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While ferromagnetism has been known since many centuries, more complex magnetic 
structures have only been identified in the twentieth century: ferrimagnetism, antiferro-
magnetism, helimagnetism, modulated structures. . . Incommensurable or long-period 
structures have first been deduced as consequences of phenomenological models, e.g., the 
Heisenberg Hamiltonian. The more fundamental explanation of Rudermann, Kittel, Kasuya, 
and Yoshida relies on the general phenomenon of Friedel oscillations. The coexistence 
of crystallographic order and magnetic order is sometimes antagonistic and results in 
sequences of transitions that may be continuous or not. The most effective experimental 
technique to observe magnetic order is neutron diffraction, but the analysis is sometimes 
very complicated and requires sophisticated numerical methods involving group theory. In 
the case of incommensurable structures, it may be useful to consider the three-dimensional 
system as the section of a higher-dimensional crystal. The determination of magnetic 
structures from neutron scattering data is facilitated by computers and adequate programs.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

Alors que le ferromagnétisme est connu depuis des siècles, ce n’est qu’au vingtième siècle 
qu’on identifia des structures magnétiques plus complexes, comme le ferrimagnétisme, 
l’antiferromagnétisme, l’hélimagnétisme ou les structures magnétiques modulées. La 
possibilité de structures incommensurables ou à longue période fut d’abord déduite 
de modèles phénoménologiques tels que le modèle de Heisenberg. L’explication, plus 
fondamentale, de Rudermann, Kittel, Kasuya et Yoshida repose sur le phénomène général 
que sont les oscillations de Friedel. L’ordre cristallographique et l’ordre magnétique sont 
souvent antagonistes, et de leur coexistence résulte souvent une suite de transitions 
qui peuvent être continues ou non. La technique expérimentale la plus efficace pour 
l’étude de l’ordre magnétique est la diffraction de neutrons, mais l’analyse est souvent 
très compliquée et requiert des méthodes numériques élaborées impliquant la théorie 
des groupes. Dans le cas des structures incommensurables, il peut être intéressant 
de considérer le système physique tridimensionnel comme la section d’un cristal de 
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dimension plus élevée. La détermination des structures magnétiques à partir des spectres 
neutroniques est facilitée par des programmes informatiques appropriés.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction: Short history of magnetism

Magnetism has been known since at least 20 centuries, and its application, the compass, has played a major role in the 
exploration of the Earth since the 16th century. But the only known magnetic phenomenon until the 19th century was 
ferromagnetism.

In the 19th century, Ampère was able to produce magnetic effects by using electricity. This discovery gave rise to won-
derful developments due to Faraday and Maxwell. At the end of the century, Pierre Curie studied paramagnetism and 
demonstrated that the magnetic susceptibility of paramagnetic salts is proportional to the reciprocal temperature 1/T [1]. 
This experimental Curie law was later derived from statistical mechanics by Paul Langevin [2], whose theory was transcribed 
in quantum mechanics by Léon Brillouin [3]. The paramagnetism of ferromagnetic materials above the Curie temperature TC

was studied by Pierre Weiss, who proposed a modified Curie law for the susceptibility χ , namely χ = C/(T − TC). In 1944, 
however, Lars Onsager [4] gave an exact treatment of a theoretical model, the two-dimensional Ising model, from which 
one can deduce, for T close to TC, the formula χ = C/(T − TC)γ , where γ is not equal to 1, in contrast with the Curie law. 
This result was later recognised as general. The exponent γ depends on the dimension of the space and the anisotropy.

In the first half of the twentieth century, it was recognised that certain paramagnetic materials have a magnetic suscep-
tibility that remains finite at all temperatures and has a maximum at a certain temperature, where dχ/dT is discontinuous. 
The explanation was found by Néel [5]. Néel suggested that the crystal lattice has to be divided into two sublattices, both 
of which are magnetised, but with two opposite magnetisations. This is antiferromagnetism. An example of antiferromagnet 
is MnO (Fig. 1). Some time later, the possibility of antiferromagnetism was rediscovered by Landau [6], who clarified the 
concept. At that time, there was no way to check this hypothesis. What was lacking was a diffraction technique able to 
detect variations of the magnetisation at a scale of the order of a fraction of nanometre. Ten years later, such a technique 
was available, namely neutron diffraction, and Néel’s hypothesis was confirmed by Shull and his coworkers [7,8] in MnO. 
A long time later, X ray diffraction could also be used [9,10]. X rays, of course, are an electromagnetic radiation, but their 
magnetic scattering turns out to be much weaker than the electric scattering.

More complex magnetic structures may appear in more complex materials. In ferrimagnetism, some magnetic moments 
point in some direction, other moments in the opposite direction, but there is a net magnetic moment. It also happens that 
the various moments in the unit cell take various directions, not parallel or antiparallel to a particular one [11].

Fig. 1. Magnetic structure of MnO. The circles represent magnetic Mn atoms and the arrows are the corresponding magnetic moments. The middle of the 
arrows are at the centres of the circles. The structure consists of ferromagnetic layers perpendicular to the [111]-direction of the face-centred cubic unit 
cell. The represented magnetic unit cell is doubled along the three directions a, b, c with respect to the face-centred cubic unit cell of the paramagnetic, 
high-temperature phase. Since that cell contains 4 Mn atoms, the magnetic cell represented here contains 4 = 32 atoms (actually 63 atoms appear on the 
figure because some of them are on faces, edges, or corners). Actually, the smallest possible unit cell contains 2 atoms and the symmetry is hexagonal. The 
structure corresponds to formula (7) with k = (1/2, 1/2, 1/2).

http://creativecommons.org/licenses/by/4.0/
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Magnetic materials with a net spontaneous magnetisation, i.e. ferromagnets and ferrimagnets, have important technolog-
ical applications. Antiferromagnets and more complex structures without net magnetisation have rather few applications.1

However, physicists want to know and understand all natural phenomena, all properties of matter, and magnetic structures 
are part of this knowledge. It turns out that their investigation has become a very active branch of solid-state research. Mag-
netic structures can be very complicated, and the interpretation of experimental data (essentially from neutron scattering) 
is often a difficult problem.

The next section is devoted to magnetic structures whose period is incommensurable with the crystal lattice (and will be 
called incommensurable without further precision, for brevity). They will be investigated in the framework of the Heisenberg 
model, which neglects the interaction between magnetism and the lattice. When this interaction is taken into account, seri-
ous complications arise, including changes of the period, which will be discussed in section 3. In section 4, a classification of 
the magnetic structures in terms of the Fourier components of the magnetisation is outlined. The main experimental tech-
nique for the study of magnetic structures, namely neutron diffraction, is described in section 5. Section 6 gives examples of 
complicated magnetic structures with several Fourier components that are not the harmonics of a particular one. Section 7
is devoted to the extension of traditional crystallography and group theory to magnetic materials. This is only possible for 
commensurable structures, except if the physical, three-dimensional space is viewed as the projection of a space with 4, 5, 
6 dimensions or more. This ‘superspace’ approach is addressed in section 8. The determination of magnetic structures is not 
always easy, and computers are often useful, as explained in section 9. Technical points are addressed in three appendices.

2. Incommensurable magnetic structures

2.1. Phenomenology

In 1959, one of the authors of the present article (J.V.) was beginning a scientific career at the nuclear research centre
of Saclay, one of the few European institutions that had neutrons at their disposal. His advisors were André Herpin, Pierre 
Mériel, and Pierre-Gilles de Gennes. De Gennes had scientific contacts with a Norwegian physicist, Tormod Riste, and del-
egated a part of the discussion to his student. Riste was investigating magnetic neutron scattering of a rather complicated 
magnetic crystal near the transition temperature. De Gennes and his student were supposed to interpret the data, assum-
ing magnetic moments (or spins Sl) localised at the sites l of a lattice and interacting through the so-called Heisenberg 
Hamiltonian:

H = −(1/2)
∑

lp

JlpSl·Sp (1)

This Hamiltonian had already been used to explain ferromagnetism and antiferromagnetism. It was generally assumed 
that the coupling constant J lp has a certain value J if l and p are neighbours, otherwise J lp = 0. Ferromagnetism is obtained 
if J > 0 and antiferromagnetism if J < 0.

The Heisenberg Hamiltonian (1) has the astonishing property to be invariant by any rotation of the whole set of magnetic 
moments. It is therefore isotropic in the spin space. This is an acceptable approximation in many cases when the magnetism 
is due to electronic spins while orbital moments are ‘quenched’ by the crystal field. This is because exchange interactions 
Jlp are a result of the Coulomb interaction (which does not depend on the spin) combined with the Pauli principle (which 
does not imply any precise spin direction).

However, this isotropy is just an approximation. Generally the main cause of anisotropy is the orbital moment, coupled 
with the spin according to the Dirac equation. For instance, in Fe, the anisotropy favours magnetisation parallel to a 4-fold 
axis.

Since Riste’s material (magnetite, Fe3O4 [13]) was a little complicated, with several magnetic atoms per unit cell, de 
Gennes’ student made more general assumptions and observed that the resulting structure could in certain cases be neither 
ferromagnetic nor antiferromagnetic, but something else. For instance, if the magnetic atoms form a linear chain, and if 
the non-vanishing interaction is J lp = J for the nearest neighbours and J lp = J ′ for the next nearest neighbours, one can 
consider a helical structure, in which two successive spins make an angle ϕ . Then the energy is, for N atoms is:

W = −N( J cosϕ + J ′ cos 2ϕ) (2)

In the actual structure, the angle ϕ should minimise this energy. It is straightforward to see that if J ′ < 0 and | J | < −4 J ′ , 
the minimum energy corresponds to a value of ϕ which is neither 0 (as in ferromagnetism) nor π (as in antiferromag-
netism). The magnetic period may be incommensurable with the crystallographic period.

The student went to his master and reported his observation. De Gennes reflected a few seconds before he encouraged 
his student to develop his idea. Actually, de Gennes had an additional information. Indeed, although he was a theoretician, 
he knew that, in the same group, Pierre Mériel had obtained the neutron diffraction spectrum of an alloy (the formula of 

1 Recently, antiferromagnets, in form of thin films, have found some applications in Spintronics (see for instance [12]).
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Fig. 2. Magnetic structure of MnAu2 [15]. The pattern is repeated in the two directions perpendicular to the four-fold axis c.

which turned out to be MnAu2) and had found diffraction peaks at completely unexpected positions. This could be due to a 
magnetic period incommensurable with the crystallographic period. A rather simple calculation confirmed this idea: MnAu2
is a helimagnet, a magnet with a helical magnetic structure.

As the French scientists learned a few months later (from Louis Néel, who was better informed of the current bibli-
ography), they were not the first to remark that the minimisation of the energy (1) could lead to an incommensurable 
structure. The same observation had already been made by the Japanese Akio Yoshimori [14], a scientist who later made a 
nice contribution to the understanding of the Kondo effect.

Yoshimori looked for the minimum of the Heisenberg Hamiltonian (1), where the spins Si are localised at the sites Ri of 
a Bravais lattice. He treated the spins Si as classical vectors that all have the same modulus s:

|Sl|2 = s2 (3)

Instead of imposing this condition, Yoshimori imposed the weaker condition∑
l

|Sl|2 = Ns2 (4)

where N is the number of magnetic sites. If we are lucky, the minimum of (1) with condition (4) will satisfy (3) and thus 
will solve the problem. As will be seen, Yoshimori was lucky.

The minimum of the energy (1) with condition (4) is obtained by introducing a Lagrange multiplier λ, minimising

−
∑

lp

JlpSl·Sp + λ
∑

l

|Sl|2 (5)

without any condition, and choosing λ such that (4) is satisfied. The minimum of (5) is given by∑
p

JlpSp = λSl (6)

If the magnetic sites Rl form a Bravais lattice, it is easily checked that a solution to (6) is2

Sl = su cos(2πk·Rl) + sv sin(2πk·Rl) (7)

where u and v are two orthogonal unit vectors and k is a parameter, the so-called propagation vector. It turns out that we 
are lucky, because (7) turns out to satisfy the strong condition (3)! Insertion of (7) into (1) yields the magnetic energy as 
a function of k and has to be minimised with respect to k. This minimisation solves the problem. For certain values of the 
exchange constants J lp , the obtained ground state is incommensurable. This calculation is just a generalisation of the above 
argument for a linear chain with interactions between nearest and next-nearest neighbours.

Yoshimori had no neutrons at his disposal, and MnAu2 was, to our knowledge, the first incommensurable magnetic struc-
ture to be discovered [16]. This discovery was the result of a perfect collaboration between theorists and experimentalists.

A number of other incommensurable magnetic structures were discovered in the following years. Certain elements have 
such structures: a transition metal, chromium, and many rare earths.

To derive formula (7), the magnetic atoms have been assumed to form a Bravais lattice. How can the theory easily 
be extended to materials in which there are several magnetic ions per unit cell? Bertaut [17] could derive a very simple 
equation from the Heisenberg Hamiltonian (1). The equation of motion is

2 We will normally use the crystallographic convention in which the k-vectors are referred to the reciprocal space in which the coordinates are referred 
to the reciprocal basis a∗

j ( j = 1, 2, 3) satisfying the relations: ai a∗
j = δi j . If the ai vectors describe a primitive basis, the reciprocal lattice, generated by 

integer linear combinations of a∗
j , is denoted by L∗ . In solid-state physics, the reciprocal lattice is defined as ai b j = 2πδi j , so that b j = 2πa∗

j . If the factor 
2π does not appear in the exponentials in some parts of this work, it is understood that we are using the solid-state physics convention.
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h̄ dSl/dt =
∑

p

JlpSp × Sl

At equilibrium, there is no motion, dSi/dt = 0 and therefore

∑
p

JlpSp = λlSl (8)

With a single magnetic ion per unit cell, λl is independent of l as proved above at zero temperature. In more complex 
cases the solution to Bertaut’s equation (8) is not so easy. The symmetry of the coefficient λl has been discussed by Bertaut 
[18].

2.2. Microscopic theory of incommensurable magnetism

The theory we developed in Saclay [19] was based on formula (1), which was purely phenomenological. Why should the 
interaction J ′ between next-nearest neighbours be particularly large?

The Saclay group had done a rather good job, except for a tremendous ignorance of recent progress in theoretical physics. 
In 1954, Rudermann and Kittel had given a theory of exchange between localised spins in metals, which provided a long-
range interaction with an oscillating behaviour as a function of distance. Their theory is summarised in this section and 
details are given in Appendix A. In the theory, there are conduction electrons with spin σ = 1/2 or −1/2, associated with 
creation and destruction operators c+

kσ and ckσ in the reciprocal space, c+
lσ and clσ in the direct space. And there are N

localised spins Si . We assume that there is one spin per unit cell.
The Hamiltonian contains two parts: i) the kinetic energy of the free electrons, and ii) a local, magnetic interaction 

between any localised spin and the conduction electron(s), which turn out to be present on the same atom as the lo-
calised spin. This interaction arises from the Pauli principle combined with the electrostatic repulsion between electrons, as 
originally realised by Heisenberg [20]. The same interaction is responsible for Hund’s rule in atoms.

When conduction electrons are treated in second-order perturbation theory, Rudermann and Kittel [21] obtained an 
interaction between localised spins that has the form of a Heisenberg Hamiltonian (1) with an interaction J i j which is a 
long-ranged, oscillating function J (Rij) of the distance Rij :

J (R) = J (R) = A

R3 cos(2kF R) (9)

The reason for the oscillations is the same as that for Friedel oscillations in the charge density around an impurity in 
a metal: both phenomena are the result of the sharp discontinuity (at temperature T = 0) of the occupation of electronic 
states at the Fermi level.

To obtain formula (9), a spherical Fermi surface should be assumed. In the realistic case of a non-spherical Fermi surface, 
the calculation is more complicated, but Friedel oscillations are still there. The relevant bibliography will be found in the 
reviews published in 2016 as a tribute to Jacques Friedel [22–25].

At nonvanishing temperature, the oscillations are damped at very long distance, but the oscillating character at moderate 
distances explains the helical structures observed especially in rare earths [26].

3. Magnetic interactions

3.1. General features

As stated above, the isotropic Hamiltonian (1) is an acceptable approximation in many cases when the magnetism is due 
to electronic spins while orbital moments are ‘quenched’ by the crystal field.

However, this isotropy is just an approximation. Magnetic dipole interactions are perhaps the most obvious anisotropy, 
but generally the main cause of anisotropy is the orbital moment, coupled with the spin according to the Dirac equation. 
For instance, in Fe, the anisotropy favours magnetisation parallel to a 4-fold axis. The strength of the anisotropy in a cubic 
crystal depends on temperature and vanishes at the Curie point.

If the anisotropy is very strong, and favours a particular crystallographic axis, all moments should be parallel to this 
axis, and this favours ferro-, ferri-, or antiferromagnetism, especially at low temperature. At non-vanishing temperature, the 
anisotropy turns out to be less effective and incommensurable, or long-period ‘modulated’ structures are possible. A re-
markable case is that of the alloy CeSb, which has a sequence of phase transitions (Fig. 3) with various periods when 
the temperature changes [27]. Seven different phases have been observed at different magnetic fields and temperatures, 
in addition to the paramagnetic phase and the ferromagnetically ordered phase in very strong field. The transitions are 
discontinuous, or ‘first order’ in the language of physicists.

Are they always discontinuous? No! In certain cases, the (theoretical) phase diagram has very strange mathematical 
features, as will now be seen.
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Fig. 3. Magnetic phase diagram of CeSb under an applied magnetic field. The picture has been prepared after Rossat-Mignod et al. [28]. The structure is a 
stacking of planes with positive magnetisation, negative magnetisation, and almost vanishing magnetisation, represented respectively by up arrows, down 
arrows, and dots.

3.2. The Devil’s staircase

Instead of treating the Hamiltonian (1) we consider here a model which also gives rise to incommensurable and long 
period structures.

We start with a one-dimensional chain of magnetic moments Sn with an easy magnetisation plane. The index n takes the 
values n = 1, 2, 3, . . . , N and the case of interest is the limit N → ∞. In practice, the moments Sn can be the magnetisations 
of the successive layers of a three-dimensional material, as the alloy MnAu2 studied in section 2. The n-th moment has two 
components, which may be called s cos ϕn and s sinϕn . The energy is assumed to have the form

H = −D
∑

n

cos(ϕn+1 − ϕn − μ) − λ
∑

n

cosϕn (10)

where D , λ, and μ are positive constants. The first term is an exchange interaction that does exist in certain materials [29,
30]. The second term appears if an external magnetic field is applied. A similar term with 

∑
cos 2ϕn or 

∑
cos 4ϕn instead 

of 
∑

cosϕn might result from an in-plane anisotropy. If μ and λ are not too large, the first cosine can be approximately 
replaced by its Taylor expansion limited to the quadratic term. One now obtains the so-called discrete Frenkel–Kontorova 
model [31]

H =
∑

n

[
1

2
(ϕn+1 − ϕn)

2 − μ(ϕn+1 − ϕn)

]
− λ cosϕn (11)

where D has been set equal to 1/2, as is allowed by a suitable choice of the units. This model has been investigated in 
detail by several authors, and particularly by Serge Aubry [32]. Although it does not seem to be appropriate for magnetism, 
its qualitative properties are presumably analogous to those of the magnetic model (10).

The problem is to find the minimum of (11).
Expressions (10) and (11) can represent the free energy of a three-dimensional system as a function of the mag-

netisations of the successive layers. The minimisation of these expressions will then provide the equilibrium magnetic 
structure as a function of temperature, if the temperature dependence of D , λ, and α is known. However, the temperature 
is generally not considered in the theoretical treatment [32]. Theorists prefer to study the evolution of the average angle 
	 = (ϕN − ϕ1)/(N − 1) when μ varies. The physical cause of this variation (temperature, pressure. . . ) will not be addressed 
here.

When λ = 0, the minimum of (11) obviously corresponds to ϕn+1 − ϕn = μ for all values of n, and therefore 	 = μ. 
When λ is not 0, the evolution is much more complicated [32]. It turns out that all rational values p/q of 	/π minimise
(11) in a non-vanishing interval [μ−

pq, μ+
pq]. A justification of this statement is given in Appendix B. The resulting structure 

is periodic: ϕn+2q = ϕn + 2pπ.
Thus the curve 	(μ) contains a sequence of horizontal parts, where d	/dμ = 0. It looks like a staircase. But, unlike 

usual staircases, it is continuous! Indeed, given any rational number, it is always possible to find another rational number 
closer to it than any arbitrarily small positive number. Such a strange curve has been called Devil’s staircase by Benoît 
Mandelbrot.

A particularly strange property of certain Devil’s staircases is that they can be complete, i.e. horizontal almost everywhere, 
so that d	/dμ = 0 almost everywhere.



776 J. Rodríguez-Carvajal, J. Villain / C. R. Physique 20 (2019) 770–802
In Appendix B, certain of the above-described properties are justified. The infinite sequence of continuous transitions, 
called Devil’s staircase, is by no means a general property of incommensurable magnetism. Staircases of first-order transition 
also exist in magnetism [33]. An example is given by the above-mentioned material CeSb.

The Devil’s staircase seems to be essentially a theoretical concept, whose experimental observation would be very dif-
ficult. If one wishes to observe a structure of very long period, this involves a reorganisation of the crystal on a very long 
scale and this requires a very long time, since discommensurations have to jump over potential barriers. Moreover, the Dev-
il’s staircase is a property of pure crystals, and it is not clear whether it survives in the presence of impurities. Nevertheless, 
it is important to know the theoretical ground state of a pure crystal, or its theoretical equilibrium state at non-vanishing 
temperature.

3.3. Coexistence of magnetic and crystallographic order: the general case

In the preceding subsection, the crystallographic order which has been taken into account was particularly simple: 
a succession of identical planes. We now wish to understand how magnetism can match any crystallographic structure. 
Then each atom is characterised by its unit cell and by its position in this unit cell. Unit cells will be labelled by the indices 
l, m, n, l′, m′ . . . , which can take an arbitrarily large number N of values. The position in the unit cell will be labelled by 
the indices i, j, i′, j′ . . . , which can take a finite number of values, which depends on the material of interest. With these 
notations, the vector position of the atom i in the unit cell l is Ril = Rl + ri . Since each magnetic moment or ‘spin’ has 
three components x, y, z, denoted by indices like α, β , α′ , β ′ , their components Silα are labelled by three indices. The most 
general Hamiltonian in the absence of external magnetic field will be assumed to have the following form:

H = −
∑

ilα, jmβ

Jαβ

il, jm Silα S jmβ +
∑

ilα, jmβ,i′l′α′, j′m′β ′
Jαβα′β ′

il, jm,i′l′, j′m′ Silα S jmβ Si′l′α′ S j′m′β ′ + . . . O (S2n) (12)

In the presence of a magnetic field, odd terms should be added.
As in the previous sections, the spins are assumed to be classical vectors.3 If we consider that the magnetic atoms 

at positions Ril have intrinsic magnetic moments of modulus mi (Sil = minil), for a given set of exchange parameters 
Jαβ

il, jm, Jαβα′β ′
il, jm,i′l′, j′m′ , . . . , the magnetic structure at T = 0 K corresponds to the minimum of H with respect to the orien-

tations of the unit vectors nil . In general, the terms of order greater than 2 in the spins are much weaker than those of 
second order. Moreover, the isotropic part of the tensors Jαβ

il, jm is strongly dominant in many cases; the energy can be sim-
plified to obtain the so-called Heisenberg Hamiltonian (1). Taking into account explicitly the two kinds of indices i, j, i′, j′ . . .
and l, m, l′, m′ . . . , formula (1) reads

Hiso = −
∑
il, jm

J il, jmSil · S jm = −
∑
il, jm

J i j(Rm − Rl)Sil · S jm

Hiso = −
∑
il, jm

J i j(Rm − Rl)mim jnil · n jm = −
∑
il, jm

J i j(Rm − Rl)mim j cos θil, jm

(13)

As stressed in section 2, the magnetic energy in such a case does not depend on the absolute orientation of the spins. It 
depends only on the relative orientation of the spins (scalar product). This means that, for a given configuration, any global 
rotation acting on the spins does not change the energy, so the Hamiltonian has more symmetry elements than the space 
group underlying the crystal structure if the interaction between magnetic moments is strictly isotropic.

Even restricting to the quadratic terms of (12), the determination of the classical ground state of a system in which 
we know the exchange interaction parameters is a task that cannot be solved analytically, except for very simple cases 
(Bravais lattices [14,22], linear chain [34]). In general, numerical Monte Carlo simulations are needed for determining the 
ground state or a configuration very close to it. A simpler case is the determination of the so-called first ordered state, which 
is the spin configuration appearing just below the order temperature. The study of the resolution of these two problems 
started at the middle of the fifties in the last century by several authors [34–37]. In Appendix C, we present the mean-field 
approximation for classical spins to determine the first ordered state in a way similar to that of Freiser [34], resulting in 
equations formally equivalent to (8).

We see here that the relevant symmetry to be considered for studying the magnetic ordering is that of the system Hamil-
tonian. However, the Hamiltonian of a system is generally unknown, so we do not know what is the relevant symmetry to 
begin with. In the absence of this information, we have at our hands the possibility to know the crystal structure symmetry 
of the compound under study. The space group of the crystal summarises in some way the result of different interactions 

3 A quantum description generally does not modify the qualitative features of the magnetic structure. However, the mean spin value at zero temperature 
is reduced in antiferromagnets by quantum fluctuations [38,39]. Also, one can go beyond the mean field approximation, using for instance the Renormal-
isation Group technique. This modifies the temperature dependence of the physical quantities such as susceptibility or magnetisation, but this does not 
essentially modify the magnetic structures.
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between electrons and nuclei in the solid. We expect that the magnetic ordering conserves some of the symmetry proper-
ties of the crystallographic structure, even in the case of a structural transition accompanying the magnetic ordering. This 
is the reason why we use the crystal structure symmetry as a starting point for our analysis and the basis for applying the 
representation method introduced by Bertaut [40]. In the course of experimental data analysis for determining a magnetic 
structure, we may arrive to the conclusion that we have to modify our previous assumptions on the starting symmetry, or 
even to suppose that we have additional symmetry elements in the magnetic Hamiltonian than in the crystallographic space 
group.

4. Description of magnetic structures using the concept of propagation vector. General types of magnetic structure

A magnetic structure is defined by the average magnetisation (in units of Bohr magnetons: μB ) m jl of the magnetic ion 
j of the l-th unit cell. The average is over thermal and quantum fluctuations.

When there is a single magnetic atom per unit cell, the ground state of (1) is given by (7) for classical spins. At finite 
temperature and when quantum corrections are taken into account, the magnetic structure is still given by a formula 
analogous to (7), where the spin modulus s is just replaced by a function of temperature and s. When there are several 
magnetic atoms per unit cell and when anisotropy is taken into account, the magnetic structure of any crystal is given by 
the following generalisation of (7) [41]:

m jl =
∑

k

Sk j exp(−2πik·Rl) (14)

The main change with respect to (7) is that there is a summation on the ‘propagation vectors’ k. When there are 
several propagation vectors, they are frequently members of the same star, i.e. of the set of k-vectors deduced from one 
of them by the symmetry operations of the underlying point group (see section on representation analysis 7.1, point 2). 
However, this summation is often limited to a single term corresponding to a single propagation vector, which may be 0 
(case a discussed below) or half a reciprocal lattice vectors (case b below). In other cases (case c), the anisotropy generally 
introduces harmonics, e.g., multiples 2k, 3k, etc. of a ‘primary’ propagation vector k. Very often, there is a single primary 
propagation vector, but there may be two or three primary propagation vectors.

In (14), any vector k may be replaced by k + H, where H is any reciprocal lattice vector. Since H can be chosen such that 
k + H is in the first Brillouin zone, all vectors k in (14) may be assumed to be in the first Brillouin zone. So k-vectors are 
at the interior (IBZ) or in the surface of the Brillouin zone.

The Fourier coefficients Sk j are, in general, complex vectors and must verify the equality S−k j = S∗
k j because the vectors 

m jl are real.
Let us describe general types of magnetic structures of increasing degree of complexity using formula (14).
a) The simplest types of magnetic structures existing in complex crystals have a single null propagation vector at the 

centre of the first Brillouin zone: k = (0, 0, 0) = 0. The Fourier coefficients should be real and can be identified with the 
magnetic moments directly:

m jl = S0 j exp(−2πi0·Rl) = S0 j = m0 j (15)

This expression tells us that the orientation and magnitudes of the magnetic moments in whatever cell of the crystal are 
identical to those of the zero-cell. The translational symmetry of the magnetic structure is identical to that of the crystal 
structure: the magnetic unit cell is the same as the chemical cell. This class of magnetic structures may be ferromagnetic, 
ferrimagnetic, or antiferromagnetic, collinear or non-collinear. A vanishing propagation vector does not imply a ferromag-
netic structure. This is only true for Bravais lattices (a single magnetic atom per primitive cell). Examples of k = 0 magnetic 
structures are shown in Fig. 4 (collinear) and in Fig. 5 (non-collinear).

b) The next class of magnetic structures corresponds also to a single propagation vector, in this case of the form: k = H/2, 
where H is a reciprocal lattice vector. There is a single term in (14) because, by definition, k ≡ −k. The propagation vectors 
of this kind correspond to high symmetry points of the surface of the BZ. In this case, we have:

ml j = Sk j exp(−πiH·Rl) = Sk j(−1)H·Rl = m0 j(−1)nl (16)

This expression tells us that the orientation and magnitudes of the magnetic moments in whatever cell of the crystal are 
either identical or opposite to those of the zero-cell. The translational symmetry is lower than that of the chemical cell. 
The magnetic cell can easily be deduced from the particular values of the propagation vector (see [43] for a classification 
of magnetic lattices in terms of propagation vectors). The magnetic structures of this kind are necessarily antiferromagnetic. 
An example is the case of MnO (the first determined magnetic structure using neutron diffraction!) represented in Fig. 1.

c) A third class of magnetic structures corresponds the general case, where the k-vector is not a special vector as in the 
two previous classes. The k-vectors are then at the interior of the first Brillouin zone in a general position (non-rational 
components of k). The general expression of the Fourier coefficient for the atom j is explicitly given by:

Sk j = 1 {Rk j + i Ik j}exp(−2πiφk j) (17)

2
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Fig. 4. Antiferromagnetic structure of hematite α-Fe2O3 at 10 K. The moments are nearly parallel to the c-axis. An additional weak ferromagnetic component 
is neglected in this collinear model [42]. Above about 250 K, the moments become parallel to the a-axis (Morin transition).

Fig. 5. Magnetic structure of the pyrochlore Tb2Sn2O7. For each tetrahedron of Tb atoms, there are two moments pointing towards the centre of the 
tetrahedron and two moments pointing out of the centre. This is a non-collinear magnetic structure with k = (0, 0, 0): the crystallographic unit cell is 
identical to the magnetic unit cell [44].

Only six real parameters define the Sk j vectors, so the phase factor φk j is not generally needed if the three components 
of Rk j and the three components of Ik j are arbitrary, but it is convenient to use it when particular relations or constraints 
between real vectors, Rk j and Ik j , are given (see below). The calculation of the magnetic moment of the atom j in the unit 
cell of index l, should be performed by using the formula (14) that may be also written in this case as:

m jl =
∑
〈k〉

Rk j cos 2π[kRl + φk j] + Ik j sin 2π[kRl + φk j] (18)

where the sum is now extended to half the number of propagation vectors, i.e. over the total number of pairs k, −k and 
their harmonics.

If the magnetic structure represents a helical/spiral order there is only a single pair k, −k and the Fourier coefficients 
are of the form:

Sk j = 1

2
[m1 ju j + im2 jv j]exp{−2πiφk j} (19)

where u j and v j are orthogonal unit vectors, forming a plane. Notice that these unit vectors together with w j = u j × v j

define an orthogonal reference system with origin at the atom j; its orientation in space is determined by three Euler 
angles that, together with m1 j , m2 j and φkj , completes the 6 parameters per atom defining the Fourier coefficients Sk j . 
From Fourier coefficients like in equation (19) and disregarding the harmonics of k, three situations can be considered.
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Fig. 6. Magnetic structure of the metallic solid element Cr [45,46]; a perspective view. The blue circles are Cr atoms and the red arrows represent the 
magnetic moments. The length of each arrow is proportional to the corresponding moment.

1. If m2 j = 0 (or m1 j = 0), the magnetic structure corresponds to a modulated sinusoid of amplitude m1 j (or m2 j). An 
example of sinusoidal structure is that of the spin-density wave observed in metallic Cr [45,46] and represented in 
Fig. 6.

2. If m1 j = m2 j = m0 and the propagation vector is perpendicular to the plane (u j , v j ), the magnetic structure for the 
sublattice j corresponds to a classical helix (or spiral) with cylindrical envelope. If the propagation vector is within the 
(u j , v j) plane, the structure is called a cycloid. In both cases, all j atoms have a magnetic moment equal to m0. An 
example of this kind of structure is that of MnAu2 [16] represented in Fig. 2.

3. If m1 j 	= m2 j , the helix (or cycloid) has an elliptical envelope and the moments have values between min(m1 j, m2 j) 
and max(m1 j, m2 j). A recent example of this kind of magnetic structure (cycloidal structure) is that of TbMnO3 in the 
temperature range 10 K < T < 28 K [47].

5. Determination of magnetic structures using neutron diffraction

The scattering of neutrons by matter results from two interactions: i) the strong nuclear interaction with nuclei, ii) the 
magnetic dipole interaction between the neutron spin and the magnetic moment of unpaired electrons. Such electrons are 
only present in the outer electronic shell of magnetic ions, such as transition metals, rare earths, or actinides. This electronic 
moment results from the spin and from the orbital moment. In certain cases, however, there is no orbital moment, for 
instance in Fe3+ and Mn2+ , which have 5 electrons on the 3D shell. In other cases, the orbital moment is ‘quenched’ by the 
crystal field, and therefore negligible.

The information obtained from neutron scattering is not always sufficient to derive the magnetic structure. The informa-
tion is more complete if polarised neutrons are used and if the polarisation of scattered neutrons is analysed [48–51].

5.1. Neutron scattering cross sections and magnetic structure factor

In a neutron diffraction experiment, a beam of neutrons with momentum h̄kI is diffracted by a crystal and the number 
of neutrons with momentum h̄kF = h̄(kI + Q) is measured. The vector Q is called the scattering vector (crystallographers 
prefer to use the vector h = Q/2π). The diffracted wave function is the sum of a nuclear part Nh (resulting from nuclear 
scattering) and a magnetic part, which is the relevant one to determine the magnetic structure. This magnetic part depends 
on a vector M(h) which may be roughly defined as the 3-dimensional Fourier transform of the magnetisation density. In 
an infinite crystal, the nuclear structure factor Nh and the magnetic structure factor M(h) vanish, except for a discrete set 
of vectors h (Bragg peaks). In an antiferromagnet, there are pure magnetic reflections with Nh = 0, pure nuclear reflections 
with M(h) = 0, and mixed reflections containing both contributions. The intensity of magnetic Bragg peaks due to neutron 
scattering by magnetically ordered systems can be calculated in a similar way as for X-rays or nuclear neutron scattering. 
X-ray diffraction measures the modulus of the Fourier transform of the electronic density. Analogously, magnetic neutron 
scattering is sensitive to the Fourier transform of the magnetisation density, which is related to the density of unpaired 
electrons in atoms.

Here we follow some sections of the reference [41]. We summarise the most important expressions needed to calculate 
the intensity of a Bragg reflection; the reader interested in more details about elastic magnetic scattering in relation with 
magnetic structures can consult [28,52] and the references therein. The interaction of neutrons with the magnetic moments 
of atoms is of dipolar origin through the magnetic moment of the neutron. The scattering amplitude is then a vector that, 
for a single atom with atomic moment m, is given by:
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a(h) = pf (h)m⊥ (20)

where h = |h|, m⊥ = h × (m × h)/h2 is the perpendicular component of the atomic moment to the scattering vector h
and p = reγ /2 = 0.2695 × 10−14 m/μB, where re = e2/(4πε0mc2) = 2.8 × 10−15 m is the so-called classical radius of the 
electron and γ = 1.9132 μN (μN = nuclear magneton) is the magnetic moment of the neutron. The cross section is then 
dσ/d� = |a(h)|2. The dimensionless function f (h) is the atomic magnetic form factor (Fourier transform of the unpaired 
electron density, normalised as f (0) = 1, assumed to be spherical hereafter).

In a crystal, there are many atoms with diversely oriented moments m jl . Each of them has a vector scattering length 
given by (20) and the sum is the total scattering amplitude

The elastic intensity scattered by a crystal, as a function of h, is proportional to the square of the total amplitude 
(also-called magnetic interaction vector):

Mᵀ
⊥(h) = p

∑
jl

f j(h)m⊥ jl exp{2πih·R jl} = 1

h2
h × Mᵀ(h) × h (21)

The total diffraction intensity (cross section) is proportional to the square of this expression. The vector Mᵀ(h) is the 
magnetic structure factor of the whole crystal. The scattered intensity is calculated as usual by multiplying the above 
expression by its complex conjugate. Developing the expression of Mᵀ(h) for the case of an ordered magnetic crystal in 
which the distribution of magnetic moments is given by the equation (14) and separating the sums over the lattice and 
over the atoms within a unit cell, we obtain:

Mᵀ(h) = p
∑

jl

f j(h)m jl exp{2πih·R jl} = p
∑

j

f j(h)exp{2πihr j}
∑

k

Sk j

∑
l

exp{2πi(h − k)·Rl}

or

Mᵀ(h) = p
∑

j

f j(h)exp{2πihr j}
∑

k

Sk j

∑
H

δ(h − k − H) (22)

This formula indicates that the magnetic intensity is practically zero in the whole reciprocal space, except at positions 
given by:

h = H + k (23)

Magnetic diffraction appears like a filter, producing satellites around the nuclear reflections characterised by the reciprocal 
lattice vector H. Each satellite is decoupled from the rest of the satellites, so, if there are different propagation vectors k, 
there is no interference between them. Notice that the concept of fundamental reflections (used in the context of modulated 
crystal structures) does not apply here because h = H corresponds to nuclear reflections. Only when k = 0, there is a 
magnetic contribution on top of the nuclear reflections. For a particular magnetic reflection indexed as in (23) the magnetic 
structure factor of the unit cell, having nc magnetic atoms, is:

M(h = H + k) = Mh = p
nc∑

j=1

f j(h)Sk j exp{2πihr j} = p
nc∑

j=1

f j(h)Sk j exp{2πi(H + k)r j} (24)

The intensity of a magnetic Bragg reflection is proportional to the square of the magnetic interaction vector of the unit cell:

M⊥(h) = M⊥h = 1

h2
h × Mh × h = e × Mh × e = Mh − (e · Mh) (25)

where e = h/|h| is the unit vector along the scattering vector h given by (23). The intensity of a Bragg reflection for 
non-polarised neutrons is given by:

Ih = NhN∗
h + M⊥h · M∗

⊥h (26)

The problem of determining the magnetic structure of a crystalline solid, for which the crystal structure is known, reduces 
to the determination of the quantities k and Sk j from which we can apply the expression (14) for determining the magnetic 
moment of whatever atom in the crystal. This result takes into account only the translational symmetry of the crystal. 
In general, we have enough information from the whole symmetry of the crystal structure to further reduce the number 
of free independent parameters, and this is the topic of symmetry analysis tackled below. Magnetic neutron diffraction 
experiments provide as immediate information the position of magnetic reflections in reciprocal space. This allows the 
determination of the propagation vector(s) characterising the magnetic moment configuration given by the Fourier series 
(14). The measurement of intensities gives us a list of non-linear equations with the Fourier coefficients Sk j as unknowns, 
equations (24) and (26).



J. Rodríguez-Carvajal, J. Villain / C. R. Physique 20 (2019) 770–802 781
In addition to their wave vector kI , the incident neutrons are characterised by their polarisation P, defined as twice the 
average value of the spin of the neutrons. For unpolarised neutrons, P = 0. For completely polarised neutrons, |P| = 1. The 
diffracted intensity when considering polarised incident neutrons and the polarisation of scattered neutrons, Ps, are given 
by the so-called Blume–Maleyev equations [49,50]:

Ih = NhN∗
h + Nh{P · M∗

⊥h} + N∗
h{P · M⊥h} + M⊥h · M∗

⊥h + iP · {M⊥h × M∗
⊥h} (27)

Ps Ih = PNhN∗
h + NhM∗

⊥h + N∗
hM⊥h + iP × {M⊥hN∗

h − M∗
⊥hNh} + M⊥h{P · M∗

⊥h}
+ M∗

⊥h{P · M⊥h} − P{M⊥h · M∗
⊥h} + i{M⊥h × M∗

⊥h} (28)

In practical works, for determining magnetic structures it is usual to start with non-polarised neutrons using neutron 
powder diffraction to determine the propagation vector(s) of the magnetic ordering and treat the intensities to determine 
the Fourier coefficient that appears directly in equation (24). Powder diffraction, due to the overlap of Bragg reflections, 
is unable to determine some details of magnetic structures and, many times, appears a situation in which two different 
magnetic models give exactly the same calculated diffraction pattern. For those cases, only the use of single crystals and 
polarised neutrons is the appropriate technique for magnetic structure determination.

Formula (27) is the basis for studying spin densities induced by an external applied magnetic field thanks to the nuclear–
magnetic interference terms, mixing Nh and M⊥h , appearing in (27). A comprehensive summary of this technique is 
provided in reference [53] and examples of applications are given in references [54,55]. This technique is able to pro-
vide the spatial distribution of unpaired electrons and their departure from spherical shape, which is normally used for 
magnetic structure determination. For that, very good data of measured flipping ratios are needed. The flipping ratio is de-
fined as: R = I+/I− , where the superscripts mean the neutron intensity of the scattered beam when the incident neutrons 
are polarised parallel (+) or anti-parallel (–) to the applied external field.

Formula (28) is the basis of the 3D-polarimetry technique [56], in which the sample is maintained at low temperature 
in strictly zero field, obtained by using the Meissner effect on a special device (CryoPAD, [58]). Using this technique, a 
full control of the incident and scattered polarisation allows measuring nine components of a matrix (polarisation matrix) 
related with different components of the magnetic interaction vector. This technique is very precise and allows us to distin-
guish between chiral domains of helical structures. Examples of the application of this technique can be found in references 
[57,59], in which 3D polarimetry is used for getting more precise moment directions and magnitudes (CuO, [57]) and for 
distinguishing different magnetic models (HoMnO3, [59]) giving rise to the same non-polarised neutron diffraction patterns. 
However, this technique is useless for samples with magnetic structures showing a macroscopic ferromagnetic component 
due to the depolarisation effects produced by local magnetic fields.

6. Magnetic structures with several propagation vectors

In this section, we will consider some complex cases in which the Fourier series (14) contains several terms correspond-
ing to different propagation vectors that are either in the same star or in different stars. We assume that isotropic exchange 
interactions are dominant. Anisotropy terms are assumed to be small, and the weak perturbations they introduce (e.g., har-
monics) will be ignored. The most powerful experimental technique for the determination of magnetic structures is neutron 
diffraction. However, in many cases, it does not give a complete information. This can be seen by adding a phase factor, 
depending only on k, to the Fourier series equation (14):

m jl =
∑
{k}

Sk j exp{−2πi(kRl + �k)} (29)

The magnetic structure factor [equation (24)] transforms to:

M(H + k) = p exp{2πi�k}
nc∑

j=1

f j(H + k)Sk j exp{2πi(H + k)r j} (30)

The phase �k appears in the expression of the magnetic structure factor as a multiplicative phase factor that does not 
change the intensity of equation (27) or the scattered polarisation of (28) for a pure magnetic reflection. The phases �k are 
not accessible experimentally, so the real magnetic structure cannot be obtained from diffraction measurements alone.

The simplest case in which the phase plays an important role is the sinusoidally modulated structure in a simple Bravais 
lattice (a single magnetic atom per primitive cell) when the propagation vector takes special values. The Fourier coefficient 
and the corresponding magnetic moment at cell l are:

Sk = 1

2
mou exp{−2πi�k} ml = mou cos 2π(kRl + �k)

The phase �k plays no role when k ∈ IBZ and has no rational components. Indeed, a change in �k has the same effect 
as a change of the origin in the whole crystal. All magnetic moments between −mou and mou are realised somewhere 
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in the lattice. However, if k = pk/q, where p/q is a rational number different from 0 or 1/2, the phase �k is relevant. 
For instance, if k = H/4 and �k = 1/8 the magnetic structure is a constant moment (CM) structure with the sequence 
{+ + − − + + − − . . .}. This structure is indistinguishable from the sinusoidally modulated structure obtained with an ar-
bitrary value of �k like {0 + 0 − 0 + 0 − . . .} or {S, s,−S,−s, S, s,−S,−s, S, s,−S,−s . . .}. These structures are of course 
physically different. If all the components of k are rational, the selection of the phase can have important consequences 
for the spin arrangement. This is the simplest case in which the physical picture depends on the election of a parameter 
(�k) that is not accessible by diffraction methods. Physical considerations lead us to prefer one model among several oth-
ers. For instance, in insulators, in the absence of frustration, CM magnetic structures are normally expected at very low 
temperatures when magnetic atoms have an intrinsic magnetic moment. This condition reduces the number of ways to 
combine non-symmetry-related propagation vectors to several specific cases that have been discussed by Nagamiya [60]. Let 
us discuss some unusual simple cases that will be illustrated with real examples.

6.1. Magnetic structures with several propagation vectors belonging to the same star: multi-k structures

The most frequent case of magnetic compounds exhibiting more than one propagation vector is the so-called multi-k
structures, observed in some intermetallic compounds of high crystallographic symmetry [28]. The term ‘multi-k structures’ 
refers to a magnetic structure in which more than one arm of the star of k participates into the actual spin arrangement. As 
we will see later, symmetry relations between the Fourier coefficients of the magnetic structure, when all the propagation 
vectors belong to a single star, can be obtained by representation group theory using the method developed by Bertaut [61]
and by Izyumov and collaborators [62].

The usual case is when several propagation vectors of the same star appear in the diffraction pattern. Suppose that we 
observe magnetic reflections indexed with two propagation vectors, k1 	= ±k2, belonging to the same star. Data analysis is 
generally unable to discriminate between the coexistence of different magnetic domains and a coherent superposition (true 
multi-k structure) of the Fourier coefficients Sk1 and Sk2 in (14). Methods for distinguishing both cases comprise the use 
of an external magnetic field or uni-axial stress to see if the intensities of satellites change equally or behave differently 
as a consequence of different domain populations. Examples of multi-k structures and the effect of considering multi-k in 
comparison with single-k even if the used neutron technique is unable to distinguish between both cases can be found 
in references [63–65]. The full treatment of multi-k structures when the propagation vectors are incommensurable can be 
done using the superspace formalism (see section 8).

6.2. Magnetic structures with several propagation vectors of different stars: conical structures

The case of two propagation vectors that do not belong to the same star is unusual, except when the spins S jl of each 
family j are parallel to the surface of a cone.4 This corresponds to two propagation vectors k1 = k and k2 = 0, and Fourier 
coefficients like in equation (19) for Sk1, and Sk2 ∝ w:

S jl = s ju j sinα j cos(2π[k·Rl + � j]) + s jv j sinα j sin(2π[k·Rl + � j]) + s jw j cosα j (31)

where α j and � j are real parameters and the real unit vectors u j , v j , w j are orthogonal. Formula (31) is such that |S jl|
is equal to s j , independently of l as it should be at low temperature, when s j is the modulus of the spin, which is known 
(1/2, 1, 3/2, possibly multiplied by the g-factor and the Bohr magneton if we wish to have a magnetic moment rather than 
a spin). Upon heating, s j decreases because of thermal fluctuations.

The conical structure (31) can be obtained by applying an external field on a helical spin configuration, or by the 
interaction of two spin families, one of which is ferromagnetically ordered and the other is helically ordered.

In formula (31) the first two terms correspond to a pair of propagation vectors k and −k that may have any position at 
the IBZ, while the last term corresponds to a propagation vector that is 0. Obviously, the pair k, −k can also be combined 
with a propagation vector k2 = H/2, where H is a reciprocal lattice vector. Using the notations �kl = 2πkRl and (−1)hl =
exp(πiH·Rl), and considering now � j as multiplied by 2π, the formula (31) should then be replaced by

S jl = s ju j sinα j cos(�kl + � j) + s jv j sinα j sin(�kl + � j) + s jw j(−1)hl cosα j (32)

Nagamiya [60] has shown that |S jl| can also be independent of l (CM-structures) if k2 = H/4, if k2 = −k + H/2, or if 
k2 = ±3k/2 for particular orientations of Sk and Sk2 .

6.3. Two exotic examples

Let us consider exotic cases not verifying Nagamiya’s conditions, so the modulus of magnetic moments is varying in the 
lattice |S jl| = f (Rl).

4 Formula (31) is formula (22.1) of Nagamiya [60].
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Fig. 7. Magnetic structure of CsMnF4. The modulus of the magnetic moment is not uniform, and longer moments alternate with shorter moments [66].

The compound CsMnF4 [66] apparently combines a pair (k, −k) of incommensurable propagation vectors, with a prop-
agation vector H/2 that is half a reciprocal lattice vector. The structure is therefore defined by formula (32), but now w j

is not orthogonal to the plane defined by the orthogonal vectors u j and v j . In fact, it is even in that plane. Therefore, the 
modulus of the magnetic moment is not uniform and depends on l.

|S jl|2 = s2
j + s2

j sin 2α j(u j .w j)(−1)hl cos(�kl + � j) + s2
j sin 2α j(v j·w j)(−1)hl sin(�kl + � j) (33)

The modulus |S jl| varies between the two extreme values s j
√

1 − sin 2α j sin θ and s j
√

1 + sin 2α j sin θ , being θ the angle 
of w j with u j × v j . A schematic picture of the CsMnF4 magnetic structure is shown in Fig. 7.

In addition to the case of CsMnF4, mentioned above, another interesting system is TbMn6Ge6 [67]. The second wave 
vector, in this case, is k = 0 and the associated magnetic moment lies within the u–v plane, defining the spiral plane of the 
first propagation vector. This gives rise to a distorted cycloidal structure.

In all these cases, an arbitrary phase �q may be added to the � j without changing the structure. We shall now consider 
the case of two pairs of propagation vectors (k, −k) and (q, −q) verifying k, q ∈ IBZ. Such a magnetic structure has as 
Fourier coefficients (we drop the index j for simplicity):

Sk = 1

2
(Rk + iIk) Sq = 1

2
(Rq + iIq)exp{−i�}

The magnetic moment distribution is given by:

ml = Rk cos�kl + Ik sin�kl + Rq cos(�ql + �) + Iq sin(�ql + �) (34)

This moment distribution is generally a non-CM structure and the change of the phase factor � can modify the physical 
picture if both vectors k and q have rational components. This last case is interesting when the components are simple 
integer fractions, because one can treat the problem using the magnetic cell and search for a magnetic space group that 
fixes automatically the phase. The finding of such a commensurable magnetic structure does not eliminate the problem of 
uniqueness of the magnetic moment distribution compatible with the experimental results. However, the possibility to have 
a simple spin arrangement with magnetic moments of atoms approaching the expected intrinsic moment is more satisfying 
from a physical point of view.

Except for the case of weakly coupled sublattices, the physical origin of the stabilisation of two propagation vectors 
belonging to different stars is not yet clear in the absence of external fields. In Bravais lattices, we have to think about 
the action of higher-order terms (biquadratic) in the spin Hamiltonian to stabilise two propagation vectors. In complex 
crystal structures, the nature of the ground state is not known in the general case and, probably, it is not necessary to 
invoke higher-order terms to stabilise two non-related propagation vectors. Only the case of conical structures (k = 0 and 
q ∈ IBZ) has been studied with some detail [68] for the spinel lattice. We can conclude that only a physical model based 
on the microscopic spin–spin interactions is able to fix completely the phases appearing in the Fourier expansion of the 
magnetic moment distribution in the solid. Experimentally, other techniques (like Mössbauer spectroscopy, neutron or X-ray 
topography, μ-SR, etc.) may help, in some cases, to distinguish between several models. An interesting example, concerned 
with the application of μ-SR to determine details of the magnetic structure of MnSi/MnGe, can be consulted in [69,70]. 
Unfortunately, there is no general method allowing us to overcome this phase problem. We will see that we can use the 
invariance symmetry (in the formalism of superspace groups) to select the most symmetric of the possible configurations.
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7. Magnetic crystallography. Representations and Shubnikov groups

7.1. Representation analysis for determining magnetic structures

The first person who proposed to use systematically the representation analysis (RA) to handle the determination of 
magnetic structures was E.F. Bertaut [40,61]. Other strong contributors to the method are Y.A. Izyumov and his collaborators. 
Izyumov published a series of articles [43,62] on RA and magnetic structure description and determination, giving explicit 
and general formulae for deducing the basis functions of the irreducible representations (irreps). This is the principal method 
that has been used in practice up to now for determining magnetic structures. A representation of an abstract group G is 
a mapping of the elements of G to a set of n × n matrices, � = {�(g)|g ∈ G}, which have the same group structure under 
matrix multiplication. If gi and g j are elements of G: �(gi)�(g j) = �(gi ◦ g j), where �(g) is the matrix corresponding to the 
element g . The number n is the dimension of the abstract representation space in which the matrices are embedded and is 
called the dimension of the representation. Whatever group has an infinite number of representations. Two representations 
are equivalent if there is a similarity transformation between them common two all matrices: �′(g) = U�(g)U−1. If we 
are able to find an appropriate U -matrix that reduces the matrix-set of the representation to a block-diagonal form, the 
individual sub-matrices are also representations of the group. We say that the original representation is decomposed in the 
direct sum of smaller representations and we write symbolically:

� =
∑
⊕ν

nν�ν = n1�
1 ⊕ n2�

2 ⊕ ... ⊕ nm�m (35)

If the dimensions of representations �ν are the smallest possible, the sub-matrices for the different group elements are 
called irreducible representations (irreps) and they play an important role in group theory (see, for instance, [71]). The so-
called basis functions of the irreps [40,41,43] correspond to vectors (similar to normal modes in lattice vibration theory) 
spanning a working functional space that can be calculated using mathematical techniques (projection operators) of group 
theory. There are few crucial theorems and concepts concerning representations that can be found in section 4 of reference 
[41] and we will not repeat them here.

Proper crystal structures (disregarding quasi-crystals and modulated structures) have symmetries that are described using 
one of the 230 space groups.5 The elements of these groups are constituted by operators of the form ĝ = {g|t} (in Seitz 
notation), where g represents the so-called rotational part and t is a translation. The rotational operators g are normally 
described as 3 × 3 matrices operating in the Euclidean 3D space referred to the basis given by the vectors ai ; the translation 
part of the operator is written as t = t1a1 + t2a2 + t3a3. The possible rotations are limited and can be easily obtained from 
the fact that the trace of the matrices representing rotations is an invariant independent of the selected frame and they 
have to leave invariant the direct lattice Ld . The equation limiting the possible rotations of angle θ is: 2 cos θ ± 1 ∈ Z, the 
solutions are: θ = nπ/4 or nπ/6 with n ∈ Z. There is a special operator, satisfying always the equation for a lattice, called 
space inversion that, which acts over positions changing the sign of all coordinates. It is represented generally by the symbol 
1 = {−1|t}. When combined with a rotation, the resulting operator contains a rotational part called an improper rotation 
(or rotoinversion). In general, a proper rotation is represented by a matrix with determinant det(g) = 1. We call improper 
rotations those with det(g) = −1. When combined with some kind of translation, we have operators representing screw or 
glide motions. The action of the operator ĝ on vector positions (or polar vectors) is {g|t}r = gr + t. The elements for which 
t is a lattice translation (t ∈ Ld) and g is the identity (denoted 1) form a normal subgroup (all its operators commute with 
those of the group G) called the translation group T = {{1|t}|t ∈ Ld}. The groups for which an appropriate selection of the 
origin makes possible to have only elements of the form {g|t} with t ∈ Ld , are called symmorphic. For the non-symmorphic
groups, there are elements of the form: {g|t}, with ti ∈ Q (rational numbers) and they represent screw rotations or glide 
planes depending on whether the rotation part g is proper or improper, respectively. The presence (or absence) of the space 
inversion in the symmetry group of a crystal structure determines the absence (presence) of important macroscopic physical 
properties (piezo-electricity, ferro-electricity, etc.).

If the atoms have magnetic moments, how do they behave under these transformations? A magnetic moment has a 
part that is related to the orbital angular momentum L, and a part that is related to the spin angular momentum S. We 
shall only discuss (within classical mechanics) the transformation rules of the orbital angular momentum and assume they 
are the same for the spin. The effect of a proper rotation ĝ = {g|0} on an orbital angular momentum L is to transform 
it into gL. The space inversion conserves the orbital moment μr × ṙ of a particle of mass μ at r because r → −r and 
ṙ → −ṙ. A translation of vector t also conserves the average orbital moment because t × ṙ averages to 0 for an electron that 
rotates around a fixed nucleus. The magnetic moment (combination of L and S) is then an axial vector (the cross-product 

5 The determination of the 230 crystallographic space groups was performed at the end of the nineteenth century independently by Fedorov and by 
Schoenflies. Independently? It is not exactly the right word, as seen from the story of the discovery told by Shafranovskii and Belov. (It can be found in 
a biography of Fedorov, available through Internet.) In 1888 Fedorov and Schoenflies discovered that they were pursuing the same goal. Then the two 
scientists exchanged many letters as the number of space groups raised to 227, then 228 and finally 230. Nowadays, scientists do not care about the 
lengthy derivations (Schoenflies’ book [72] has more than 600 pages) and are contented with the catalogue of the 230 space groups [73]. Moreover, there 
are computing programs for working with space groups in a straightforward manner.
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r × ṙ is responsible for that). So, in general, the action of the operator ĝ on the axial vectors attached to a position r (like 
magnetic moments) is a new axial vector ĝm = det(g)gm at the position gr + t, where det(g) is the determinant of the 
matrix representing the rotational part of ĝ . As a consequence, the action of space inversion on a magnetic moment leaves 
it invariant: 1m = (−1)(−m) = m.

A space group has an infinite number of elements; however, the presence of the normal translation group allows its 
decomposition in cosets whose number is always finite: G = 1T + ĝ2T . . . + ĝnT . The number n is denoted by |G|, and 
corresponds to the order of the factor group with respect to the T group. In the International Tables of Crystallography 
[73], the coset representatives of each space group are tabulated using the so-called Jones faithful symbols. The number 
|G| is called general multiplicity of the space group. For instance, the operator ĝ : −x, −y, −z represents an inversion centre 
at the origin; the operator ĝ : x + 1/2, −y, −z represents a screw twofold rotation along the a1 axis. Notice that the Jones 
faithful symbols may also be interpreted as positions in 3D Euclidean space.

The important facts that we want to stress in this paragraph, concerned with representations of space groups, are the 
following.

1. Magnetic ordering occurs below a certain temperature as a phase transition and the order parameters can be de-
scribed by the phenomenological Landau theory taking into account the irreps of the space group G of the crystal in 
the paramagnetic state. The so-called magnetic representation, �mag, is a set of matrices of dimension 3naj × 3naj , naj
being the number of magnetic atoms corresponding to the site j generated by the symmetry operators of G acting 
on the set of naj complex Fourier coefficients. This representation is easily obtained as the direct product of an axial 
3D-representation (matrices of the action of ĝ on magnetic moments) and a permutation representation exchanging the 
naj atoms in the unit cell. If the propagation vector is different from zero, one has to consider the group of k (see next 
item).

2. The irreps of G can be calculated (or obtained from tables) from the irreps of the propagation vector group Gk = {ĝ ∈
G|kg−1 = k + H, H ∈ L∗} (subgroup of G constituted by the elements of G leaving invariant the k-vector). The irreps of 
Gk are called small representations. The set of k-vectors, {k}, generated by the application of all the rotational symmetry 
element of G is called the star of the propagation vector. The irreps of G are characterised by the full star {k} and are 
obtained from the irreps of Gk by applying the induction formula (see formula (30) of [41]).

3. The possible magnetic configurations are related to the irreps of the paramagnetic space group in such a way that the 
Fourier coefficients Sk j are linear combinations of the irreps basis functions (vectors in the present case). The basis 
vectors of the irreps are obtained using the projector operator formula (see the full section 7 of [41]). For obtaining 
the so-called atomic components of the basis function, we can use formula (54) of [41]. For a magnetic site j that 
has equivalent positions js(s = 1, 2, . . . , naj) (orbit of j: r js = {g|t}sr j1, generated by the symmetry operators of the 
propagation vector group including the operations transforming k into −k), the Fourier coefficients can be written as:

Sk js =
∑
nλ

Ckν
nλ Skν

nλ ( js) (36)

where ν labels the active irrep �ν of Gk and λ the component corresponding to the dimension of the irrep (λ =
1, 2, . . . dim(�ν)); here the index n varies between one and the number of times �ν is contained in the global magnetic 
representation �mag (see Eq. (35)). The constant vectors Skν

nλ ( js) are the atomic components of the irreps basis functions 
and can be calculated by hand or using computing programs. The coefficients Ckν

nλ , called mixing coefficients by Izyumov 
[62], are now the free parameters of the magnetic structure and have to be determined experimentally. The number of 
such coefficients is generally lower than the total number of Fourier components without considering symmetry.

In expression (24), the atoms are assumed to be at rest. If thermal motion, through isotropic temperature factors, is 
considered and if symmetry analysis is established for coupling the different Fourier components (using Eq. (36)), we obtain 
the general expression of the magnetic structure factor for h = H + k:

M(h) = p
∑

js

f j(h)e−B j |h/2|2 Sk js exp{2πihr js} (37)

M(h) = p
∑

j

f j(h)e−B j |h/2|2 ∑
nλ

Ckν
nλ

∑
s

Skν
nλ ( js)exp{2πihr js} (38)

The determination of magnetic structures using RA is reduced to find the coefficients Ckν
nλ comparing the measured 

magnetic Bragg intensities with the calculated ones using the expressions ((26), (25), (38) or (27) and (28)), depending on 
the neutron scattering technique to be used.

7.2. Magnetic space groups: Shubnikov groups

The RA provides a method for reducing the number of free parameters for describing a magnetic structure that takes 
place in a crystal with structure belonging to one of the 230 space groups. However, the symmetry invariance (SI) of the 
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particular spin configuration is not tackled by the representation method. For doing that, the theory of magnetic space 
groups is the adequate one for commensurable structures. The general Hamiltonian given by Eq. (12) is obviously invariant 
for all the symmetry operators of the space group – in the case of pure Heisenberg Hamiltonian (Eq. (13)), whatever rotation 
of all moments leaves it invariant. Moreover, the Hamiltonian dependency on even powers of spins makes that it is invariant 
with respect to the time reversal. This corresponds (it is obvious for the orbital part, which is linear on d/dt) to the sign 
change of all spins. This is the basis for introducing a new symmetry operator, denoted 1′ (or {1′|0}), called time reversal
or spin reversal that acts only on magnetic moments as: 1′m = −m. If we combine a symmetry operator ĝ with 1′ , we 
simply write ĝ′ (a primed element). Now a general operator ĝ acts on magnetic moments as: ĝm = δ det(g)gm, where δ is 
the signature of the operator, that is, δ = 1 if the operator is not primed and δ = −1 if the operator is primed. In Seitz-like 
notation, one can write a general symmetry operator as ĝ = {g, δ|t}. Taking the direct product of the time-reversal group, 
R = {1, 1′} with the 230 space group, we obtain the so-called 230 grey groups or paramagnetic groups. These groups can only 
describe paramagnetic ordering because the operator {1′|0} is always present and the only solution to the equation 1′m = m
for an atom at whatever position is m = 0. The notation used for paramagnetic groups is the same (Hermann–Mauguin) as 
that for crystallographic groups, followed by the symbol 1′ . For instance, the paramagnetic group of many transition metal 
perovskites crystallising in the space group Pbnm is Pbnm1′ . The magnetic groups allowing a configuration with non-null 
moments cannot contain {1′|0} as an independent operator and are, in fact, subgroups of the paramagnetic groups. The 
operators of the form {1′|n}, in which n is a lattice translation, constitute the so-called anti-translations. Notice that, in the 
section concerned with representations, we have not used the time reversal symmetry (primed operators) at all. The concept 
of propagation vector(s) in the Fourier series (14) replaces to some extent the anti-translations in describing commensurable 
magnetic structures having k = H/2.

Let us summarise the history of magnetic groups and the role they played up to now. In 1945, Shubnikov re-introduced 
the time-reversal group R = {1, 1′}, first described by Heesch in 1929 [74]; then, in 1951, Shubnikov described the bi-colour 
point groups.6 In 1955, Belov, Neronova, and Smirnova provided for the first time the full list of the 1651 magnetic space 
groups (or Shubnikov groups) [75]. In 1957, Zamorzaev derived, using group theory, the Shubnikov groups [76].7 In 1965, 
Opechowski and Guccione derived the list of Shubnikov groups by a method that “satisfies the requirements of mathematical 
rigour” [77]. The whole set of Shubnikov groups was deduced from the subgroups of index 2 of the space groups. The 
origin of this fact is that the product of two primed elements is a non-primed element, so the structure of these groups 
is such as half the coset representatives are primed. Opechowski started a polemic with Bertaut (promoting RA) about 
the advantages of describing magnetic structures using Shubnikov groups (Opechowski). In 1968, Bertaut summarised the 
description of magnetic structures based on RA [40] and stated that RA was superior to the SI method of Shubnikov groups, 
mostly because it can handle whatever k-vector inside the Brillouin zone (e.g., incommensurate structures); however, he 
stated that Shubnikov groups are still useful for describing the physical properties of magnetic systems.8 During the same 
year, 1968, a new book, Describing 3-dimensional Periodic Magnetic Structures by Shubnikov Groups, was published, relating 
Shubnikov groups to magnetic structures [78].

The RA method was dominating the field of magnetic structure determination thanks to the influence of the Grenoble 
school and the leadership of Erwin Félix Bertaut. Moreover, the published works on magnetic space groups were not com-
plete and the equivalent of the Wyckoff positions in crystallographic groups were never described; two kinds of notations 
(OG for Opechowski–Guccione and BNS for Belov–Neronova–Smirnova) were used by different authors. It was only in 2001 
that Daniel B. Litvin provided for the first time a full description of all Shubnikov groups in an electronic book, freely ac-
cessible, similar to the International Tables, but too big to be printed on paper [79]. Only in 2010, the data provided by D.B. 
Litvin were put available in a database compiled by H.T. Stokes and B.J. Campbell [80], in which both notations OG and BNS 
were used.

Finally, the magnetic space groups can be classified into four types.

1. Type 1, or monochrome groups, corresponding to the 230 crystallographic group: M = G . No primed operators exist in 
these groups.

2. Type 2, or grey groups or paramagnetic groups, corresponding to the 230 crystallographic groups plus the product of 
time reversal by all operators of the group: M = G+G1′ . These groups have as much as the double number of operators 
of the corresponding crystallographic group. The notation of these groups is exactly the conventional Hermann–Mauguin 
symbol followed by the symbol 1′ . A crystal invariant by such a group cannot be magnetically ordered.

3. Type 3, or black and white of first species (BW1); they are constructed from an equi-translational subgroup H
of index 2 of the parent crystallographic group G , so that M = H + (G − H)1′ . These groups have exactly half 
of their operators that are primed. Their corresponding point group (determining the macroscopic physical proper-
ties) is a coloured group. The notation of these groups is the same as the Hermann–Mauguin symbol of G , except 

6 A point group is a finite group whose elements are proper and improper rotations of a space group. They can be obtained from the space group 
suppressing all translations and conserving only the rotational part of the operators ĝ.

7 In the above-mentioned works, the authors did not care about magnetic structures. Their concern was purely the mathematical properties of this kind 
of groups and how to classify them. Some authors use the term Shubnikov/Heesch groups.

8 In paragraph 7 of [40], it is said: Can we ignore magnetic groups entirely? The answer is no, not only in microscopic, say atomic systems. . . but also macroscopically 
when a magnetic system is coupled with other forms of energy.
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that the appropriate generators are primed, e.g., if G = Pnna, one can have the following Shubnikov groups M: 
Pn′na, Pnn′a, Pnna′, Pn′n′a, Pn′na′, Pnn′a′, Pn′n′a′ . These groups, including the monochrome Pnna, correspond to the 
eight 1D irreps of Pnna for k = 0. There are 674 BW1 groups.

4. Type 4, or black and white of second species (BW2); they are constructed from an equi-class subgroup H of index 2, 
of the parent crystallographic group. As for type 3, M = H + (G − H)1′ , but now half of the original translations are 
primed: these groups have then a coloured lattice. The notation used for these groups can be based in the subgroup 
H (BNS notation) or in the parent crystallographic group G (OG notation). This occurs only for this type of magnetic 
groups; for all the other groups, the BNS and OG notations coincide. In both cases, the first symbol indicates the kind of 
coloured lattice even if they differ for both notation. In the BNS notation, the lattice symbol indicates the anti-centring 
vector(s) and none of the generators constituting the symbol are primed. It is assumed that the groups are referred to 
the magnetic unit cell (the unit cell of H). This is not the case of the OG notation, in which the operators are referred 
to the conventional crystallographic cell of the G group. As an example, the magnetic group number 417 has as BNS 
notation P C nna and OG notation C P cc′a′ . In the BNS convention this group belongs to the family of Pnna whereas for 
the OG convention it belongs to the family of the group Ccca. There are 517 BW2 groups.

The total number of Shubnikov groups is 1651, corresponding to the sum of the different types: 230 + 230 + 674 + 517. 
The expression of the magnetic structure factor when using the BNS formulation is given in terms of the real magnetic 
moments and can be written generally as:

M(h) = p
ma∑
j=1

O j f j(h)e−B j |h/2|2
|M|∑
s=1

ĝsm j exp{2πihĝsr j} (39)

M(h) = p
ma∑
j=1

O j f j(h)e−B j |h/2|2
|M|∑
s=1

δs det(gs)gsm j exp{2πih[gsr j + ts]} (40)

where p is defined below formula (20), ma is the number of magnetic atoms in the asymmetric unit of the Shubnikov 
group, |M| is the general multiplicity of the group and O j = m j/|M| is an occupation factor that takes into account the 
fact that it may be magnetic atoms in special positions of multiplicity m j .

Nowadays there are resources on the internet and computing programs that allow one to consult the complete list of the 
magnetic space groups, their special (Wyckoff) positions, and the corresponding conditions to be verified by the magnetic 
moments. We will see an analysis of the current resources in section 9.

8. Superspace approach to invariance symmetry of crystal structures and spin configurations

8.1. Concept of superspace

The basic concepts related with incommensurate crystal structures and their symmetry description using superspace 
groups can be found in references [81–87]. The case of magnetic superspace groups has been treated exhaustively in ref-
erence [88] and here we will follow some of their explanations and generalise some expressions for multiple propagation 
vectors.

The concept of superspace comes from the consideration that all Bragg spots observed in a modulated structure can be 
indexed using a series of modulation (propagation) vectors qp with p = 1, 2, . . . , d. The scattering vector for a Bragg spot 
(diffraction vector) can be written as:

h = h1a∗
1 + h2a∗

2 + h3a∗
3 +

d∑
p=1

mpqp (41)

The extra integer indices mp correspond to the harmonics of the modulation vector qp = σ1pa∗
1 + σ2pa∗

2 + σ3pa∗
3 and there 

are generally small integers. Even if the modulation vectors are referred to the reciprocal lattice of the real 3D space, one 
can consider the indices (h1, h2, h3, m1, . . . , md) or HS = (h1, h2, h3, h4, . . . , h3+d) as the nodes of a (3 +d)D reciprocal lattice 
of a superspace that intersects the 3D physical space (called also external space, V E). The spots in the 3D reciprocal space, 
described by Eq. (41), are obtained by orthogonal projection of the (3 + d)D reciprocal lattice onto the 3D reciprocal space. 
The vectors in the superspace have 3 + d components and can be written in the form vS = (vE, vI), in which the first vector 
refers to the 3D external space and the second one to the so-called internal space, V I , and has d components. The superspace 
V S is the direct sum of two orthogonal subspaces: the external and the internal spaces V S = V E ⊕ V I .

The discussion about the basis of the superspace and the geometrical interpretation of the different terms can be con-
sulted in reference [87]. Let us state only that the basis vectors generating the reciprocal and the direct (3 + d)D lattices are 
given by:

a∗ = (a∗,0) = a∗ i = 1,2,3 a∗ = (qp,e∗
p) = qp + e∗

p p = 1,2, . . . ,d (42)
Si i i S(3+p)
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where the e∗
p are orthogonal to the V E space. The reciprocal basis to (42), verifying aSp ·a∗

Sq = δpq , is given by the equations:

aSi = (ai,−
d∑

p=1

(qp · ai)ep) = ai −
d∑

p=1

(qp · ai)ep i = 1,2,3 aS(3+p) = (0,ep) = ep p = 1,2, . . . ,d (43)

where ep are unitary vectors perpendicular to the physical space, ensuring that the embedding of the 3D physical space in 
the (3 + d)D space takes place by an orthogonal projection of the reciprocal (3 + d)D lattice into the physical space or the 
intersection of the direct 3D space with the (3 + d)D superspace (see [84,87] for details).

Notice that the scattering vector (42) referred to the reciprocal lattice of the superspace can be written as:

HS = h1a∗
S1 + h2a∗

S2 + h3a∗
S3 + . . .h3+da∗

S(3+d) (44)

The integer indices (h1, h2, . . . , h3+d) in (44) are identical to (h1, h2, . . . , m1, . . . , md) in (42), but the vectors h and HS are 
referred to different bases.

8.2. Atomic positions, basic structure and modulation functions

In an ordinary crystal structure, the position of an atom in the crystal is given by (see section 3.3): r̄ jl = Rl + r̄ j . All 
the atoms j are translationally equivalent. We have changed the notation adding a bar on top of the vector position to 
indicate that, in a modulated structure, this represents an average or basic 3D periodic structure. In a real modulated 
incommensurate structure, there is no translational symmetry in 3D. The atom position of the atom j in the crystal is given 
by r jl = r̄ jl + u j(q1r̄ jl, . . . qd r̄ jl), where the modulation functions u j(q1r̄ jl, . . . qd r̄ jl) are defined for the atoms within a unit 
cell of the basic structure and are periodic of period 1 in whatever of its arguments qp r̄ jl . Notice that we are considering 
only the ordinary 3D space in these definitions. The modulation functions are displacement polar vectors, referred to the 
3D basis of the average structure, depending only on a series of d extra coordinates that can be considered as belonging to 
the internal space V I of the superspace. These coordinates are related to the modulation vectors and the atom positions of 
the basic structure according to the following definitions:

x̄α = (r̄ jl)α α = 1,2,3 (45)

x̄3+p = tp + qp r̄ jl = tp + qp(Rl + r̄ j) = tp + σ1p x̄1 + σ2p x̄2 + σ3p x̄3 p = 1,2, . . . ,d (46)

where tp are initial phases of the different waves that concern only the internal space. As it is usual in the literature of 
superspace, we have dropped the indices j, l from the coordinates, so it is understood that for the coordinate numbered 
p, we have: x̄p = x̄p( j, l). Sometimes, we will explicit the dependency on the atom j with a superscript on modulation 
functions or parenthesis in coordinates e.g., x̄p( j), or x̄ j

p . In fact, the variables x̄p can be considered as continuous, so that, 
depending on the context, they are evaluated for particular points like x̄p = tp + qp r̄ jl .

The most general expression for the modulation functions can be written as a general real Fourier series:

u j(x̄4, x̄5, . . . , x̄3+d)

=
∞∑

n1=0

..

∞∑
nd=0

A(n1,...,nd)

j cos[2π(n1 x̄4 + . . . + ndx̄3+d)] + B(n1,...,nd)

j sin[2π(n1 x̄4 + . . . + ndx̄3+d) (47)

The 3D vectorial functions u j are different for each atom j = 1, . . . , na within the unit cell of the basic structure, and 
depend on d continuous variables x̄p . If one wants to evaluate the displacement of atom j in the unit cell l in physical 
space, the continuous arguments should be replaced by the expressions (46). This series takes into account the possibility 
of having mixed terms that are more general that the superposition of individual waves, of the form u j(x̄3+p), depending 
only on one modulation vector. The modulation functions, defined by Eq. (47), verify that they are periodic of period 1 in 
each of the internal coordinates: u j(. . . , ̄x3+p + 1, . . .) = u j(. . . , ̄x3+p, . . .), so the argument of the modulation functions can 
be restricted to real numbers modulo 1. The argument of a modulation function is then a vector of the internal part of 
the superspace, so we can write u(x̄4, ̄x5, . . . , ̄x3+d) = u(r̄I). For magnetic moments m j(x̄4, ̄x5, . . . , ̄x3+d), we can also use an 
expression similar to (47), the only difference being that magnetic moments are axial vectors and behave differently than 
polar vectors under symmetry operations.

The embedding of the 3D crystal structure in the superspace coordinates for the atom j is done by assuming that the 
average structure is described by the fractional coordinates x̄ j

Sα = x̄α( j) (α = 1, 2, . . . , 3 + d) with respect to the basis (43). 
The positions of an atom j in superspace is a continuous function [81] (wavy line for d = 1, a hypersurface in general) 
within the unit cell of the superspace described by the coordinates:

x j
Sα = x̄Sα( j) + u jα(x̄4, x̄5, . . . , x̄3+d) α = 1,2,3 (48)

x j = x̄S(3+p)( j) + qpu j(x̄4, x̄5, . . . , x̄3+d) p = 1,2, . . . ,d (49)
S(3+p)
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These coordinates constitute a vector in superspace that can be written as:

r j
S = (x j

S1, x j
S2, . . . x j

S(3+d)
) = (r j

E, r j
I ) (50)

With these definitions, one can extend, by analogy with the 3D case, the nuclear scattering density and magnetisation
density to the superspace, so that its intersection with physical space gives the 3D densities:

ρS(rS) = 1

V

∑
HS

F (HS)exp[−2πiHSrS] (51)

mS(rS) = 1

V

∑
HS

M(HS)exp[−2πiHSrS] (52)

where the coordinates of HS are referred to the reciprocal lattice of the superspace (Eq. (42)) and the coordinates of rS are 
referred to the direct lattice of the superspace (Eq. (43)). For the relations between the density in physical (external) space 
and that in superspace, the reader is referred to reference [87]. For a short description of the extension to superspace of 
scalar, vector, and tensor physical properties attached to atoms, see reference [89].

For incommensurate magnetic structures, the description of moment distribution has been discussed in section 4. Here 
we will use the adequate notation for treating invariance symmetry in the framework of superspace. We will concentrate 
on the simple case having a single propagation vector (d = 1, pair k, −k), so a single additional coordinate x̄4 = τ + kr̄ jl . 
The Fourier series (14) is written here as:

m jl = m j(x̄4) =
m∑

n=−m

T(n)

k j exp(−2πink·(Rl + r j)) =
m∑

n=0

[M(n)
cj cos(2πnx̄4) + M(n)

sj sin(2πnx̄4)] (53)

where implicitly the term n = 0 corresponds to a zero propagation vector and the other terms correspond to the incommen-
surate magnetic structure. The notation m j(x̄4) indicates that the distribution of magnetic moments in the crystal can be 
considered directly as modulation functions. The cosine M(n)

cj and sine M(n)
sj amplitudes are related to the real and imaginary 

components of the Fourier component S(n)

k j (17) because S(n)

k j = T(n)

k j exp[−2πink·r j].
In order to take into account the invariance symmetry of a modulated, crystallographic or magnetic, incommensurate 

structure, let us consider applying a Shubnikov operator to the actual 3D structure. This will transform it into another 
incommensurate structure that has the same average structure. So they differ only in the modulation functions; a common 
phase shift in the internal coordinates may recover the original structure. A symmetry operator ĝ = {g, δ|t} of the average 
structure can be extended with a translation in the internal coordinate x̄4. One can then define an operator in 3D space 
as ĝ = {g, δ|t, τ }, that is, a symmetry operator if it leaves invariant the whole structure. In 3D, a symmetry operator acts 
on the propagation vector as ĝk → kg = εgk + hg , where εg is equal to 1 or −1 and hg is a reciprocal lattice vector that 
depends on the operator ĝ . This is a compatibility condition that a symmetry operator of the basic structure has to satisfy 
for being promoted as a superspace symmetry operator.

8.3. Form of operators in superspace

It is possible to work with extended operators, just considering phase factors in the internal space; however, one can 
define a general operator in superspace of whatever dimension using an extension of the Seitz notation as ĝS = {gS, δ|tS}, in 
which δ is −1 if the operator is primed, gS is a (3 + d) × (3 + d) matrix and tS is a translation vector referred to the direct 
superspace lattice. The invariance symmetry in (3 + d)D of a crystal or magnetic structure means the verification of the two 
density invariance equations:

ρS({gS, δ|tS}rS) = ρS(rS) (54)

mS({gS, δ|tS}rS) = mS(rS) (55)

The δ part of the operator plays no role in the nuclear scattering density equation, but it is important in the magnetisa-
tion density to take into account the spin inversion when the symmetry operator is primed: δ = −1.

The construction of the ĝS = {gS, δ|tS} operators from the extended operators for the (3 + 1)D case is given by the 
transformation:

{g, δ|t, τ } → {gS, δ|tS} t = (t1, t2, t3) t4 = τ + kt (56)

This allows naturally the use of the rules of crystallography for the action of these operators in direct and reciprocal 
spaces. For the case of a (3 + 1)D space, the (3 + d) × (3 + d), d = 1, matrix and translation parts have the following form:
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gS =

⎛
⎜⎜⎝

g11 g12 g13 0
g21 g22 g23 0
g31 g32 g33 0
hg1 hg2 hg3 εg

⎞
⎟⎟⎠ tS = (t1, t2, t3, t4) = (t, tI) (57)

Suppose two atoms ( j) and (k) that are symmetry related through the operator ĝ of the basic structure, such as ĝr̄ jl =
gr̄ j + gRl + t = r̄k + Rn . In superspace, where points are described by coordinates (xS1, xS2, xS3, xS4), the action of the 
corresponding operator ĝS on atom ( j) is similar to that of ĝ for the first three coordinates, but the last component is given 
by:

xS4(k) = hg r̄( j) + εg xS4( j) + t4 = hg r̄( j) + εg xS4( j) + τ + kt (58)

We can see that this fourth coordinate depends on the three first coordinates of the atom ( j) in the basic structure through 
r̄( j).

In the general case, we have to consider that the physical space part of the operators ĝS = {gS, δ|tS} when acting on 
modulation vectors like in (41) (for a single modulation vector the action is: ĝq = qg = εgq + hg ) the following matrix 
condition should be satisfied:⎛

⎜⎜⎝
σ11 σ12 σ13
σ21 σ22 σ23
. . .

σd1 σd2 σd3

⎞
⎟⎟⎠

⎛
⎝ g11 g12 g13

g21 g22 g23
g31 g32 g33

⎞
⎠ =

⎛
⎜⎜⎝

ε11 ε12 ... ε1d
ε21 ε22 ... ε2d
. . ... .

εd1 εd2 ... εdd

⎞
⎟⎟⎠

⎛
⎜⎜⎝

σ11 σ12 σ13
σ21 σ22 σ23
. . .

σd1 σd2 σd3

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

h11 h12 h13
h21 h22 h23
. . .

hd1 hd2 hd3

⎞
⎟⎟⎠ (59)

or, in compact form,

σg = Egσ + Hg (60)

Where g is the conventional 3 × 3 rotational matrix of the physical space, the matrix σ of dimension d × 3 is formed with 
the components of the modulation vectors referred to the reciprocal lattice of the physical space. The matrix Hg is formed 
by d reciprocal lattice vectors and the d × d matrix Eg contains only zeros and ±1 describing how the modulation vectors 
are transformed by the operator ĝ . For modulations vectors pairs (q, −q)p (with p = 1, 2, . . . , d) not belonging to the same 
star, the matrix Eg is diagonal, with E g(i, i) = ±1. We can extend the operators of (3 + 1)D given in Eq. (57) for the general 
(3 + d)D operator ĝS = {gS, δ|tS}, and write:

ĝS = {gS, δ|tS} ⇒ gS =
(

g 0
Hg Eg

)
tS = (t1, t2, . . . t3+d) = (t, t4, . . . , t3+d) = (t, tI) (61)

where 0 is a 3 × d null matrix. Notice that δ must be taken into account for the action on magnetic moments that are 
inverted if the operator is primed (δ = −1). In order to study the action of operators in superspace, it is convenient to 
introduce augmented matrices by adding a column with components of the associated translation vector as:

ĝS =
⎛
⎝ g 0 t

Hg Eg tI
0 0 1

⎞
⎠ (62)

Notice that when we know the 3D operator matrix g and the modulation vectors, the matrices Hg and Eg can be easily 
calculated applying the relations (60). Using usual matrix operations, the action of the operator on a general vector position 
of superspace rS = (rE, rI) is given by

ĝSrS =
⎛
⎝ g 0 t

Hg Eg tI
0 0 1

⎞
⎠

⎛
⎝ rE

rI
1

⎞
⎠ =

⎛
⎝ grE + t

HgrE + EgrI + tI
1

⎞
⎠ (63)

For the action of operators in the modulation functions, we need the inverse of those operators. In Seitz notation, ĝ−1
S =

{g−1
S , δ| − g−1

S tS} (δ−1 = δ always). The general expression of the inverse superspace symmetry operator is given by:

ĝ−1
S =

⎛
⎜⎝

g−1 0 −g−1t

−E−1
g Hgg−1 E−1

g E−1
g Hgg−1t − E−1

g tI

0 0 1

⎞
⎟⎠ =

⎛
⎜⎝

g−1 0 −g−1t

Ng E−1
g −Ngt − E−1

g tI

0 0 1

⎞
⎟⎠ (64)

In general, a modulation vector can be decomposed as q = qr + qi , where the subscripts ‘r’ and ‘i’ stand for rational and 
irrational, respectively. With an appropriate selection of the unit cell in the physical space, one can redefine the modulation 
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vectors so as to contain only zeroes and irrational components. In such cases, the matrix Hg is a null matrix and the calcu-
lations with operators simplify considerably. Selecting the appropriate centred cell for eliminating the rational components 
of the modulation vector, the symmetry operators in superspace simplify to:

ĝS =
⎛
⎝ g 0 t

0 Eg tI
0 0 1

⎞
⎠ ĝ−1

S =
⎛
⎜⎝

g−1 0 −g−1t

0 E−1
g −E−1

g tI

0 0 1

⎞
⎟⎠ (65)

The action of the inverse operator in (3 + d)D superspace on a point corresponding to coordinates of the atom (k) in the 
basic structure gives another point corresponding to the atom ( j), and we have:

ĝ−1
S (r̄k, rIk) = (r̄ j, rI j) = (

g−1(r̄k − t), Ng(r̄k − t) + E−1
g (rIk − tI)

)
(66)

In practical applications, we need to know how these operators act on the modulation (structural displacement or 
magnetic moment) functions in order to allow the calculation of structure factors for structural analysis. The modula-
tion functions of two symmetry-related atoms in the basic structure verifying ĝr̄ j = r̄k + R̄n are not independent if the 
corresponding superspace operator belongs to the symmetry of the modulated structure. Taking into account Eq. (66), the 
displacement modulation functions are transformed as:

uk[rI(k)] = ĝu j[rI( j)] = gu j[ĝ−1rI( j)] = gu j[Ng(r̄( j) − t) + E−1
g (rI( j) − tI)] (67)

For the case of magnetic moments, the action is as:

mk[rI(k)] = ĝm j[rI( j)] = δ det(g)gm j[ĝ−1rI( j)] = δ det(g)gm j[Ng(r̄( j) − t) + E−1
g (rI( j) − tI)] (68)

or, in a more simple form, putting the argument of mk in terms of that of m j , as:

mk[(Hg r̄ j + EgrI ( j) + tI)] = δ det(g)gm j(rI ( j)) (69)

These equations are the basis for calculating the constraints on modulation functions imposed by symmetry in special 
positions of the basic structure.

8.4. Structure factors in superspace

The crystallographic (3 + d)D superspace groups, for dimensions d = 1, 2, and 3, have been tabulated recently [90] in 
form of a database, the number of superspace groups being 775, 3338, and 12 584 respectively. The magnetic superspace 
groups have not yet been tabulated and their number is still unknown.9 The symbols used for designing a superspace group 
is based on the Hermann–Mauguin notation of the parent crystallographic group followed by the modulation vector and 
a set of letters indicating the translation in the internal space. In principle, one can use the same kind of notation for 
magnetic superspace groups using primed symbols. For instance, the crystallographic space group noted Pnma(00γ )0s0 can 
be easily constructed by calculating the augmented matrices of the generators n, m, a using the rules (60) and putting the 
internal translation of the ĝS(m) equal to s = 1/2, tS4 = 1/2 and zero for the other generators.

The detailed calculation of structure factors for modulated crystal and magnetic structures is out of the scope of this 
paper; the reader can find detailed discussions, references, and examples in the papers [81,89,91,92] for the case of crystal 
structures. There is no similar development for magnetic structure factors; however, their inclusion in the appropriate 
formula is straightforward. The most general expression for calculating structure factors of modulated crystal structures has 
been provided for the first time by Akiji Yamamoto [89]. It is formulated directly in superspace, so that the application 
of symmetry is straightforward: formula (15) in [89]. The treatment in superspace implies that the summations for the 
whole crystal are transformed in integrations over the internal space of modulation functions, taking into account that they 
are periodic of period 1. Here we provide a simplified formula (considering only displacive modulations and neglecting the 
temperature factor) for the case of the nuclear structure factor and an equivalent expression for the magnetic structure 
factor:

F (HS) =
na∑
j=1

O jb j

|GS|∑
s=1

1∫
0

dx̄ j
4 . . .

1∫
0

dx̄ j
3+d exp[2πiHS ĝs

Sr j
S(x̄ j

4, . . . x̄ j
3+d)] (70)

9 Very recently H. Stokes and B. Campbell have made available a provisional list up to dimension d = 3 containing a total of 347 975 magnetic superspace 
groups. See https://stokes .byu .edu /iso /ssg .php.

https://stokes.byu.edu/iso/ssg.php
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The corresponding equation for the magnetic structure factor of a crystal having displacive and magnetic modulation is:

M(HS) = p
ma∑
j=1

O j f j(HS)

|GS|∑
s=1

1∫
0

dx̄ j
4 . . .

1∫
0

dx̄ j
3+d ĝs

Sm j
S(x̄ j

4, . . . x̄ j
3+d)exp[2πiHS ĝs

Sr j
S(x̄ j

4, . . . x̄ j
3+d)] (71)

where |GS| is the order of the point group of the superspace group GS and the superscript s numbers the different symmetry 
operators of GS. The first sum for F (HS) is extended to all atoms in the asymmetric unit, whereas the corresponding sum 
for M(HS) is extended only to magnetic atoms. The scattering length of atom j is b j and the magnetic form factor is 
f j(HS). We have made explicit only the dependence on the internal space of the modulation functions, of course the 
vectors in superspace contain also the external components. For practical applications, the modulation functions should be 
written in terms of their development in Fourier series like (47). The structural parameters become then the cosine and 
sine amplitudes, which are constant vectors with components to be adjusted against experimental data. A recent example 
of magnetic structure determination using the superspace approach is the case of the multiferroic compound α-NaFeO2
[93].

9. Computing tools for determination and analysis of magnetic structures

9.1. The pioneering times

During many years, the people needing determining magnetic structures were working using ad hoc computing programs 
or making calculations by hand for relatively simple crystal structures. For neutron powder diffraction, the first general 
computing program able to work with commensurable magnetic structures was that provided by H.M. Rietveld [94]. Hewat’s 
Fortran version [95] of this program was available at the ILL from 1980 onwards. The user had to construct him(her)self the 
magnetic model, using physical intuition or the knowledge on magnetic symmetry (representation analysis or Shubnikov 
groups) and translate this model into the input file of the program. No control of the model correctness was performed by 
the program.

For single crystals, the system The Cambridge Crystallography Subroutine Library [96] was, and still is, one of the most com-
plete set of procedures for handling magnetic single crystal diffraction. Its scope is very well summarised by the following 
words of the authors:

The Cambridge Crystallography Subroutine Library (CCSL) is a set of subroutines which are used in the construction of Fortran 
crystallographic programs. CCSL has been written with the needs of the nonstandard crystallographer in mind. [. . . ] the aim of CCSL is 
to allow each user to do something a little different, and to experiment with his own ideas using the subroutines in the library for the 
routine parts of the calculations.

Together with many programs and utilities for crystallographic applications, the magnetic programs based on CCSL are 
able to treat single crystal diffraction data (polarised and unpolarised neutrons) and, to a limited extent, powder diffraction. 
For instance, the program MAGLSQ allows the refinement of magnetic structures (commensurable and incommensurable) 
as well as the treatment of flipping ratios for spin densities. The program CHILSQ has been designed for the refinement of 
local susceptibility tensors using polarised neutrons and flipping ratios measurements. The programs PALSQ and PAXLSQ are 
able to treat polarimetry data under zero field for determining fine details of magnetic structures. Presently, the full set of 
programs can be freely downloaded from the website given in reference [96].

9.2. The last thirty years

The original Rietveld [94] program was limited to commensurable magnetic structures, but his idea gave rise to a series 
of computing programs, using the Rietveld method, that extended the initial capabilities. At the end of the 1990s, there were 
several Rietveld programs and the way of using them, in the form of guidelines, was published in a paper of the Powder 
Diffraction Commission of the IUCr10 [97]. Those able to handle magnetic structures were, from the beginning, the programs 
GSAS [98] and RIETAN [99,100]. The most recent versions of those programs are able to work with commensurable magnetic 
structures. In the case of RIETAN, there are strong limitations because magnetic groups are not implemented. In the latest 
versions of GSAS (GSAS-II) [98], the Shubnikov groups are fully implemented. More recently, the commercial program TOPAS 
[101] has included the possibility to work with commensurable magnetic structures.

For working with incommensurable magnetic structures, the program SIMREF [102], published in 1988, was developed 
later to include this option; however, its use has been only testimonial. The program FullProf was developed at ILL at the 
end of the 1980s by the first author of this paper. It was based on DBW [103], a popular application for working with X-ray 
powder diffraction distributed freely from 1981 onwards. The genesis of FullProf started in the middle of the 1980s with 
strong modifications of the DBW program and finally with the introduction of magnetic structures using the formalism of 
propagation vectors in 1990. The first published description of features available in FullProf for incommensurable magnetic 

10 IUCr: International Union of Crystallography.
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structures was done in [66]. In that article, there was also the first description of the program MagSan for determining 
commensurable magnetic structures using Simulated Annealing, later included in the FullProf Suite for general crystal and 
magnetic structures. By the middle–end of the 1990s, three programs [104–106], MODY, SARAh, and BasIreps (this last 
included within the FullProf Suite) were released for helping to determine magnetic structures. These programs use the 
representation analysis popularised by Bertaut [40] and were distributed and used by the community. The FullProf Suite
is being developed permanently and it is currently the most used set of program for handling magnetic structures using 
powder or single crystal neutron diffraction data.

A series of computing tools for crystallography, including magnetic structures, are available at the Bilbao Crystallographic 
Server (BCS) [107]. This is a web application that is very intuitive, and the user can consult everything related with space 
crystal and magnetic groups. Programs for making transformation between different settings, determination of subgroups 
and coset decompositions are made available to non-specialists. They can output Crystallographic Information Files (CIF) 
that serve as exchange of crystallographic data and structures. The most important programs for magnetic structure de-
termination and analysis are MAGMAGN and k-SUBGROUPS [108]; they are able to output magnetic CIF that can be read 
immediately by other programs like FullProf, JANA or GSAS-II. Moreover, they provide for the first time a database of de-
termined magnetic structures [109,110] that the user can inspect and download, which are accompanied by visualisation
capabilities through the program JMol [111].

For incommensurable crystal structures, two programs for single crystals were developed from the middle of the 1980s: 
REMOS [112] and JANA [113]. JANA-2006 was the first program that incorporated the treatment of incommensurable mag-
netic structures using superspace groups. Whereas this formalism is not yet in the common culture of condensed matter 
physicists working on magnetism, a strong progress is being accomplished in the last years thanks to the contribution of 
web applications using data bases [90,114]. A huge amount of work on symmetry has been developed by H. Stokes, D. 
Hatch, and B. Campbell. Stokes developed the computing system ISOTROPY [115], in which many algorithms for working 
with space groups, representations and symmetry modes, are implemented. Together with the programs, they have made 
available databases to be used by external software. In particular some applications of the BCS and the FullProf Suite use the 
databases of Shubnikov groups [80] and irreps [116]. The program ISODISTORT is a web application interfacing ISOTROPY 
and works making an analysis of a paramagnetic group together with a series of propagation (modulation). The program 
calculates the irreps and isotropy subgroups, providing symmetry modes and the (super)space groups corresponding to 
different selections of the irreps and order parameter directions. For the case of commensurable structures, the program 
outputs directly a template file to be used by FullProf or by TOPAS. An account of the current state of methods and tools 
has been published recently by F. Damay of the LLB [117].

A very recent program for analysing polarimetry and integrated intensity data on single crystals has been developed at 
ILL by N. Qureshi using a modern graphic user interface that facilitates the precise determination of magnetic structures 
[118].

It is clear that the computing tools for helping determination of magnetic structures will increase in the forthcom-
ing months and years. In particular, the full implementation within the FullProf Suite of superspace formalism is planed. 
Presently, this approach for incommensurable magnetic structures is already implemented, but only within a commensu-
rable crystallographic structure. Using the same library recently developed [119] for working with general crystallographic 
groups, appropriate utilities for working with superspace will also be implemented at the BCS.

10. Conclusions

We have presented a general overview of the field of magnetic structures in crystals emphasising the microscopic origin 
of magnetic ordering, the expressions for calculating neutron scattering amplitudes (structure factors) and summarising the 
symmetry concepts necessary for analysing experimental data.

Finally, we want to stress that the impact of this field in solid-state physics and chemistry is increasing thanks to the 
need of understanding new materials showing interesting physical properties (giant magneto-resistance, frustrated mag-
netism, spin ices, multiferroics, etc.). The knowledge of the magnetic ground state of new materials provides new insights 
into the electronic properties of solids and helps to challenge ab initio codes of electronic structure for predicting magnetic 
ordering from first principles, which is still in its infancy.

With the objective of developing this field, the IUCr created, in the frame of the Twenty-Second Congress and General 
Assembly of the International Union of Crystallography (Madrid 2011), the Commission on Magnetic Structures [120], which 
is trying to unify the different descriptions of magnetic structures and has developed a format for a new CIF for both 
commensurable and incommensurable magnetic structures.

The authors are grateful to Isabelle Mirebeau and Frédéric Bourdarot for their critical reading of the manuscript.

Appendix A. The Rudermann–Kittel interaction

The main part of the Hamiltonian is the free electron Hamiltonian, assumed to form a single band for simplicity:

H0 =
∑

εkc∗
kσ ckσ (72)
kσ
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where c∗
kσ and ckσ respectively create and destroy a conduction electron of wave vector k and spin component σ = + or −

along a particular direction z.
In addition, there is a perturbation, which is the interaction of conduction electrons with the localised electron spins Si . 

It is a good approximation to assume that the interaction is local, i.e. the spin Si localised at site i interacts only with the 
spin si of the conduction electron at site i, if there is one. The perturbation may be assumed to have the form

H1 = λ
∑

i

Si ·si (73)

The spin si will now be expressed in terms of the operators c∗
iσ and ciσ , Fourier transforms of c∗

kσ and ckσ where 
σ = + or −. According to the Pauli principle, the site i can accommodate either no conduction electron, or two conduction 
electrons of opposite spins, or one conduction electron of spin +, or one conduction electron of spin −. In all four cases, it 
is readily seen that sz

i = (c∗
i+ci+ − c∗

i−ci−)/2, s+
i = c∗

i+ci− and s−
i = c∗

i−ci+ . It follows after a few lines’ calculation that (73)
reads

H1 = λ

2

∑
iσσ ′

Sσσ ′
i c∗

iσ ciσ ′ = λ

2N

∑
ikk′σσ ′

Sσσ ′
i c∗

kσ ck′σ ′ exp[i(k − k′)·Ri] (74)

where

Sσσ
i = Sz

i σ , S+−
i = S−

i , S−+
i = S+

i (75)

For λ = 0, the conduction electrons are in their ground state | 0〉 characterised by c+
kσ ckσ | 0〉 = | 0〉 if εk < εF and 

c+
kσ ckσ | 0〉 = 0 if εk > εF . If the N localised spins Si of modulus s are taken into account, the (2s + 1)N corresponding 

states have the same energy E0, so that there is a ground space E0, which is (2s + 1)N times degenerate. The case of inter-
est is when λ is small but does not vanish. Then there are (2s + 1)N low-energy eigenstates | ψ〉 of H = H0 + H1, which 
are close to the space E0. Using second-order perturbation theory, it can be shown that their projection P0 | ψ〉 onto E0 are 
the eigenstates of

Hef f = P0H1(E0 −H0 − iη)−1H1P0 (76)

where the limit η → 0 has to be taken. For η = 0 the inverse operator is not defined. Because of the projection operator 
P0, this Hamiltonian depends only on the localised spin operators Si , while conduction electrons are in their ground state 
| 0〉. From now on, the projection operator will be omitted; we shall keep in mind that the conduction electrons are in their 
ground state, and Hef f will be considered a function of the localised spin operators. Using (76), (74) and (72), one obtains, 
assuming a single magnetic atom per unit cell

Hef f = λ2

4

∑
i jσσ ′kk′

Sσσ ′
i Sσ ′σ

j

∑
kk′

〈0 | c∗
kσ ck′σ ′

1

εk − εk′
c∗

k′σ ′ckσ | 0〉 exp[i(k − k′)·Ri j] (77)

where Ri j is the vector connecting sites i and j. The matrix element is a function K (k, k′) independent of σ and σ ’. 
According to (75), relation (77) reads

Hef f = −
∑

i j

J i jSi ·Si

where

J i j = −λ2

2

∑
k

∑
k′

K (k,k′)exp[i(k − k′)·Ri j] (78)

The exploitation of this formula is a mathematical exercise that will be performed in some detail assuming that εk

depends only on k = |k| (an assumption that is not realistic at all, but simplifies the calculation, which can be extended to 
the realistic case). Formula (78) reads

J i j = J (Rij) = −λ2

2

∑
k<kF

∑
k′>kF

1

εk − εk′
exp[i(k − k′)·Ri j]

Introducing the polar coordinates k, θ , ϕ and k′ , θ ′ , ϕ′ of k and k’, and integrating on ϕ and ϕ′ , one obtains

J (R) = −2π2λ2
∫ ∫

′
dk dk′ k2k′ 2

εk − εk′

π∫
−π

dθ

π∫
−π

dθ ′ sin θ sin θ ′ exp[ikR cos θ − ik′R cos θ ′]

k<kF k >kF
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or, after integration over θ and θ ′:

J (R) = 8π2λ2

R2

∫
k<kF

∫
k′>kF

dk dk′ kk′

εk − εk′
sin kR sin k′R = J1(R) + J2(R) (79)

where

J1(R) = −4π2λ2

R2

∫
k<kF

∫
k′>kF

kk′dk dk′ cos(k + k′)R

εk − εk′
(80)

and

J2(R) = 4π2λ2

R2

∫
k<kF

∫
k′>kF

kk′dk dk′ cos(k − k′)R

εk − εk′
(81)

It will be appropriate to introduce the variables u = k′ − k and v = k′ + k − 2kF, which satisfy the relations u ≥ 0 and 
−u ≤ v ≤ u. After integration over v , J1(R) turns out to be the Fourier transform of a function of u that has a singularity 
at u = 0 but is analytic everywhere else. After integration over u, J2(R) turns out to be the Fourier transform of an analytic 
function of v .

At this point, it is appropriate to recall some general properties of the Fourier transformation. The Fourier transform 
J (k) of a short-ranged J (R) is an analytic function of k, since it is a finite sum of analytic functions. Conversely, the 
inverse Fourier transform of an analytic function J (k) is short ranged (or decays rapidly, e.g., exponentially). Therefore, if 
we are interested in the long-distance behaviour of J (R) given by (79), we can ignore the component J2(R), which is the 
Fourier transform of an analytic function. Moreover, in the expression (80) of J1(R), all quantities can be replaced by their 
expression in the neighbourhood of u = v = 0, except for the rapidly fluctuating factor cos(k + k′)R = cos(2kF + v)R . Thus, 
at long distance,

J (R) � J1(R) = 4π2λ2

R2

∫
u>0

du

u∫
−u

k2
F

cos(2kF + v)R

Bu
dv (82)

where B = dεk/dk at kF. Integration yields

J (R) = 4π2λ2

B R2
k2

F cos 2kF R

∫
u>0

du

u

u∫
−u

cos v R dv

or

J (R) = 8π2λ2

B R3
k2

F cos(2kF R)

∞∫
0

sin(uR)

u
du = 8π3λ2

B R3
k2

F cos(2kF R) (83)

which is formula (9).

Appendix B. The Devil’s staircase

The minimum of expression (11) must satisfy the equations

∂

∂ϕn
H = 2ϕn − ϕn+1 − ϕn−1 + λ sinϕn = 0 (n 	= 1, N) (84)

These equations are independent of μ. The equations for n = 1 and N , which depend on μ, will be provisionally ignored.
If λ = 0, the solutions to (84) are ϕn = nα + θ , depending on the two parameters α and θ . When λ does not vanish, yet 

small, it is convenient to write ϕn = nα + un + θ , where α and θ are arbitrary and un is small.
Equations (84) read

un+1 + un−1 − 2un = λ sin(nα + un + θ) (85)

The left-hand side has the form G | u〉, where G is a N × N matrix and | u〉 is a column matrix with N elements. 
Introducing the inverse matrix � of G , (85) reads

un = λ
∑

′
�(n − n′) sin(n′α + un′ + θ) (86)
n
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For any given value of α, the solution is obviously a periodic function of θ with period 2π. Equations (86) can be solved 
by iteration, assuming the initial value u(0)

n = 0. After p iteration steps, the obtained solution u(p)
n is correct to order μp . 

It depends on α and θ , and the energy should be minimised with respect to α and θ . For a given value of α, the energy 
is a continuous function of θ at all iteration steps and, if the iteration converges, the final result should be a continuous 
function of θ .

If a solution to (86) is known for given values α and θ , another solution for the same α is obtained if un is substituted 
by un+m , where m is any integer: un+m = λ 

∑
n′ �(n +m −n′) sin(n′α + un′+p + θ) or un = λ 

∑
n′ �(n + p −n′) sin(n′α + un′ −

mα + θ). This solution has the same energy as the initial one, E(α, θ) = E(α, θ − mα). If α/π is not a rational number, the 
values θ − mα generate an infinite number of values, which correspond to the same energy E(α, θ − mα) = E(α, θ). For 
any value θ ′ , one can find integers p and k such that |θ − mα − θ ′ − 2πk| is smaller than any small positive number ε . 
Since E(α, θ) is assumed to be a continuous function of θ , E(α, θ ′) should be equal to E(α, θ). We conclude that E(α, θ) is 
independent of θ if α/π is irrational.

If α/2π is a rational number p/q (where p and q are integers without common factor) E(α, θ) is still equal to E(α, θ −
mα) and also to E(α, θ + 2kπ), i.e. E(α, θ) = E(α, θ − α + 2kπ) = E(α, θ − 2α + 2kπ) = E(α, θ − 3α) = . . . = E(α, θ − (q −
1)α + 2kπ), but the sequence stops there since qα = 2pπ. The energy E(α, θ) is now a periodic function of θ with period 
2π/q. It has a minimum Em for some value θ0 of θ and a maximum EM for another value. When α is infinitely close to 
pπ/q, the structure is locally similar to the ‘rational’ structure corresponding to a value of θ that changes with n, so that 
the energy density fluctuates in space between Em and EM, and the average energy density E satisfies Em < E < EM. For 
that reason, even if μ is slightly different from the value at which the rational value α = pπ/q would minimise the energy 
for λ = 0, it still minimises the energy for λ 	= 0. Commensurate structures have a non-vanishing domain of stability!

It will now be explained why the transition from a commensurable structure α = pπ/q to something else is continuous. 
Let ϕ(0)

n = nα + u(0)
n + θ0 be the commensurable structure that minimises the energy when μ is close to a certain value μ0. 

We wish to know the energy when ϕn is slightly different from ϕ(0)
n . However, it is convenient to select the sites n = qν , 

which are equivalent in the commensurable structure. The integer ν takes the values 1, 2, 3, . . . N/q. We therefore introduce 
the variables vν = ϕqν −ϕ

(0)
qν and we define the minimum W (v1, v2, v3, . . .) for given values of v1, v2, v3, . . . . Even though 

we are not able to calculate it, we may guess how it looks like for small deviations vν − vν−1. The sum of the first two 
terms of expression (11) can be written as an algebraic expression A 

∑
(vν − vν−1)

2, where linear terms are absent for a 
suitable choice μ0 of μ, higher-order terms are negligible for small deviations, and interactions for |ν − ν ′| < 1 are ignored 
for the sake of simplicity. The last term of expression (11) is a periodic function of period 2π/q. It will be written as the 
first term of a Fourier series, −B 

∑
cos(qvν − δ), where the constant δ is zero because the energy minimum corresponds to 

vν = 0. Thus the energy is phenomenologically written as

W = A

2

∑
ν

(vν − vν−1)
2 − B

∑
ν

cos qvν − δμ
∑
ν

(vν − vν−1) (87)

where δμ = μ − μ0.
The minimum of (87) satisfies

A(vν+1 + vν−1 − 2vν) = B sin qvν (ν 	= 1, N/q) (88)

This is a discrete, time-independent form of the sine Gordon equation. It has the solution vν , which minimises (87) when 
δμ = 0. When δμ increases and reaches a critical value δμ+

c , the first non-uniform solution that appears corresponds to 
a domain wall (called discommensuration in this case, or sometimes soliton). A discommensuration centred at ν0 has the 
following properties:

vν = 0 (ν << ν0), vν = 2π (ν >> ν0) (89)

For δμ = 0, the discommensuration has an energy w0 proportional to 
√

AB . When δμ becomes equal to δμ+
c = w0, the 

structure with one discommensuration has the same energy as the commensurable structure. When δμ is slightly larger 
than δμ+

c , several discommensurations form. Let 	ν be their distance. Within this distance, the increment v must go from 
the value 2Pπ (where P is an integer) to the value 2(P + 1)π. In the case of a single discommensuration, v goes from 
2Pπ to 2(P + 1)π on an infinite distance. In other words, the minimum energy of a discommensuration corresponds to 
	ν = ∞. If there are several discommensurations, 	ν must be finite and this costs energy: the energy increases faster than 
the number of discommensurations. For that reason, the number of discommensurations increases continuously with δμ: 
the transition at δμ+

c is continuous. Of course, when δμ is negative and decreases, there is also a continuous transition at 
some value δμ−

c .
Let the repulsive interaction between discommensurations be more precisely described. Far from ν0, Eq. (87) takes the 

linear form A(vν+1 + vν−1 − 2vν) = Bqvν , the solution to which is

vν = Const × exp(−κ |ν − ν0|) (90)
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with κ = √
Bq/A. This exponential decay implies an exponential decay of the interaction between discommensurations. The 

energy of a system of discommensurations at distance 	ν is

W = N

q	ν
[w0 + w1 exp(−κ	ν) − 2πδμ] (91)

Its minimum is given by dW /d	ν = 0, i.e.

	ν = 2πδμ − w0

w1
exp(κ	ν)

or

κ	ν ≈ ln
w1

2πδμ − w0
(92)

Appendix C. Classical mean-field approximation to the first ordered state

The interaction energy between the spins i and j located respectively in the unit cells n and m, is supposed to be of the 
form:

Eij(Rn,Rm) = −Si(Rn)Ji j(Rn,Rm)S j(Rm) (93)

Eij(Rn,Rm) = −
∑
αβ

Sα
i (Rn) Jαβ

i j (Rn,Rm)Sβ

j (Rm) (94)

The translation symmetry of the crystal implies that

Ji j(Rn,Rm) = Ji j(Rn − Rp,Rm − Rp) ⇒ Ji j(Rn,Rm) = Ji j(Rn − Rm,0) (95)

Let us assume that the orientation distribution function of the spin i is normalised to 1 over all solid angles, so that 
average values of any quantity can be directly obtained by multiplying by the distribution function and integrating over all 
orientations:∫

pi(ωi)dωi = 1 ωi = (θi, φi) (96)

The internal energy and the entropy of the spin system are given by the equations:

U = 1

2

∑
i j

∫
dωi

∫
dω j pi(ωi)p j(ω j)Eij(ωi,ω j) (97)

S = −kB

∑
i

∫
dωi pi(ωi) ln pi(ωi) (98)

The minimisation of the free energy with respect to all pi at temperature T (defining βB = 1
kB T ) gives the set of coupled 

equations:

p(ωi) = e
−βB

∑
j

∫
dω j p j(ω j)Eij(ωi ,ω j)

∫
dωi e

−βB
∑

j

∫
dω j p j(ω j)Eij(ωi ,ω j)

(99)

We can put the above equation in terms of the average spins (magnetic moment) by integrating for all solid angles and 
defining:

mi(Rn) =
∫

dωRn
i pi(ω

Rn
i )Si(Rn) (100)

For a uniform distribution pi(ωi) = 1
4π , the value of the average moment corresponds to the paramagnetic state and 

mi(Rn) = 0 for all sites in the crystal. Replacing the energy terms in the above equations by its expression for the gen-
eral case:

Eij(ω
Rn
i ,ωRm

j ) = −
∑
αβ

Sα
i (Rn) Jαβ

i j (Rn,Rm) Sβ

j (Rm) (101)

we obtain the following expression for the average spin of atom i at the unit cell n:
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mi(Rn) =
∫

dωRn
i pi(ω

Rn
i )Si(Rn) =

∫
dωRn

i Si(Rn)eβBSi(Rn)Hin∫
dωRn

i eβBSi(Rn)Hin
(102)

where we have defined the molecular field at the site i, n by the vectorial equation:

Hin =
∑

jm

Ji j(Rn − Rm)m j(Rm) (103)

or in components:

Hα
in =

∑
jmβ

Jαβ

i j (Rn − Rm)mβ

j (Rm) (104)

The non-linear mean-field coupled equations in mi(Rn) cannot be solved easily. It is clear by looking at the explicit 
expression

mi(Rn) =
∫

dωRn
i Si(Rn)e

βBSi(Rn)
∑
jm

Ji j(Rn−Rm)m j(Rm)

∫
dωRn

i e
βBSi(Rn)

∑
jm

Ji j(Rn−Rm)m j(Rm)
(105)

that the solution mi(Rn) = 0 always exists, representing the disordered state. However, below a certain temperature, solu-
tions with mi(Rn) 	= 0 should exist. The temperature at which one of the solution goes to zero by increasing the temperature 
is called branching temperature, Tb. In the neighbourhood of Tb, the exponential function of the mean-field equation can be 
written in a linear form on mi(Rn). When the value of the average spin is small, only the first non-null term on the series 
development of the exponential functions is retained. We obtain the equations:

∑
jm

Ji j(Rn − Rm)m j(Rm) = −3kBTbmi(Rn) (106)

calling λ = −3kB Tb, and making explicit the components of the exchange tensor, we obtain:
∑
jmβ

Jαβ

i j (Rn − Rm)mβ

j (Rm) = λmα
i (Rn) (107)

Using the translational symmetry through the Fourier transform of the values m j(Rm) as:

m j(Rm) =
∑

k

Sk j e−2πikRm (108)

where Sk j represent the Fourier components of the magnetic moment. Notice that these complex vectors are defined for 
each atom j in a primitive cell taken as the origin cell (or zero cell). Replacing this value of the magnetic moment in the 
previous equation, we obtain a compact linear equation in the Fourier coefficients that reduces to an eigenvalue problem:

∑
jm

Ji j(Rn − Rm)
∑

k

Sk j e−2πikRm = λ
∑

k

Ski e−2πikRn (109)

The sum over k-vectors in both sides of the equations may be eliminated by imposing the equality of each term:
∑

jm

Ji j(Rn − Rm)Sk j e−2πikRm = λSki e−2πikRn (110)

∑
jm

Ji j(Rn − Rm)e2πik(Rn−Rm)Sk j =
∑

j

∑
p

Ji j(Rp)e2πikRp Sk j = λSki (111)

The quantity obtained from the sum over p is the Fourier transform of the generalised exchange tensor parameters, and we 
call it:

ξ
αβ

i j (k) =
∑

p

Jαβ

i j (Rp)e2πikRp (112)

ξ
αβ

i j (k) is a matrix of dimension 3na × 3na , na being the number of magnetic atoms in a primitive unit cell. The problem 
of finding the first ordered state of a system of classical spins in the mean-field approximation has a general solution that 
has been reduced to an eigenvalue problem. The first ordered state is given by the eigenvector corresponding to the highest 
eigenvalue of the equation:
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∑
jβ

ξ
αβ

i j (k)Sk jβ = λSkiα (113)

In the case of isotropic exchange interactions, the Fourier transform is reduced to a matrix of dimension na × na and all 
the components of Ski satisfy a smaller eigenvalue equation

∑
j

ξi j(k)Sk j = λSki (114)

The eigenvectors of (113) correspond to linear combinations of basis functions of the irreps of the group symmetry of 
the crystal structure that is implicitly embedded in the Fourier transform of the exchange interactions (112). Notice that 
single-ion anisotropy is included in the exchange parameters when i = j and Rp = 0.

Appendix D. Glossary

1. Propagation (or modulation) vector (k, q). The propagation vector k (or k-vector for short) is a vector defined in 
reciprocal space that is used in Solid State Physics as a label for defining electron states in a solid. In the present context, 
it serves for indexing magnetic Bragg reflections or satellite reflections of a modulated structure. Modulated structures 
are normally characterised by a set of independent propagation vectors {k1, k2, . . . , kd} determining the dimension of 
the superspace D = 3 + d. The scattering vector corresponding to a Bragg reflection is given by: h = H + ∑d

i=1 niki .
2. Star of k {k}. When applying the point group operators of a space group to a primary k-vector, we obtain a finite set of 

different k-vectors constituting the star of the propagation vector {k} = {g1k, g2k . . . gnk} = {k1, k2 . . . km}. Notice that 
the number of generated k-vectors, m, is generally smaller than the order n of the point group because, depending on 
the particular primary k-vector, some operators may left it invariant (or equivalent to it).

3. Polar vector. Is a quantity defined in an n-dimensional space by n components Pi , i = 1, 2, . . . , n that transform under 
operations conserving distances and angles (orthogonal transformations), represented by a matrix of components Aij , 
as P ′

i = ∑n
j=1 Aij P j . Examples of polar vectors are: vector positions r, linear momentum p = mṙ, acceleration a = r̈, 

electric field E, etc.
4. Axial vector. An axial vector is also-called pseudo-vector and it is defined by the transformation law V ′

i = det(A)×∑n
j=1 Aij V j , where det(A) is the determinant of the transformation matrix A. The determinant is equal to 1 for proper 

rotations and equal to −1 for improper rotations. Axial vectors in physics arise from the cross product of two polar 
vectors or by the curl of a polar vector field. Examples of axial vectors are: angular momentum L = r × p, magnetic field 
B (remember the third Maxwell equation in vacuum, using the velocity of light as unity: ∇ × E = −∂B/∂t), magnetic 
moment m, etc.

5. Groups. An abstract group is a set of elements G = {g1, g2, . . . , gn} in which an operation ◦ is defined such as gi ◦ g j =
gk ∈ G . It meets the following conditions: (i) the operation is associative (gi ◦ g j) ◦ gk = gi ◦ (g j ◦ gk), (ii) there exists a 
neutral or identity element e ∈ G , verifying e ◦ gi = gi ◦e = gi , and (iii) each element of the group has an inverse g−1

i ∈ G , 
verifying g−1

i ◦ gi = gi ◦ g−1
i = e.

6. Point group. A point group is a set of transformations that leave invariant a point in space. Normally, a point group is 
represented by a set of orthogonal matrices. The ordinary product of matrices is associative and all orthogonal matrices 
have an inverse equal to its transposed matrix, so the structure of the group is granted. Normally, the term point group 
is reserved to a finite group characterising the symmetry of an object in space.

7. Space groups. Combining point groups with groups of translations, it is possible to construct the so-called space groups. 
For making that possible, the existence of an underlying lattice defining the group of translations, which is always a 
subgroup of the space group, is necessary. A space group in 3D can be constructed only with crystallographic point 
groups (rotations of order 2, 3, 4 and 6 and their combination with the spatial inversion) in order to leave invariant the 
lattice. See section 7.1 for details.

8. Superspace groups. These are particular kind of space groups in n-dimensions. Their operators act in a (3 + d)-dimen-
sional space. The superspace groups allow the description of aperiodic crystal and magnetic structures recovering the 
periodicity in a number of dimension equal to 3 plus the number of independent modulation vectors. See section 8.3
for details.

9. Symmetry. A symmetry is a transformation that leaves invariant an object. That means that the final object, after 
applying the transformation, is indistinguishable from the initial one. When speaking loosely about the symmetry of an 
object, it is understood that we refer to the group of symmetry of the object: the set of all transformations leaving 
invariant the object.

10. Representation of a group. A group is an abstract algebraic concept that makes reference to arbitrary elements without 
defining its physical nature. In physics and chemistry, group theory is of capital importance from many points of view. 
A representation of a group is a set of square matrices that is isomorphous to the abstract group. See section 7.1 for 
details.

11. Irreducible representations. A representation of dimension n (set of n × n matrices) can be reduced by a common 
similarity transformation (�′ = S�S−1) to a set of matrices having a block-diagonal structure. The submatrices having 
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the lower dimensions form also representations of the same group and they are called irreducible representations (irreps) 
when no further similarity transformation can be found to still reduce them. See section 7.1 for details.
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