefficients

Single Crystal, 7 Coefficients

Magnetic super spacegroup: $2-P_{c} 3_{2} 21$ (\#154.44)

Bilbao Crystallographic Server: MAXMAGN

FullProf School 2023

Introduction to the use of the program BASIREPS

$\mathrm{TbFe}\left(\mathrm{BO}_{3}\right)_{4}$ Test of IREP2 WinplotR

TbFe3BO34_IREP2_pcr TbFe3BO34_IREP2_sum

SYMM X, Y, Z									
BASR	1	1	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	1	0	0	0	1	0	0	0	1
BASI	0	0	0	0	0	0	0	0	0
SYMM -Y+1, $\mathrm{X}-\mathrm{Y}, \mathrm{Z}+1 / 3$									
BASR	1	0	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	0	-1	0	1	1	0	0	0	-1
BASI	0	0	0	0	0	0	0	0	0
SYMM - $X+Y,-X+1, Z+2 / 3$									
BASR	0	-1	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	-1	-1	0	1	0	0	0	0	1
BASI	0	0	0	0	0	0	0	0	0
SYMM Y, $\mathrm{X},-\mathrm{Z}+1$									
BASR	0	0	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	0	1	0	1	0	0	0	0	-1
BASI	0	0	0	0	0	0	0	0	0
SYMM X-Y, -Y+1, -Z+2/3									
BASR	0	0	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	1	0	0	-1	-1	0	0	0	-1
BASI	0	0	0	0	0	0	0	0	0
SYMM - $\mathrm{X}+1,-\mathrm{X}+\mathrm{Y}+1,-\mathrm{Z}+4 / 3$									
BASR	0	0	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	1	1	0	0	-1	0	0	0	1
BASR	0	0	0	0	0	0	0	0	0

IREP 2, e.g. no z-component for Fe1 and Tb

TbFe3BO34_IREP2_prf

SYMM X, Y, Z									
BASR	1	-1	0	0	0	1	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	1	0	0	0	1	0	0	0	
BASI	0	0	0	0	0	0	0	0	0
SYMM $-Y+1, X-Y, Z+1 / 3$									
BASR	-1	-2	0	0	0	-1	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	0	-1	0	1	1	0	0	0	-1
BASI	0	0	0	0	0	0	0	0	0
SYMM - $X+Y,-X+1, Z+2 / 3$									
BASR	-2	-1	0	0	0	1	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	-1	-1	0	1	0	0	0	0	1
BASI	0	0	0	0	0	0	0	0	0
SYMM Y, $\mathrm{X},-\mathrm{Z}+1$									
BASR	0	0	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	0	-1	0	-1	0	0	0	0	1
BASI	0	0	0	0	0	0	0	0	0
SYMM $X-Y,-Y+1,-Z+2 / 3$									
BASR	0	0	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	-1	0	0	1	1	0	0	0	1
BASI	0	0	0	0	0	0	0	0	0
SYMM - $\mathrm{X}+1,-\mathrm{X}+\mathrm{Y}+1,-\mathrm{Z}+4 / 3$									
BASR	0	0	0	0	0	0	0	0	0
BASI	0	0	0	0	0	0	0	0	0
BASR	-1	-1	0	0	1	0	0	0	-1
BASR	0	0	0	0	0	0	0	0	0

Introduction to the use of the program BASIREPS

More difficult case:

$\mathrm{Ho}_{11} \mathrm{Ni}_{4} \mathrm{In}_{9}: \quad$| several k-vectors |
| :--- |
| several magnetic sites |
| different T-dependencies |

Introduction to the use of the program BASIREPS

$\kappa_{1}=\left[\begin{array}{lll}0 & 0.62 & 0\end{array}\right], \kappa_{2}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right], \kappa_{3}=\left[\begin{array}{lll}0 & 0 & \frac{1}{2}\end{array}\right], \kappa_{4}=\left[\begin{array}{lll}0 & 1 & \frac{1}{2}\end{array}\right]$ At $16 \mathrm{~K}: \kappa_{1}$ only Ho2 κ_{2} only Ho5 κ_{4} only Ho3 and only below $T_{\mathrm{N} 4}$

Introduction to the use of the program BASIREPS

Simulation:

If you determine the symmetry allowed magnetic structures for a given magnetic propagation vector you can simulate the magnetic diffraction pattern and determine the upper limit of the magnetic moment.

Absence of dipolar magnetic order in cubic $5 d^{2}$ Double Perovskites \rightarrow Strong indication for Octupolar order

Sarah

Introduction to the use of the program BASIREPS

A short sumamary:

The different irreducible representations contain the information on the possible magnetic structures, which fulfill the symmetry restrictions of the crystal structure.

The basis vectors of these irreducible representations can be calculated using existing programs (BASIREPS, SARAH) and serve for the refinement of the magnetic structures.

Magnetic symmetry analysis limits dramatically the number of magnetic structures, which have to be taken into account for the refinement.

Magnetic symmetry analysis helps to avoid "wrong" solutions.
Magnetic symmetry analysis indicates the possible existence of a structural phase transition.
Magnetic symmetry analysis allows to simulate magnetic diffraction patterns to determine lower limits for magnetic moments.

Apart from BASIREPS there is as well the Program SARAh which does the same thing

SARAh:
http://fermat.chem.ucl.ac.uk/spaces/willsgroup/web-software/sarah-refine-fullprof/

