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Abstract


In recent years, two important advances have opened new doors for the char-
acterization and determination of magnetic structures. Firstly, researchers
have produced computer-readable listings of the magnetic or Shubnikov
space groups. Secondly, they have extended and applied the superspace for-
malism, which is presently the standard approach for the description of
nonmagnetic incommensurate structures and their symmetry, to magnetic
structures. These breakthroughs have been the basis for the subsequent
development of a series of computer tools that allow a more efficient and
comprehensive application of magnetic symmetry, both commensurate and
incommensurate. Here we briefly review the capabilities of these computa-
tion instruments and present the fundamental concepts on which they are
based, providing various examples. We show how these tools facilitate the
use of symmetry arguments expressed as either a magnetic space group or a
magnetic superspace group and allow the exploration of the possible mag-
netic orderings associated with one or more propagation vectors in a form
that complements and goes beyond the traditional representation method.
Special focus is placed on the programs available online at the Bilbao Crys-
tallographic Server (http://www.cryst.ehu.es).
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MSG: magnetic space
group, also called
Shubnikov group


MSSG: magnetic
superspace group


Representation
method: method to
parameterize and
determine magnetic
structures using basis
functions adapted to
the irreps of the space
group of the
paramagnetic phase


Irrep: irreducible
representation of a
group


1. INTRODUCTION


Magnetic ordering is a symmetry-breaking process, and, as in other fields of physics, the char-
acterization of the involved symmetry reduction is an essential step for its comprehension. The
symmetry of a magnetic phase is given by a magnetic space group (MSG) (also called a Shubnikov
group) (1, 2), if commensurate, or by a magnetic superspace group (MSSG) (3–5), in the case of
an incommensurate ordering. The symmetry group of a magnetic phase determines all structural
and magnetic symmetry constraints that are thermodynamically obliged within its whole stability
range. These symmetry-dictated properties can only be broken through an additional phase tran-
sition or by applying a symmetry-breaking perturbation. By comparing the symmetry group of a
magnetic phase with the symmetry group of the parent paramagnetic phase, one can also determine
the set of possible domains and twin-related configurations. The symmetry characterization of
magnetic phases, expressed in the form of a symmetry group, is especially important for predicting
and understanding their magneto-structural properties. Furthermore, similar to what happens in
conventional crystallography, the assignment of some symmetry to a magnetic structure implies
very specific constraints on the possible magnetic moments and atomic positions, which can be
unambiguously defined and distinguished from other features that are not symmetry protected.


The identification of the relevant magnetic symmetry and its constraints can therefore be
considered an essential part of the characterization of a magnetic phase. However, magnetic
symmetry considerations have been absent from most studies for decades because of the lack of
computer-readable listings of MSGs and computational tools based on magnetic symmetry. In
contrast, Bertaut (6, 7), and later Izyumov’s group (8–11), developed the so-called representation
method, and free efficient software was soon available for its application (12–14). Thus, the
representational analysis has become the most popular method for determining and describing
magnetic structures. In this method, the possible magnetic orderings are parameterized using spin
modes, which transform according to one or more irreducible representations (irreps) of the space
group of the paramagnetic phase. In the more general case of multidimensional irreps, this method
neither uses nor controls the magnetic symmetry of the spin configurations. Therefore, magnetic
structures are commonly reported without assigning any magnetic symmetry. In the case of
incommensurate phases, this situation was inevitable, as ordinary MSGs are not applicable, and
the specific use of superspace symmetry and MSSGs for magnetic structures was not considered
in detail and translated into appropriate software until recently (4). In these circumstances, despite
some early attempts (15), no comprehensive database of magnetic structures exists yet, although
hundreds of such structures are reported each year. The development of such a database requires
an unambiguous and unified description of magnetic structures and demands a systematic
application of magnetic symmetry information. Also, the renewed interest in multiferroics
in the past decade (16–19), for which symmetry-governed magneto-structural properties are
especially important, has evidenced the need for a more comprehensive use of magnetic symmetry
concepts.


In this context, a considerable number of free computational tools for the analysis of magnetic
structures based on and/or applying magnetic symmetry have been developed during the past few
years. Computer-readable listings of MSG data are now available, whereas refinement programs
have been implemented in which models constrained by alternative possible MSGs or MSSGs
can be derived and tested. These are complemented by various programs that allow the analysis
of possible magnetic orderings for a given parent structure, with full consideration of symmetry
properties, consistently including both magnetic symmetry groups and irreps. This novel extensive
software has opened a new path in which magnetic symmetry is employed as a tool to both
enumerate possible alternative magnetic models and store and retrieve, in a robust, unambiguous,
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CIF: crystallographic
information file;
standard text file
format for
crystallographic data
exchange developed
and sponsored by the
International Union of
Crystallography


magCIF: extension of
the crystallographic
information file format
to magnetic structures
(under development)


Gray group: MSG of
a paramagnetic phase;
it includes the time
reversal operation with
zero translation


and unified form, any magnetic structure, commensurate or incommensurate. Furthermore, under
the auspices of the International Union of Crystallography, the CIF (crystallographic information
file) dictionary (20) is being extended to magnetic structures (21). The new symmetry-based
computational tools use this so-called magCIF file format (in its preliminary form), which has also
been adopted by some visualization programs. These developments have already permitted the
creation of an incipient small database of commensurate and incommensurate magnetic structures,
in which magnetic symmetry (in the form of an MSG or MSSG) is employed (22).


Here we briefly review these computation instruments, with a short introduction to their
theoretical basis and some examples of their applications. We give special attention to the computer
tools that have been developed by our group, namely those available at the Bilbao Crystallographic
Server (23, 24).


Below, we use the Seitz notation for any symmetry operation as defined in Reference 25 but
extended to magnetic groups by including time reversal with the symbol 1′ and writing any point-
group operation R combined with time reversal as R′. The transformations to different bases or
settings are expressed in the shorthand notation used in the International Tables for Crystallography
(26). Following common practice in the field, the terms magnetic moment and spin are used
here indistinctly as synonyms. Full information on the magnetic structures discussed below can
be found in MAGNDATA (22), the aforementioned collection of magnetic structures, which is
freely available on the Internet. Structure figures have been produced using either VESTA (27)
or Jmol (28).


2. COMMENSURATE MAGNETIC STRUCTURES


2.1. Magnetic Space Groups (Shubnikov Groups)


In the context of magnetic structures, average atomic magnetic moments can be considered real
quantities, and the action of the time reversal operation simply changes the sign of all atomic
magnetic moments in the structure while keeping unchanged the nonmagnetic degrees of free-
dom. By definition, a commensurately ordered magnetic phase breaks the time reversal symmetry
operation that is present in the magnetically disordered paramagnetic phase. If G is the space
group of the paramagnetic phase, its full symmetry, considering the presence of the disordered
atomic spins, is given by the gray magnetic group G1′, which can be decomposed in cosets as
G1′ = G + {1′ | 0, 0, 0}G. Thus, the full symmetry group of the system includes, in addition
to the operations of G, those obtained by multiplying all of them with {1′ | 0, 0, 0} (i.e., the
time reversal operation with zero translation). The symmetry of a commensurately magnetically
ordered phase is then described by a subgroup of this parent group G1′, say �, where {1′ | 0, 0,
0} is necessarily absent. This means that the MSG � may include nonidentity operations either
combined or not combined with time reversal, but not both. Being commensurate, the lattice or a
sublattice of the paramagnetic phase will also be maintained, and in general, � can be decomposed
in cosets with respect to a subgroup F of G with the same lattice periodicity as � in one of the
following three forms: � = F, � = F + {Ro


′ | t}F, or � = F + {1′ | L} F, where {Ro
′ | t}


and {1′ | L} are operations of the gray group G1′, and L is a specific lattice translation of the
paramagnetic phase. For consistency, {Ro | t}2 and {1 | 2L} must belong to F, whereas {Ro | t}
and {1 | L} belong to G but not to F. These three types of possible magnetic symmetry breakings
correspond to the three types of MSGs known as type I, III, and IV, respectively (1, 2) (type II are
the gray groups). Notice that all the symmetry operations present in MSGs of type I coincide with
those of the ordinary space groups, but as magnetic groups, the existence within the symmetry of
the system of the same operations combined with time reversal is explicitly discarded. Thus, for
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Effective space
group H: space group
that defines the
symmetry constraints
on atomic positions of
a commensurate
magnetic structure; it
can be derived from
the structure’s MSG


OG notation:
standard notation for
an MSG in which the
unit cell used is the
one of the effective
space group H


BNS notation:
standard notation of an
MSG in which the unit
cell used defines the
lattice periodicity of
the magnetic structure


example, a paramagnetic phase with space group Pnma can transform into a magnetic phase with
MSG Pnma as the result of a symmetry breaking Pnma1′ → Pnma, where all symmetry operations
combined with time reversal, which are implicitly present in the paramagnetic phase, disappear.


As stressed in the introduction, the constraints coming from the MSG of a magnetic phase are
robust (symmetry-protected) properties within the whole phase. Both atomic magnetic moments
and atomic positions are subjected to it. Any operation {R′ | t}, which includes time reversal, acts
on the atomic positions in the same way as the operation {R | t} without time reversal; therefore,
the effective symmetry that constrains the atomic positions can be described by an effective space
group H, which is either F, F + {Ro | t}F, or F + {1 | L}F, depending on � being type I,
III, or IV, respectively. In addition, the symmetry relations forced by the magnetic group on
the atomic magnetic moments can be reduced to the following rule: If two atoms with nonzero
magnetic moments have their atomic positions related by an operation of �, then their moments
are related by the corresponding point-group operation R (transforming as axial vectors) with
an additional change of sign if time reversal is included in the operation. For magnetic atoms at
special positions, i.e., kept invariant by some of the operations of �, site-symmetry restrictions on
the possible magnetic moments exist, and they are part of the definition of the Wyckoff positions
of an MSG.


Litvin (29) recently tabulated the 1,651 mathematically distinct MSGs (1, 2) in a form analogous
to that of the ordinary space groups in the International Tables for Crystallography (30). These tables
of MSGs are freely available electronically and use the so-called Opechowski-Guccione (OG)
description (31). This notation employs the space group H, defined above, as the reference to
describe the symmetry operations, and therefore, in the case of type IV groups, the employed unit
cell does not generate the lattice of the magnetic configuration. This is the essential difference
with the alternative Belov-Neronova-Smirnova (BNS) description (32), in which the employed
unit cell defines the lattice periodicity of the spin arrangement. Computer-readable tables of MSG
data have been produced by Stokes & Campbell (33) in both the BNS and OG notations. Online
retrieval tools at the Bilbao Crystallographic Server, based on these tables, allow access to the
symmetry operations (MGENPOS) and Wyckoff positions (MWYCKPOS) of any chosen MSG
(34). All these listings and tools keep the same conventions, and therefore they can be taken as
standard. The MSGs in this review are given in BNS notation.


The MSG � defining the symmetry of a commensurate magnetic phase can be introduced
without making any reference to the gray space group G1′ defining the symmetry of its para-
magnetic phase. In fact, the same group �, as a mathematical group type, can be relevant for
different parent G1′ groups. But, as in other ferroics, the domain and switching properties of the
system are only defined if the parent group G1′ is also known. Therefore, a full description of the
symmetry properties of a magnetic phase requires the knowledge of both symmetries: G1′ and
its subgroup �. More concretely, if H is the effective space group of the nonmagnetic degrees of
freedom, described above, and s is its index with respect to G (i.e., the factor relating the number
of operations in G and H), then 2s is the index of � with respect to G1′, and one can choose s
operations {gj} of G (coset representatives) not belonging to H, such that G = H + g2H + · · · +
gsH, and s equivalent, distinct, domain-related structures can be obtained by applying each oper-
ation gj to the magnetic structure. An additional set of s trivially related domains, with reversed
moments, corresponds to the application of the symmetry operations gj


′. The magnetic symmetry
of a domain-related structure obtained by the action of gj is given by the subgroup gj�gj


−1 of G1′.
This subgroup can coincide with � or be a distinct subgroup belonging to the same conjugacy
class. Conjugate subgroups describe physically equivalent symmetry breakings. Below, if nothing
is said to the contrary, an MSG � is implicitly taken as a representative of a class of conjugate
subgroups with respect to a parent space group G1′.
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Table 1 Operations that define the MSG of the magnetic structure of GdMn2O5
a


N (x, y, z)b (mx, my, mz)c Seitz notation
1 x, y, z, +1 mx, my, mz {1 | 0, 0, 0}
2 −x + 3/4, y + 1/2, −z, +1 −mx, my, −mz {2010 | 3/4, 1/2, 0}
3 −x + 1/4, y + 1/2, z, +1 mx, −my, −mz {m100 | 1/4, 1/2, 0}
4 x + 1/2, y, −z, +1 −mx, −my, mz {m001 | 1/2, 0, 0}
5 x + 1/2, y, z, −1 −mx, −my, −mz {1′ | 1/2, 0, 0}
6 −x + 1/4, y + 1/2, −z, −1 mx, −my, mz {2′


010 | 1/4, 1/2, 0}
7 −x + 3/4, y + 1/2, z, −1 −mx, my, mz {m′


100 | 3/4, 1/2, 0}
8 x, y, −z, −1 mx, my, −mz {m′


001 | 0, 0, 0}


Abbreviation: MSG, magnetic space group.
aThese operations (modulo lattice translations) are a subset of those in Pbam1′, expressed in a setting (2ap, bp, cp; 0, 0, 0), where {ap, bp, cp} is the parent
Pbam1′ basis. They define a subgroup of Pbam1′, which is the polar MSG Paca21 (#29.104), but in a nonstandard setting (see text).
bOperations are expressed in the usual crystallographic notation, but with the addition of the symbol −1/+1 to indicate the combination or not with time
reversal.
cTransformation of a generic spin (mx, my, mz) associated with the general position (x, y, z).


2.2. Crystallographic Description of Commensurate Magnetic Structures


Following an approach similar to the one employed for nonmagnetic crystal structures, once the
MSG is defined through its set of operations and its unit cell, a magnetic structure is unambiguously
described by listing the atomic positions and magnetic moments of a set of symmetry-independent
atoms within the unit cell, the so-called asymmetric unit. As an example, Tables 1 and 2 describe
the magnetic structure of GdMn2O5 (35), also shown in Figure 1a. The directions of the spins
(not explicitly given in the original reference) are only approximate. Tables 1 and 2, together
with the unit cell parameters, are the essential information included in a magCIF file, and they


Table 2 Symmetry-independent atoms of the magnetic structure of GdMn2O5


Label
Atom
type xa ya za


Symmetry
constraints on


M Mx
b My


b Mz
b |M|


Gd1_1 Gd 0.06975 0.17160 0.00000 mx, my, 0 4.87 1.63 0.0 5.14
Gd1_2 Gd 0.93025 0.82840 0.00000 mx, my, 0 −4.51 −1.5 0.0 4.75
Mn1 Mn 0.00000 0.50000 0.25510 mx, my, mz −2.85 0.95 0.0 3.00
Mn2_1 Mn 0.20590 0.35180 0.50000 mx, my, 0 3.8 −1.27 0.0 4.01
Mn2_2 Mn 0.79410 0.64820 0.50000 mx, my, 0 3.8 −1.27 0.0 4.01
O1 O 0.00000 0.00000 0.26970
O2_1 O 0.07630 0.44860 0.00000
O2_2 O 0.92370 0.55140 0.00000
O3_1 O 0.07270 0.43560 0.50000
O3_2 O 0.92730 0.56440 0.50000
O4_1 O 0.19970 0.20760 0.24500
O4_2 O 0.80030 0.79240 0.24500


Abbreviations, ICSD, Inorganic Crystal Structure Database; a blank cell denotes not applicable.
aApproximate atomic positions have been taken from entry 97046 of the ICSD (36, 37) and are given in the basis (2ap, bp, cp; 0, 0, 0), with ap, bp, cp being
the parent Pbam basis.
bApproximate magnetic moment components (μB) have been estimated from the model reported in Reference 35.
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a  


a


b


c
Paca21 (a, c, –b; –1/8, 0, 0) Paca21 (a, c, –b; 1/8, 0, 0) 


b 


a


b


c


Figure 1
(a) Magnetic structure of GdMn2O5 (35) described in Tables 1 and 2. (b) Twin structure equivalent to panel
a. The two configurations must have opposite, magnetically induced polarizations. Their symmetry is given
by different but conjugate magnetic space groups indicated below.


are sufficient for the unambiguous definition of the atomic positions and moments of the whole
structure. They can be generated from the atomic positions and moments listed in Table 2 using
the symmetry operations of Table 1. The MSG in Table 1 is in a nonstandard setting, using a basis
as close as possible to the one of the parent phase. The symmetry operations of all MSGs are freely
available in a standard form in the references mentioned above, and therefore, the information in
Table 1 could be substituted with just the label of this MSG: Paca21 (#29.104), together with the
transformation from the employed unit cell basis (and origin) to the standard setting of the group.
This transformation is indicated in Figure 1 in a shorthand notation (26). Applying the inverse
of this transformation to the operations of the standard MSG available in References 33 or 34,
one can directly obtain the operations listed in Table 1. Below, we define any relevant magnetic
subgroup by this means, i.e., with its standard BNS label plus a transformation to its standard
setting.


Table 2 shows that the spin model reported for GdMn2O5 in Reference 35 has simplifying
features that are not symmetry forced: Namely, the Mn1 moment is constrained to lie on the
plane ab, whereas the spins of the two independent Mn2_1 and Mn2_2 sites are restricted to
be exactly equal. Although these restrictions may be reasonable, it is important to have them
clearly separated from the fundamental ones that are symmetry protected and are evidenced in
Table 2. Lacking more precise details, the atomic positions listed in Table 2 are those of the
paramagnetic phase (36, 37) and therefore comply with the parent space group Pbam (#55), but the
table shows that some atomic sites are split because of the symmetry reduction. Hence, in principle,
these split sites could vary their positions independently within the magnetic phase if magneto-
structural couplings are sufficiently large. Also, the Mn1 site, which does not split, transforms
into a general position, with its three coordinates becoming free. Even if these new structural
degrees of freedom triggered by the magnetic ordering remain negligible within experimental
resolution, it is convenient to be aware of them. They are fundamental for monitoring any possible
structural distortion induced by the magnetic ordering. The effective space group that governs the
triggering of new structural degrees of freedom with respect to the paramagnetic phase is given
by the operations listed in Table 1, disregarding the presence of time reversal in the operation.
This is the space group Pmc21 (#26) in a nonstandard setting and with a centered unit cell doubled
along a, the transformation to standard setting being (c, −a/2, −b; 3/8, 0, 0) [this can be directly
obtained with the IDENTIFY GROUP tool in the Bilbao Crystallographic Server (38)]. This
effective space group for the atomic positions is the space group that we have generically called
H above. The magnetic ordering therefore implies for the atomic positional structure an effective
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Antitranslation:
translation combined
with time reversal


symmetry breaking: Pbam → Pmc21 (Pb21m in the setting used) without change of lattice. This is
a transformation from a nonpolar phase to a polar one, with the polar axis along the b direction
of the parent setting. According to the von Neumann principle, an induced electric polarization
Py should be expected.


Thus, without making appeal to any specific mechanism, the symmetry characterization of the
magnetic structure allows one to infer that the system will behave as a multiferroic of type II,
with a magnetically induced ferroelectricity (16, 18), in agreement with experimental evidence
(35). Interestingly, researchers have proposed a similar spin model for PrMn2O5 (40), but these
authors explicitly discard the existence of an electric polarization. The symmetry of the proposed
magnetic ordering is, however, coincident with the one above, and some induced ferroelectricity,
however small, is to be expected.


The index of the MSG of GdMn2O5 with respect to the parent symmetry Pbam1′ is four. Thus,
two distinct twin-related configurations exist, apart from their corresponding trivial twins with
all spins reversed. The second nontrivial twin is shown in Figure 1b. This configuration can be
obtained by transforming the structure shown in Figure 1a with any lost operation of the parent
space group Pbam. This means any operation of the second coset in the coset decomposition of
Pbam with respect to its subgroup Pmc21 (c, −a/2, −b; 3/8, 0, 0), such as the inversion operation
{−1 | 0, 0, 0}: Pbam = Pmc21 + {−1 | 0, 0, 0}Pmc21. These operations switch the structural
polarity, and therefore the two magnetic domains will have opposite orientations of Py. Notice
that the magnetic symmetry of the second domain-related configuration is given by a different
MSG (specified in Figure 1b).


The online editing tools ISOCIF (41) and STRCONVERT (42) are very useful in the field of
describing and building up commensurate magnetic structures with full application of magnetic
symmetry. They can be used to produce or edit the magCIF file of any real or hypothetical magnetic
structure. If the MSG of a given magnetic structure is unknown, a model with all atomic positions
and spins in the unit cell can be introduced or edited under the trivial symmetry P1. The actual
magnetic symmetry of the structure and a description in accordance with it can then be obtained
[the program FINDSYM (43) is applied by both tools]. ISOCIF has also a visualization tool and
can transform the description of a magnetic structure to any setting, whereas STRCONVERT
supports several file formats, including those of the ab initio code VASP (44), and is linked to
MVISUALIZE (45) (also in the Bilbao Crystallographic Server) for direct visualization with Jmol
(28).


2.3. 1k Magnetic Structures and k-Maximal Magnetic Symmetries


Most of the reported commensurate magnetic structures are 1k magnetic phases, i.e., their mag-
netic moment arrangements can be described as spin waves over the paramagnetic structure with a
single independent propagation vector k. The wave may be anharmonic, but the symmetry break
is fully defined by the first harmonic of the frozen spin wave. 1k magnetic configurations include
the frequent case of magnetic orderings with k = 0, in which the lattices of the magnetic and
paramagnetic structures coincide. The propagation vector is directly accessible from diffraction
experiments, and its value strongly restricts the possible magnetic symmetries. It is therefore very
convenient to have tools that directly exploit this information. In general, the translation lattice
of a 1k magnetic ordering is given by those lattice translations L of the parent group G1′, such
that exp(i2πk · L) = 1. This condition defines a primitive supercell of a volume n times larger
than that of the paramagnetic phase, with n being the minimal integer such that nk is a reciprocal
lattice vector. In the case of n being even, those lattice translations of the paramagnetic phase
that satisfy exp(i2πk · L) = −1 are also preserved in the magnetic configuration but combined
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(2ap, cp, –bp; 0, 0, 0) (–bp, cp, –2ap; 1/2, 0, 0) (–cp, 2ap, –bp; 3/4, 0, 0) (2ap, cp, –bp; 3/4, 0, 0)


[P2/m (ap, cp, –bp; 0, 0, 0)] [Pmc21 (–cp, ap, –bp; 3/4, 0, 0)]


Pbam1'


Pa2/m Pc2/c Pbmc21 Paca21


Figure 2
The four possible k-maximal magnetic symmetries for a magnetic ordering with propagation vector k =
(1/2, 0, 0) on a paramagnetic phase with space group Pbam, as obtained with MAXMAGN. The
transformation (from the parent Pbam basis) to the standard setting of each magnetic space group (MSG) is
indicated. The index of the four subgroups is four. The corresponding effective space groups for the atomic
positions (common to pairs of MSGs) are shown in gold.


k-maximal magnetic
symmetry: magnetic
symmetry group
compatible with a
given propagation
vector having no
supergroup also
compatible


with time reversal, i.e., they are maintained as antitranslations of type {1′ | L}. The resulting
symmetry is therefore described by an MSG of type IV. When n is odd (including k = 0), no
antitranslations are possible, and the subgroup of G1′ describing the symmetry of the resulting
structure is an MSG of type I or III.


The possible symmetries of a magnetic ordering with a propagation vector k are therefore lim-
ited to those compatible with the specific subgroup of lattice translations defined by k and, for even
n, also with the additional set of antitranslations. This minimal symmetry is described by either the
MSG P1 (lattice translations) for odd n or Ps1 for even n (lattice translations plus antitranslations).
However, the propagation vector k is usually directed along special crystallographic directions,
and larger subgroups of G1′ can be relevant. In general, a hierarchy of possible subgroups of G1′


consistent with the k vector is possible. Among this set of k-consistent subgroups of G1′, those that
do not have any supergroup fulfilling the same k-consistency conditions are the possible maximal
symmetry groups of the magnetic structure. We call them k-maximal subgroups or k-maximal
magnetic symmetries for a given parent space group G and a given magnetic propagation vector
k. Figure 2 depicts the k-maximal subgroups for Pbam and a magnetic propagation vector k =
(1/2, 0, 0). This case is relevant for the magnetic structure of GdMn2O5 discussed above. Only
four distinct types of magnetic ordering of k-maximal symmetry are possible, and one is in fact
realized in GdMn2O5 (and other RMn2O5 compounds).


From general physical arguments (symmetry-dictated energy extrema at symmetrical config-
urations and smoothness of the energy landscape), one expects that magnetic orderings generally
tend to keep as much symmetry as possible or, reversely, that the symmetry reduction tends to be
minimal. Indeed, one can associate a k-maximal MSG with the majority of the known magnetic
structures. The example in Figure 2 is very illustrative, as it shows that two of the four possible
maximal symmetries for the known propagation vector are polar (in both cases, along the b axis of
the Pbam setting). Therefore, the derivation of the k-maximal MSGs allows one to infer directly
that the system, if an insulator, is likely to be multiferroic. In fact, this is a quite general property of
nonsymmorphic centrosymmetric space groups with cell-duplicating propagation vectors along
the direction of one of the intrinsic nonprimitive translations of the nonsymmorphic operations.
One can easily check with MAXMAGN (46) that this is sufficient for having noncentrosymmetric
groups, polar in most cases, among the k-maximal symmetries.


The number of k-maximal MSGs (a representative of each conjugacy class) is usually rather
small, and each describes a possible, alternative, nonequivalent spin configuration. An efficient and
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(2ap, bp, cp; 0, 0, 0) (–cp, bp, 2ap; 1/2, 0, 0) (–bp, 2ap, cp; 3/4, 1/4, 0) (2ap, bp, cp; 3/4, 0, 0)


Pnma1'


Pa21/m Pc21/c Pbmn21 Pa na21


PZPZ


a


c


b


Figure 3
The four possible distinct magnetic orderings of maximal symmetry with propagation vector k = (1/2, 0, 0)
for the Mn site in orthomanganites, as obtained with MAXMAGN, assuming that the spins are aligned along
the a direction. The magnetic space group label associated with the magnetic symmetry of each structure is
shown, together with the transformation (from the parent Pnma1′ basis) to its standard setting. The index of
the four subgroups is four. The magnetic unit cell used in all figures is (2ap, bp, cp; 0, 0, 0). The direction
(with arbitrary sense) of the possible magnetically induced electric polarization Pz, when it is symmetry
allowed, is indicated. The Pbmn21 ordering is the one observed in HoMnO3 (22, 49). Abbreviation: Pz,
possible magnetically induced electric polarization.


intuitive first step in the process of determining a magnetic structure with a known propagation
vector is to enumerate and construct these alternative models of maximal symmetry for their
subsequent contrast with experimental data or calculations. This first step can be done with the
program MAXMAGN (46) in the Bilbao Crystallographic Server. This tool derives the k-maximal
MSGs for any parent space group and any (reasonable) commensurate propagation vector. If the
parent paramagnetic structure is introduced (in CIF format), it also produces the spin and structure
models corresponding to each of the alternative k-maximal MSGs. These alternative models can be
transported in magCIF format to refinement programs such as JANA2006 (47, 48) or FULLPROF
(12) or to other computational tools for further analysis. These magCIF files can be visualized
online with MVISUALIZE (45) or ISOCIF (41) or locally with VESTA (27) or Jmol (28).


As an example, Figure 3 summarizes some of the results obtained for the case of HoMnO3,
a material with Pnma as the parent space group and propagation vector (1/2, 0, 0) (49). Of the
four possible k-maximal symmetries, two are polar along c. Furthermore, the other two possible
centrosymmetric monoclinic symmetries require that some of the Mn atoms remain with zero
magnetic moment. Therefore, a full magnetic ordering of the Mn atoms with this propagation
vector necessarily produces a symmetry breaking in which at least the c direction becomes polar.
Thus, if the Mn atoms are fully ordered and the magneto-structural coupling is large enough, the
material is bound to be a multiferroic with magnetically induced ferroelectricity (i.e., a type II
multiferroic) (50). As in the preceding example, the index of the MSG is four, and there are two
equivalent, nontrivial, twinned magnetic configurations related by inversion and with opposite
electric polarizations.


2.4. Systematic Absences in the Magnetic Diffraction Diagram


MAGNEXT (34) can be used to derive the symmetry-forced systematic absences of magnetic,
nonpolarized neutron diffraction for any MSG or MSSG. The presence of these systematic ab-
sences can sometimes help reduce the possible magnetic arrangements to be explored. Because
MAGNEXT is directly accessed from MAXMAGN, the systematic absences for every alternative
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a


c
b


Fd3
– Fd'd'd 


Figure 4
Scheme of the two possible magnetic models with zero propagation vector of maximal symmetry for the
magnetic structure of Na3Co(CO3)2Cl, as obtained with MAXMAGN. Only some Co atoms are depicted.
These two maximal symmetries correspond to the so-called all-in/all-out and two-in/two-out models.
Systematic absences in the diffraction pattern can distinguish the two models (see Section 2.4). The Fd 3̄
model is the one proposed in Reference 51 for this compound.


k-maximal magnetic symmetry can be consulted easily. Let us consider, for instance, the case of
Na3Co(CO3)2Cl (51), which has a paramagnetic phase with space group Fd 3̄ (#203) and a magnetic
phase with zero propagation vector. In this compound, the Co atoms at the 16c Wyckoff position
form a highly frustrated pyrochlore-type framework. Using MAXMAGN, we can see that there
are four k-maximal magnetic subgroups of Fd 3̄1′, but only two allow some nonzero spin for the Co
atoms, namely Fd 3̄ (#203.26) and Fd′d′d (#70.530) (the two subgroups are in their standard setting
when using the parent unit cell). Figure 4 shows a scheme of the spin arrangement for each of these
two possible maximal symmetries. For Fd 3̄ the spin of the single independent Co at the origin must
have the direction (1, 1, 1); in the alternative Fd′d′d ordering, it can have any direction. When the
(1, 1, 1) direction is also kept in this second arrangement, the two k-maximal symmetries basically
correspond to spin orderings in the Co tetrahedra of the all-in/all-out and two-in/two-out types
(Figure 4). These two alternative configurations are in fact often discussed as energetically favor-
able and have been observed in these pyrochlore-type materials. MAGNEXT shows that, in princi-
ple, they can be distinguished by the presence or lack in the magnetic diffraction of some systematic
absences. For the subgroup Fd 3̄, all reflections of type (h, h, h) or (h, 0, 0) for any h value (and their
cubic symmetry–related ones) are forbidden, whereas for the orthorhombic Fd′d′d model, only
magnetic reflections of type (0, 0, l ) are extinct. Twinning can, however, hamper the observation
of these absences. In the case of the Fd 3̄ symmetry, the subgroup is of index two, and only a trivial
twin with all spins reversed is possible, having no consequence in the diffraction diagram. But in the
case of the Fd′d′d structure, the subgroup index is six, and three nontrivial twinned configurations
are expected to be superposed in the diffraction diagram, where the 3-fold rotation and its inverse
could be taken as the twinning operations. The magnetic structure of Na3Co(CO3)2Cl reported in
Reference 51 indeed possesses one of these two maximal symmetries, namely the MSG Fd 3̄ (22).


2.5. Hierarchy of Possible Magnetic Symmetries


If the models with k-maximal symmetry are not satisfactory to explain the experimental data, one
can also use MAXMAGN to decrease the symmetry of the model in a controlled way. For this
purpose, combining this program with the tool k-SUBGROUPSMAG (52) can be very helpful.
This second program, also in the Bilbao Crystallographic Server, provides for any parent space
group all possible magnetic symmetries consistent with one or more given propagation vectors,
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[2] [3]


[8] [8] [8] [8]


[3]


[3]


[2]


[2] [2]


Fm3–m1'


RI3
–m RI3


–c RI3
–m RI3


–c


Cc2/m RI3
–


PS1–


Cc2/c


[2] [3][3]


[3]


[2]


[2] [2]


Cc2/m RI3
–


PS1–


Cc2/c


Figure 5
Graph obtained with k-SUBGROUPSMAG of all possible magnetic symmetries for a magnetic ordering
with propagation vector (1/2, 1/2, 1/2) in a structure with space group Fm3̄m. The subgroup index is
indicated in brackets for each group-subgroup relation. The k-maximal magnetic space groups (MSGs) are
highlighted with elliptical frames. Only one subgroup per conjugate class is shown, and the graph has been
restricted to centrosymmetric subgroups. Subgroup labels only indicate the type and can be repeated. The
MSG of NiO is one of the subgroups of type Cc2/c.


indicating their group-subgroup hierarchy. Let us consider, for instance, the magnetic structure
of NiO (53). Its parent space group is Fm3̄m (#225) and its magnetic propagation vector is (1/2,
1/2, 1/2). Figure 5 shows possible MSGs consistent with this propagation vector, as obtained
with k-SUBGROUPSMAG. All k-maximal subgroups are in this case centrosymmetric, and for
simplicity, we have limited the descending graph to their centrosymmetric subgroups. Some MSG
labels are repeated, as some subgroups belonging to different conjugacy classes are MSGs of the
same type. One can in fact distinguish two branches of subgroups with identical labels. The
difference between them can be seen by comparing the operations of the minimal subgroup of
type Ps 1̄ associated with each branch. In one of the branches, the inversion center at the origin
is combined with time reversal, whereas in the other, it is not. The first branch is therefore not
relevant for a full magnetic ordering of the Ni atoms, as the symmetry operation {−1′ | 0, 0, 0}
would necessarily force a null spin for the Ni atom at the origin.


The magnetic structure of NiO (53) is depicted in Figure 6. Its symmetry is given by a
monoclinic subgroup of type Cc2/c (#15.90) with the inversion center at the origin. Thus, it is not
a k-maximal symmetry, and one has to go to a second level in the subgroup hierarchy depicted in
Figure 5 to obtain the relevant MSG. Table 3 lists the operations of this subgroup, showing that
the monoclinic axis is along the (1, −1, 0) direction. The index of this subgroup is 24. Therefore,
12 nontrivial twinned configurations can superpose in a single crystal diffraction diagram; 3 have
the same propagation vector but have the monoclinic axis directed along the equivalent directions
(1, −1, 0), (0, 1, −1), and (1, 0, −1), whereas the rest correspond to analogous configurations with
rotated propagation vectors equivalent to (1/2, 1/2, 1/2). In the chosen setting, the Ni spins are
reported to be within a good approximation directed along the (1, 1, −2) direction (53). One can
check, however, with MAXMAGN that for this MSG, the Ni spins are only constrained to lie on
the plane perpendicular to the monoclinic axis, having the general form (mx, mx, mz). This is a
less restrictive condition, and a weak spin component along the direction (1, 1, 1), which reduces
the spin direction to its more general symmetry-allowed form has indeed been reported (53, 54).
The symmetry of NiO is also compatible with a monoclinic distortion of the lattice [the effective
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Cc2/c
(a/4 + b/4 – c/2, a/4 – b/4, –a/2 – b/2; 0, 0, 0)


a


c


b


Figure 6
Magnetic structure of NiO (53) with indication of its magnetic space group. Only Ni atoms are shown.


space group H for the atomic positions is C2/m (#12)], but to our knowledge, no monoclinic
strain has been observed. But in the case of CoO, which has a similar spin arrangement, such
induced strain is known (55). Thus, the identification of the magnetic symmetry automatically
indicates the possible phenomena that are the consequence of the symmetry reduction, although
their magnitude may be too weak to be observable.


2.6. Multiple-k Magnetic Structures


Most of the reported magnetic structures have a single independent propagation vector. However,
in the case of wave vectors related by the parent point-group symmetry (i.e., belonging to the same
k-vector star), the experimental distinction between single-k or multiple-k structures is difficult
to make. In many cases, the 1k arrangement is taken as the simplest option, although multiple-k
ordering could also explain the experimental data. Possible multiple-k spin arrangements can
be explored in a systematic and symmetry-hierarchical form using k-SUBGROUPSMAG


Table 3 Operations that define the symmetrya of the magnetic phase of NiOb


N (x, y, z) Seitz notation
1 x, y, z, +1 {1 | 0, 0, 0}
2 −y, −x, −z + 1/2, +1 {21−10 | 0, 0, 1/2}
3 −x, −y, −z, +1 {−1 | 0, 0, 0}
4 y, x, z + 1/2, +1 {m1−10 | 0, 0, 1/2}
5 x, y, z + 1/2, −1 {1′ | 0, 0, 1/2}
6 −y, −x, −z, −1 {2′


1−10 | 0, 0, 0}
7 −x, −y, −z, −1 {−1′ | 0, 0, 1/2}
8 y, x, z, −1 {m′


1−10 | 0, 0, 0}


aThe magnetic space group type is Cc2/c in a nonstandard setting.
bThe symmetry operations (modulo lattice translations) are given in the setting (2ap, 2bp, 2cp; 0, 0, 0), with ap, bp, cp being
the parent cubic basis. The cell (2ap, 2bp, 2cp) includes 16 centering translations generated by {1 | 1/4, 3/4, 0}, {1 | 1/4, 0,
3/4}, and {1 | 0, 1/4, 3/4}. The transformation to the standard setting of Cc2/c is indicated in Figure 6.
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I4/mmm1'


PS1– Ca2/m Ca2/m


Cam


PS1


Ca2 PS1–PS1–


Figure 7
Graph (obtained with k-SUBGROUPSMAG) of all possible magnetic symmetries for a 2k magnetic
ordering with propagation vectors (−1/2, 0, 1/2) and (0, 1/2, 1/2) on a paramagnetic structure with space
group I4/mmm. The k-maximal magnetic space groups are highlighted with elliptical frames. Only one
subgroup per conjugacy class is shown. The magnetic ordering reported for Sr2F2Fe2OS2 (57) (see
Figure 8) corresponds to one of the k-maximal subgroups of type Ca2/m.


combined with the tool MAGMODELIZE (56). The first program supplies all possible magnetic
symmetries, together with their group-subgroup relations, for a given parent space group and a set
of propagation vectors. Once one or several possible MSGs provided by k-SUBGROUPSMAG are
chosen, the second program provides a model of the corresponding magnetic structures in magCIF
format that can be tested and analyzed with other programs. As in the case of 1k arrangements, the
lattice is defined by the lattice translations L of the parent group G1′ such that exp(i2πki · L) = 1,
for all the propagation vectors ki, whereas the set of translations (if any) satisfying exp(i2πki · L) =
−1 for all ki are maintained in the possible magnetic groups as antitranslations {1′ | L}.
k-SUBGROUPSMAG calculates all possible magnetic subgroups of the parent G1′ having this
lattice of translations and antitranslations (if they exist), and their group-subgroup hierarchy.


Figure 7 shows the graph obtained for a parent symmetry I4/mmm1′ and two wave vectors:
k1 = (−1/2, 0, 1/2) and k2 = (0, 1/2, 1/2). This figure is relevant for Sr2F2Fe2OS2 (57), in which
the magnetic ordering involves two of the wave vectors of the four-arms star of the point N in
the Brillouin zone (58). The spin arrangement reported in Reference 57 is shown in Figure 8.
Its symmetry is given by one of the k-maximal MSGs shown in Figure 7, namely the subgroup
Ca2/m (ap − bp − cp, 2ap + 2bp, ap/2 − bp/2 + cp/2; 0, 0, 0), demonstrating again the efficiency
of looking for maximal compatible symmetry when searching probable spin orderings. A general
magnetic structure complying with this MSG (or with any other subgroup of Figure 7) can be
obtained in magCIF format using MAGMODELIZE (56). Although all other atoms split into
two independent sites, the Fe site remains unsplit but becomes a general position, with its spin
(and position) not constrained by symmetry. Thus, the aesthetically appealing tetragonal-like
pattern of the model in Figure 8a is in fact not symmetry protected. Symmetry does not force an
extreme of the energy map for this configuration. Figure 8b depicts a more general hypothetical
arrangement with the same symmetry, showing the freedom existing in this phase, where the three
spin components of the symmetry-independent Fe atom must in principle be determined.


2.7. Importance of Nonmagnetic Atoms


Magnetic atoms often occupy high-symmetry sites, and their spin arrangements are very simple,
such that they can be described in simple terms without explicitly using an MSG or any specific
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Sr2F2Fe2OS2
Ca2/m (a/2 – b/2 – c/2, a + b, a/4 – b/4 + c/4; 0, 0, 0) 


z = 0.25 z = 0.25


a
c


b


a b


a


b


c
a


b


c


a


b


c
a


b


c
z = 0 z = 0


Figure 8
(a) 2k magnetic structure of Sr2F2Fe2OS2 (57) with a magnetic space group (MSG) of type Ca2/m (see
Figure 7). The monoclinic axis is along the (1, 1, 0) direction. Only Ni atoms are shown. (b) Hypothetical
structure with the same MSG as panel a showing the orientational freedom of the spins in this phase. A spin
component along the c direction is also symmetry allowed.


symmetry consideration. However, to be able to predict and explain the properties of the resulting
magnetic phase, one must be aware of the associated MSG, and this depends in general not only
on the magnetic atoms but also on the actual positions of the nonmagnetic ones. Therefore,
despite their irrelevance in magnetic diffraction, nonmagnetic atoms play an important role in the
symmetry of a magnetic phase and its consequences.


Let us consider, for instance, the case of Gd2CuO4 (59). Its paramagnetic phase has been con-
sidered to have the space group I4/mmm (#139), with the magnetic Cu2+ occupying the Wyckoff
position 2a (0, 0, 0). The reported magnetic ordering with propagation vector (1/2, 1/2, 0) is de-
picted in Figure 9a. The magnetic symmetry of this simple spin arrangement of the body-centered
Cu sublattice is given by the MSG CAccm, again a k-maximal MSG for the observed propagation
vector, and the collinearity of the spins along the (1, 1, 0) direction is symmetry protected. The
magnetic point group of this MSG is mmm1′, i.e., a gray group, which forbids ferromagnetism.
However, Gd2CuO4 is known to be a weak ferromagnet. This is due to the existence of a small
structural distortion with the same wave vector (1/2, 1/2, 0) as the magnetic propagation vector,
which decreases the effective parent space group symmetry from I4/mmm to Cmce (#64). This is
sufficient to reduce the MSG to Cm′ca′ (see Figure 9b); the magnetic point group is then m′mm′,
which allows a ferromagnetic component along the b direction of the standard setting, i.e., along
the (1, −1, 0) direction in the tetragonal parent basis. The observed weak ferromagnetism is
therefore a direct consequence of the orthorhombic structural distortion and is coupled with it. In
terms of symmetry relations, the actual magnetic symmetry is the intersection of the subgroups


230 Perez-Mato et al.


A
nn


u.
 R


ev
. M


at
er


. R
es


. 2
01


5.
45


:2
17


-2
48


. D
ow


nl
oa


de
d 


fr
om


 w
w


w
.a


nn
ua


lr
ev


ie
w


s.
or


g
 A


cc
es


s 
pr


ov
id


ed
 b


y 
U


ni
ve


rs
ity


 o
f 


Pa
is


 V
as


co
-V


iz
ca


ya
 U


ni
ve


rs
ity


 o
n 


10
/2


0/
15


. F
or


 p
er


so
na


l u
se


 o
nl


y.







MR45CH10-Perez-Mato ARI 27 May 2015 8:42


CAccm 
(c, a – b, a + b; 1/4, 3/4, 1/4)


Cm'ca'
(c, a – b, a + b; 0, 0, 0)


ABma2
(a + b,  –a + b, c; 1/2, 0, 0)


FM 


a b
c


Figure 9
Simple spin arrangement in a body-centered tetragonal lattice of magnetic atoms, resulting in different
symmetries and different magneto-structural properties depending on the parent space group of the
structure as a whole: (a) I4/mmm, (b) Cmce, and (c) I 4̄2m. The transformation from the tetragonal basis to
the standard setting of each magnetic space group (MSG) is given below each MSG label. The case in panel
b with weak ferromagnetism is realized in Gd2CuO4 (59), and the case in panel c is a hypothetical
multiferroic with a parent structure similar to the one of Ga2MnSe4 (63).


Cmce1′ and CAccm, corresponding to the structural and magnetic distortions. But the resulting
symmetry is also compatible with the presence of a ferromagnetic component that alone would
yield another intermediate subgroup. A scheme of the group-subgroup relations corresponding
to this symmetry breaking is depicted in Figure 10. This graph has the characteristic topology
of three different symmetry-breaking distortions that are necessarily trilinearly coupled. Their
switching is correlated by pairs, similar to what happens in other ferroic systems (60–62). Un-
der some conditions, the two primary distortions can condense simultaneously in a single phase
transition (61, 62).


The simple spin ordering of Figure 9a could also be sufficient to produce a polar phase if the
symmetry of the paramagnetic phase considering all atoms were limited to I 4̄2m (#121). Figure 9c


I4/mmm1'


CAccm


Cm'ca'


Fm'm'mCmca1'


mX4+ mGM5+X2+


Figure 10
Scheme of the symmetry descent from the parent symmetry in the magnetic structure of Gd2CuO4 (59)
showing the symmetry breakings of the primary structural and magnetic distortions and the triggering
through symmetry compatibility of a ferromagnetic mode. The irrep labels of the distortions involved are
indicated in gold (see Section 3). Notice that the group labels are the standard ones, and the orientations of
their bases do not coincide.
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shows the structure of Ga2MnSe4 (63), which has this parent space group, with a hypothetical
spin ordering of the type in Figure 9a. The MSG of this hypothetical phase would be ABma2
(#40.210). The magnetic point group is then reduced to mm21′, with the polar direction along
the tetragonal axis. Thus, if the system were an insulator, this simple magnetic ordering could
induce some ferroelectric polarization. These examples show the importance of identifying the
magnetic symmetry, taking into account the nonmagnetic atoms, independently of the simplicity
of the spin arrangement.


3. IRREDUCIBLE REPRESENTATIONS VERSUS MAGNETIC
SPACE GROUPS


In accordance with Landau theory, a magnetic ordering very often defines an order parameter
with transformation properties given by a single irrep of the parent symmetry. This is the basis of
the representation method developed by Bertaut (6, 7), in which the possible magnetic orderings
are parameterized with basis modes transforming according to irreps of the parent space group.
The basis spin modes are restricted to a single irrep or, if necessary, to a set of irreps. Originally,
the irreps were considered representations of an ordinary space group, but if one includes the
transformation properties of the spin modes under time reversal, they are in fact irreps of the
parent gray MSG, being odd for time reversal. To distinguish them from those that are even
for time reversal (associated, for instance, with phonon modes), we call them magnetic irreps and
include a prefix m in their label.


The relationship between the representation method and magnetic symmetry was initially
the subject of an intense discussion (64–66), which provoked a kind of splitting between two
communities and some unfortunate misunderstandings that have persisted for decades. Today,
however, the program ISODISTORT (67) allows a comprehensive application of the two ap-
proaches. The use of this program permits one to characterize any magnetic ordering, commen-
surate or incommensurate, in terms of both magnetic symmetry and irreps, showing their generally
complex relationship. Below, we briefly summarize this relation and some of the capabilities of
ISODISTORT in this context.


In the simplest case that the active irrep is one-dimensional (1-D) and real, the spin arrangement
will either change sign or be invariant when transformed by any of the operations of the gray space
group. If an operation of the parent space group has the character −1 associated, the analogous
operation combined with time reversal will necessarily have +1 associated, and all operations
of the parent space group G will therefore be conserved, either pure or combined with time
reversal. A one-to-one correspondence thus exists between the assignment of a 1-D irrep and an
MSG. The irrep determines the MSG and vice versa, and the irrep basis spin modes define the
same restrictions for the spin arrangement as those that can be directly derived from the MSG.
However, this simple scenario is no longer true if the irrep is multidimensional. In this general
case, different magnetic symmetries can occur for a single irrep. An arbitrary combination of the
irrep basis modes results in a minimal symmetry given by the operations of the parent gray space
group to which the irrep associates the identity matrix. This is the so-called kernel of the irrep
(4, 68). But for specific combinations of the spin modes (i.e., specific directions in the space of
the irrep or order parameter directions), higher magnetic groups called epikernels can be realized
(68). Thus, the assignment of one MSG corresponding to an irrep epikernel introduces more
constraints than the assignment of just the irrep, as it limits the possible combinations of the irrep
basis modes. Epikernels and kernels are also called isotropy subgroups (67).


Traditionally, the representation method has been applied considering the full set of irrep basis
modes; this implies that the symmetry of the configuration space being explored was therefore
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generally the lowest one, i.e., the kernel of the irrep. Ad hoc restrictions in the basis modes
introduced either a priori or as the result of the refinement could in fact make the spin model
comply with one of the irrep epikernels, but in general, the representation method has been
applied without monitoring or controlling the resulting symmetry. This scenario changes if
ISODISTORT is used. This powerful program calculates the epikernels and kernel of any
possible irrep and provides the corresponding models of the magnetic structure complying with
each of these alternative symmetries in the form of a magCIF file. It can also supply a basis of spin
modes consistent with each possible epikernel or with the kernel of an irrep. The program is very
general and can also supply similar information if several irreps are active, deriving all possible
alternative magnetic symmetries and corresponding models for a given set of irreps. Furthermore,
it can be used in a reverse approach to decompose a given magnetic structure in terms of spin
irrep modes, including structural irrep modes if some significant structural distortion with respect
to the paramagnetic phase exists.


If the active irrep of a magnetic ordering is multidimensional, one can distinguish two different,
rather common situations that we illustrate with example cases analyzed with ISODISTORT. The
irrep labels used below are those of this program. The definitions and details of any of the irreps
considered here can be examined with the tool REPRES (24) of the Bilbao Crystallographic Server,
which uses the same notation.


Case 1: The symmetry of the magnetic structure is an irrep epikernel and a k-maximal
MSG. In this case, the description of the magnetic structure using its MSG reduces the number
of spin degrees of freedom with respect to the usual representation method. As an example,
we can take the case of GdMn2O5 discussed in Section 2, with parent space group Pbam and
propagation vector k = (1/2, 0, 0). There are two two-dimensional (2-D) irreps for this wave
vector (point X in the Brillouin zone), labeled mX1 and mX2, and Table 4 lists their epikernels
and kernels. Taking into account the equivalence of the transformations to standard setting, one
can see that the four possible epikernels coincide with the four k-maximal MSGs discussed in
Section 2. As shown in Table 4, the Paca21 (#29.104) magnetic structure of GdMn2O5 discussed
in Section 2 corresponds to a spin arrangement according to the irrep mX2 but is restricted to
a special direction within the irrep space that limits the number of degrees of freedom to 11,
instead of the 22 that exist for a general mX2 spin configuration. Similar to what can be done with
MAXMAGN, once the irrep epikernel Paca21 is chosen as the tentative symmetry of the structure,
a magnetic structure model complying with this symmetry can be supplied by ISODISTORT


Table 4 Epikernels and kernels of the magnetic irreps of Pbam1′ at the point Xa


Irrep
Order parameter


direction Magnetic space group
Transformation to


standard
Number of spin degrees


of freedomb


(a, 0) Pbmc21 (#26.72) (cp, 2ap, bp; 1/4, 0, 0) 2 (Gd), 5 (Mn)


mX1 (a, a) Pa2/m (#10.47) (−2ap, cp, bp; −1/2, 0, 0) 2 (Gd), 5 (Mn)


(a, b) Pam (#6.21) (−2ap, cp, bp; 0, 0, 0) 4 (Gd), 10 (Mn)
(a, 0) Paca21 (#29.104) (−2ap, cp, bp; −3/4, 0, 0) 4 (Gd), 7 (Mn)


mX2 (a, a) Pc2/c (#13.72) (bp, cp, 2ap; 0, 0, 0) 4 (Gd), 7 (Mn)


(a, b) Pcc (#7.28) (bp, cp, 2ap; 0, 0, 0) 8 (Gd), 14 (Mn)


Abbreviation: irrep, irreducible representation.
aEpikernels and kernels that can be relevant for the magnetic ordering with a propagation vector (1/2, 0, 0) in GdMn2O5, as obtained with
ISODISTORT.
bFor the magnetic atoms in GdMn2O5.
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in magCIF format and introduced for refinement in JANA2006 or FULLPROF. As explained in
Section 2 (see Table 2), the 11 spin degrees of freedom of this structure are automatically taken
into account in the crystallographic description of the magCIF file that makes use of the MSG. In
such cases, the use of irrep modes brings no advantage or additional information in what concerns
the magnetic degrees of freedom of the structure. Furthermore, we have seen in the previous
section that all irrep epikernels in this example can be directly derived as k-maximal symmetries.


Case 2: The symmetry of the magnetic structure is an irrep epikernel but not a k-maximal
MSG. In general, all k-maximal MSGs are irrep epikernels, but the reverse is not true for cubic,
hexagonal, and trigonal parent symmetries, for which some irrep epikernels may not be k-maximal
symmetries. In these cases, the magnetic symmetry given by the irrep epikernel allows, in general,
spin degrees of freedom corresponding to other irreps. The most efficient approach in such situa-
tions is to decompose the spin degrees of freedom into irrep spin modes that should be restricted
or symmetry-adapted to the relevant MSG.


The magnetic structure of NiO discussed above is a simple example of this situation. There
is only a single Ni atom per primitive unit cell, and therefore the irrep spin modes are defined
by the spin of this single site. The magnetic representation of the Ni moments with propaga-
tion vector (1/2, 1/2, 1/2) (point L in the Brillouin zone) decomposes into mL2+ ⊕ mL3+. The
small irreps corresponding to mL2+ and mL3+, relevant for 1k spin arrangements, are 1-D and
2-D, respectively. Thus, the three spin degrees of freedom of the system decompose into a sin-
gle spin mode of type mL2+ and two spin modes for the irrep mL3+. Table 5 shows that a
magnetic model according to the irrep mL2+ is equivalent to the assignment of the MSG RI 3̄c
(#167.108), which is one of the k-maximal MSGs shown in Figure 5. Under this symmetry, the
Ni moment is constrained along the (1, 1, 1) direction, i.e., the mL2+ spin Ni mode is just a
spin directed along the (1, 1, 1) direction; this can be checked by applying the usual programs
used in the representation method [BASIREPS (12), SARAh (13), or MODY (14)]. For the 2-D
small irrep mL3+, the situation is quite different. The mentioned programs provide two basis
spin modes for mL3+, and if both are used, the explored magnetic configurations have the lowest
possible symmetry, namely the irrep kernel PS1̄. The Ni spin is then only restricted to lie on the
plane perpendicular to the (1, 1, 1) direction. In order to restrict the irrep model to one of the


Table 5 Epikernels and kernels of some magnetic irreps of Fm3̄m1′ at the L pointa of the Brillouin zone


Irrep


Order
parameter
direction


Magnetic space
group Transformation to standard


Spin degrees of
freedomb


Ni spin basis
modes


mL2+ (a) RI 3̄c (#167.108) (−ap/2 + cp/2, bp/2 − cp/2,
−2ap − 2bp − 2cp; 0, 0, 0)


1 (1, 1, 1)


(a, 0) Cc2/m (#12.63) (ap/2 + bp/2 − c, ap/2 − bp/2,
−ap − bp; 0, 0, 0)


1 (1, −1, 0)


mL3+ (a, a) Cc2/c (#15.90) (ap/2 + bp/2 − c, ap/2 − bp/2,
−ap − bp; 0, 0, 0)


1 (1, 1, −2)


(a, b) PS1̄ (#7.28) (−bp/2 + cp/2, ap/2 − bp/2, ap


+ cp; 0, 0, 0)
2 (1, −1, 0)


(1, 1, −2)


Abbreviation: irrep, irreducible representation.
aEpikernels and kernels that can be relevant in the magnetic phase of NiO with propagation vector (1/2, 1/2, 1/2), as obtained with ISODISTORT (only
1k configurations are included).
bFor the Ni atoms.
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epikernels, one must choose a specific linear combination of the two basis modes of mL3+. These
epikernel-adapted modes can be obtained with ISODISTORT and are listed in Table 5. The
MSG of the magnetic structure of NiO is Cc2/c (#15.90). Therefore, the active irrep is mL3+
but is restricted to one of its epikernels, with the spin mode being along the (1, 1, −2) direction.
We saw in the previous section, however, that the Cc2/c symmetry only restricts the Ni spin to
lie on a plane of the form (mx, mx, mz). This symmetry therefore also allows an orthogonal spin
component along the (1, 1, 1) direction.


Hence, the symmetry assignment of the MSG Cc2/c (#15.90) restricts the spin configuration
with respect to a general mL3+ arrangement, but, at the same time, it allows the presence of a mode
according to the irrep mL2+. The reason for the possible presence of this secondary spin mode can
be seen in Figure 5. Cc2/c is not a k-maximal symmetry but is in fact a subgroup of the epikernel
of mL2+. Therefore, in accordance with von Neumann principle, the symmetry break produced
by the primary mL3+ order parameter allows the presence of an mL2+ distortion as a symmetry-
compatible secondary effect. Thus, the MSG automatically takes into account all degrees of free-
dom that are triggered by the symmetry break. From physical arguments, one should expect that
the prevailing spin direction will comply with the mL3+ irrep but will be restricted to the relevant
epikernel and will therefore be along the (1, 1, −2) direction, whereas the mL2+ component along
the (1, 1, 1) direction should be weak or even negligible. This is indeed what is observed.


Therefore, the most efficient approach in this type of case is to consider both the magnetic
symmetry of the system represented by an MSG and the decomposition of the degrees of freedom
in terms of irrep modes restricted to this MSG. In general, a physical hierarchy between the
symmetry-compatible irreps will exist, and the degrees of freedom associated with the secondary
irreps may be disregarded, reducing their number with respect to a description using only the MSG.


A more complex example is summarized in Figure 11, which shows all the possible k = 0
magnetic symmetries for the compound Na3Co(CO3)2Cl, discussed in Section 2.4. The figure
also indicates the possible irrep epikernels and kernels and the number of irrep basis modes in
each case. For instance, a general spin configuration according to the irrep mGM4+ requires nine
basis modes, and its magnetic symmetry is the minimal one, P 1̄, but it allows three additional
degrees of freedom corresponding to the secondary symmetry-compatible irreps mGM1+ and
mGM2+ ⊕ GM3+ (a physically irreducible irrep). But the irrep mGM4+ can also yield the MSG
R3̄ (#148.17), and under this symmetry, the number of free spin parameters is four. But this MSG
restricted to the irrep mGM4+ only requires three basis modes, whereas the fourth degree of
freedom corresponds to the symmetry-compatible mode for the irrep mGM1+ of symmetry Fd 3̄
(#203.26).


4. INCOMMENSURATE MAGNETIC STRUCTURES
AND SUPERSPACE SYMMETRY


4.1. Magnetic Superspace Groups


The superspace symmetry formalism, developed between 1974 and 1985, has become the
standard method for the analysis and determination of nonmagnetic modulated structures, both
incommensurate and commensurate (5, 69–74). Nearly all quantitative structural studies of these
systems employ the refinement program JANA2006 (47, 48), which is based on this formalism.
A superspace group defines all the structural constraints that are symmetry forced and are
protected within an incommensurate phase, playing the role that an ordinary space group does for
commensurate phases. Since the beginning of its development, it was pointed out that superspace
symmetry can be extended to magnetic systems (5), but in fact only a few testimonial works have
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mGM1+ (a)
(1)


mGM2+ ⊕mGM3+ (a, b)
(2)


Fd3–1'


Fd3–


C2'/c' C2/c R3–


Fddd


mGM4+ (a, a, a)
(3)


mGM4+ (a, b, c)
(9)


(1)


(4)(6)(6)


Fd'd'd (3) (3)


P1– (12)


mGM4+ (a, b, 0)
(6)


mGM4+ (a, 0, 0)
(3)


Figure 11
Group-subgroup graph of all possible magnetic symmetries for a structure with parent space group Fd 3̄
(#203), propagation vector zero, and a magnetic atom at the origin. The k-maximal magnetic space groups
are highlighted with elliptical frames. Only one subgroup per conjugacy class is shown. The subgroups that
are epikernels for some irreducible representations (irreps) have at their side the corresponding irrep label
with the order parameter direction in the ISODISTORT notation. The number of spin degrees of freedom
is indicated in red for each group, and the number of symmetry-restricted irrep basis modes is written in gold
below the irrep.


applied this formalism to magnetic structures (75). The situation has drastically changed in the
past few years with the development of computational tools specific for magnetic structures that
make use of superspace symmetry, in particular the extension of JANA2006. Hence, the number
of reported incommensurate magnetic structures refined, described, or both using superspace
symmetry is increasing steadily (76–87). For the sake of simplicity, we restrict the discussion to
1k incommensurate structures but we stress that superspace symmetry can also be considered in
more general cases with several independent, incommensurate wave vectors.


In practical terms, the characterization of a 1k incommensurate phase using a superspace group
is reduced to the description of the local aperiodic atomic positions and atomic properties (as the
magnetic moments) by means of periodic modulation functions of a continuous variable, say x4,
with period 1. The actual value of an atomic property of an atom at a position r is then given by the
value of the corresponding modulation function at x4 = k · r. The continuous variable of these
functions is associated with the additional dimension in a mathematical superspace, which is intro-
duced in the definition of the symmetry operations. A symmetry operation of an incommensurate
structure is, in general, an ordinary symmetry operation of the reference parent structure, say,
{R | t} followed by a certain global shift τ of all the modulation functions, such that the transformed
system with the atomic positions and local properties given by these shifted modulation functions
becomes undistinguishable from the original one. The operation is then represented by {R | t, τ0},
with τ0 = τ + k · t being the k-independent part of the phase shift. Thus, the symmetry group of an
incommensurate crystal is obtained by adding the possibility of shifting the global phase of all the
modulation functions to the ordinary rotations, roto-inversions, and translations. A generalization
to magnetic crystals is immediate by just including among the possible operations the combination
with time reversal, yielding the MSSGs. As ordinary magnetic symmetry, MSSGs are robust in the
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z


x


y


∞/mm1' 4/mmm1' 6/mmm1'


mmm1' mmm1' mmm1'


12/m11' 12/m11' 12/m11'


∞21' 4221' 6221'


∞2' 42'2' 62'2'


Collinear
longitudinal


Cycloid


Elliptical
cycloid


Transverse
cone


Elliptical
oblique
cycloid


Point group
No lattice Cubic


lattice
Hexagonal
lattice


2mm1' 2mm1' 2mm1'


2mm1' 2mm1' 2mm1'


2'mm' 2'mm' 2'mm'


1m11' 1m11' 1m11'


Collinear
transversal


Collinear
transversal
oblique


Proper
screw


Conical
screw


Figure 12
Representative spin modulations along a periodic chain of atoms with indication of their point-group
symmetries according to their superspace symmetry groups. The first column is the point group of a single
chain, whereas the second and third columns list those for three-dimensional cubic and hexagonal
monoatomic arrangements of these chains, the chains being along the c direction.


sense that they can be associated with the properties of the system within a whole thermodynamic
phase. The point-group symmetry constraining the tensor physical properties of the phase is then
formed by the point-group operations that form part of the symmetry operations of the MSSG.


Following the basic principles explained above, deriving the magnetic point-group symmetry
of a chain of spins with an incommensurate modulation of any type is straightforward. Figure 12
shows the point-group symmetries of the most representative incommensurate spin modulations
along a periodic atomic chain. In nearly all cases, the point group is gray, i.e., it contains time
reversal, and linear magneto-structural couplings are therefore not possible. Only those spin
modulations that include a k = 0 component in addition to the incommensurate frozen spin
wave have nongray point groups. This is a general property: Any 1k incommensurate modulation
possesses the superspace symmetry operation {1′ | 0, 0, 0, 1/2} because, after switching the spins
to opposite signs by the action of time reversal, a phase shift of 1/2 of the spin modulation as a
whole recuperates the original spin arrangement.


Many of the point groups of the incommensurate spin chains in Figure 12 include inversion,
or other operations transforming k into −k. Only the cycloid arrangements and the transverse
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conical modulation break the symmetry into noncentrosymmetric polar groups. The polarity of a
circular spin cycloid is along the direction perpendicular to k and within the plane of the cycloid.
Thus, symmetry is sufficient to predict the polar character (and its direction) for this type of spin
arrangement. Notice, however, that in the case of an elliptical oblique cycloid, with the main axes
of the cycloid ellipse along arbitrary directions, the symmetry is reduced to m1′, with the mirror
plane being the one of the cycloid. Hence, in this case, the possible induced polarization can take
an arbitrary direction within this plane.


It is important to stress that a proper screw modulation, with the spins rotating on the plane
perpendicular to the propagation vector, also breaks inversion but keeps any binary axis perpen-
dicular to the chain. Thus, this type of spin arrangement in high-symmetry lattices gives way to
a noncentrosymmetric but nonpolar chiral symmetry. This is, for instance, the case of MnAu2


(22, 88), with space group I4/mmm (#139) in the paramagnetic phase and MSSG I4221′(00γ )q00s
(point group 4221′) in its incommensurate magnetic phase. However, if these types of screw spin
chains are embedded in a structure lacking binary axes perpendicular to the direction of the mod-
ulation, the magnetic symmetry will be polar along the chain, and in the case of an insulator, an
induced ferroelectric polarization along the direction of the propagation vector is possible.


4.2. Crystallographic Description of Incommensurate Magnetic Structures


A CIF dictionary for incommensurate (nonmagnetic) structures based on superspace symmetry
already exists (89), and its extension to magnetic structures within the magCIF dictionary is
straightforward. In the simplest case of a harmonic modulation, the spin modulation functions of
a magnetic atom in the asymmetric unit are given by a combination of sine and cosine functions
for each spin component. If the site lies in a special position, then the modulation is subject to
site-symmetry constraints, whereas the spin modulation functions of the symmetry-related atoms
are derived by the operations of the superspace group. A detailed review of the application of
MSSGs in magnetic structures can be found in Reference 3.


As an example, we consider the very simple structure of Ce2Pd2Sn (90, 91), shown in Figure 13.
This is a sinusoidal transversal spin modulation, of the Ce magnetic moments along c, with parent
space group P4/mbm (#127) and propagation vector k = (0.105, 0, 0). The superspace symmetry
of this spin arrangement is given by the MSSG Pbam1′(α00)0s0s (22), maintaining the parent
setting for the average structure. This means that the structure is centrosymmetric, and its average
symmetry is reduced from tetragonal to Pbam1′, which implies the possible liberation of structural
degrees of freedom with respect to the parent phase through magneto-structural coupling. The
4h Ce site in the parent tetragonal phase remains a 4h site in the Pbam1′ average structure,
and only the spin modulation of one atom, Ce1, is independent. The representative operations of
Pbam1′(α00)0s0s are {2100 | 1/2, 1/2, 0, 1/2}, {2010 | 1/2, 1/2, 0, 1/2}, {2001 | 0, 0, 0, 0}, {−1 | 0, 0,


a


b
c


Figure 13
Incommensurate magnetic structure of Ce2Pd2Sn (54) with superspace group Pbam1′(α00)0s0s.
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0, 0}, {m100 | 1/2, 1/2, 0, 1/2}, {m010 | 1/2, 1/2, 0, 1/2}, and {m001 | 0, 0, 0, 0}, plus those obtained
by combining all these operations with {1′ | 0, 0, 0, 1/2} (22). The symmetry invariance of the Ce1
site for the operation {m001 | 0, 0, 1, 0} constrains its spin modulation to be along the c direction:


�M Ce1(x4) = (0, 0, M z cos 1) cos(x4) + (0, 0, M z sin 1) sin(x4).


The spin modulation therefore has two free parameters. The modulation functions of the other
three Ce atoms in the parent unit cell, Ce1_2, Ce1_3, and Ce1_4, are obtained through the
operations {m010 | 1/2, 1/2, 0, 1/2}, {m100 | 1/2, 1/2, 0, 1/2}, and {−1 | 0, 0, 0, 0}, respectively
(see Reference 3). Hence, Ce1_2 has the same modulation function as Ce1_1, whereas the other
two atoms have the same cosine term but an opposite sine component. This implies that symmetry
allows a phase shift between the modulations of the Ce atoms that are related by operations
transforming k into −k but constrains all amplitudes to be equal. According to the model reported
in References 90 and 91, the parameter Mzsin1 is negligible, and the four modulations are in phase.


4.3. Irreducible Representations Versus Magnetic Superspace Groups


The relationship of the representation approach with the MSSGs is similar to the one discussed
above between irreps and MSGs in commensurate structures (3). If the small irrep associated with
the spin modulation is 1-D, there is a one-to-one correspondence between the MSSG and the
irrep, but for multidimensional small irreps in general, several distinct MSSGs can be realized
in the incommensurate phase depending on the direction taken by the order parameter within
the representation space. Hence, different magnetic symmetries can result from the same irrep,
constituting the epikernels and kernel of the irrep.


However, an important difference exists with respect to the commensurate case. For 1-D small
irreps, even if only one MSSG is possible, this MSSG generally includes operations that transform
the vector k into −k (if these operations exist in the paramagnetic phase). Figure 14 shows
the four MSSGs corresponding to the four possible irreps of P4/mbm for an incommensurate
wave vector (α, 0, 0), which could be relevant for the case of Ce2Pd2Sn described above. All are
centrosymmetric. Among the wave vector’s superspace symmetry operations, the MSSGs keep
all point-group operations of the parent symmetry that either maintain k invariant or transform
it to −k. This is an important difference from the traditional representation approach, which
has usually considered that atoms related by operations of the parent symmetry that transform k
into −k become split in the incommensurate phase, yielding independent suborbits of atoms. In
practice, some correlations between the parameters of these supposedly independent atoms are
often introduced and justified with various arguments not related to symmetry. However, this
example shows that, according to the MSSG associated with any active irrep, the modulations
of atoms related by these −k operations remain symmetry related in the incommensurate phase.
The spin arrangement of Ce2Pd2Sn complies with the irrep mDT4 (see Figure 14), and the
representation method yields three free parameters for this irrep (91) (one amplitude and phase
per suborbit of Ce atoms, minus one free phase that can be fixed arbitrarily). Thus, in principle
the method allows different amplitudes of the spin modulations of the two suborbits, although
in practice they are made equal (91). The MSSG associated with the irrep shows that this is
not just an additional reasonable assumption or approximation but is part of the restrictions for
a single irrep distortion, i.e., a single order parameter. One can always derive them from the
irrep transformation properties, as done in Reference 92, for instance, but the identification of
the MSSG associated with the active irrep provides automatically all constraints, including those
of possible higher modulation harmonics, both magnetic and structural. The usual disregard of
the symmetry constraints coming from the operations changing k into −k implies that more
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Pbam1'(a00)000s
[2 parameters]


Pbam1'(a00)00ss
[4 parameters]


Pbam1'(a00)0s0s
[2 parameters]


mDT1


mDT2


mDT3


mDT4


P21am1'(a00)000s 
({2100 | ½, ½, 0, 0}, {m010 | ½, ½, 0, 0}, {m001 | 0, 0, 0, 0})
[3 parameters] 


P21am1'(a00)0sss
({2100 | ½, ½, 0, 0}, {m010 | ½, ½, 0, ½}, {m001 | 0, 0, 0, ½})
[7 parameters] 


P21am1'(a00)00ss
({2100 |½, ½, 0, ½}, {m010 | ½, ½, 0, 0}, {m001 | 0, 0, 0, ½})
[7 parameters] 


P21am1'(a00)00ss
({2100 | ½, ½, 0, ½}, {m010 | ½, ½, 0, ½}, {m001 | 0, 0, 0 ,0})
[3 parameters] 


Kernel 
(only one irrep mode)


Minimal symmetry
(incoherent superposition of irrep modes)


Pbam1'(a00)0sss
[4 parameters]


P4/mbm1'


Figure 14
Possible magnetic superspace groups for an incommensurate magnetic modulation with propagation vector
of type (α, 0, 0) on a parent structure with space group P4/mbm, if restricted to a single irreducible
representation (irrep) mode, as can be obtained in JANA2006 or ISODISTORT. The number of free
magnetic parameters for each case is indicated in brackets. A set of generators is listed for each symmetry,
with the exception of {−1 | 0, 0, 0, 0} and {1′ | 0, 0, 0, 1/2}, present in all. The minimal superspace
symmetry, corresponding to an incoherent superposition of more than one irrep mode, is shown on the
right. Notice that the superspace groups are described here in the parent setting, in contrast with the default
output of ISODISTORT.


general spin arrangements are being considered, which represent the incoherent (phase-shifted)
superposition of more than one irrep mode for the same irrep. Notice, for instance, that in the
case of Ce2Pd2Sn, the constraint coming from the k to −k transforming operations is essential to
keep the system centrosymmetric.


ISODISTORT or JANA2006 provide the epikernels and kernel of any incommensurate irrep
in the form of a list of possible MSSGs, and they can supply the corresponding symmetry-adapted
magnetic structure models for visualization or any further analysis. The models are portable using
incommensurate magCIF files, which are fully supported by the visualization program Jmol.
JANA2006 can in principle refine any incommensurate 1k magnetic structure under any chosen
MSSG, and the program includes the calculation tool of epikernels and kernels for the possible
irreps as a preliminary step to explore and construct all possible models of different superspace
symmetry that can be confronted with the experimental data. Once one irrep epikernel (or kernel)
is chosen, the program works in a crystallographic way using the corresponding MSSG to analyze
the symmetry of the diffraction data and constrain both magnetic and structural parameters. This
allows a systematic search of the incommensurate magnetic structure in a symmetry-hierarchical
way. It works by default in the parent setting, but it can be changed by the user. By contrast,
ISODISTORT supplies the different possible MSSG models in their standard setting, which can
strongly differ from the one of the parent phase, including a different choice of the propagation
vector. This program focuses on the mode analysis of both the magnetic and structural degrees
of freedom of the different possible phases and supplies a parameterization in terms of irrep basis
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P3
–


1'


P31'(1/3, 1/3, γ)ts P1
–


1'(α, β, γ)0s


k = (1/3, 1/3, γ)
irrep: mP2P3  


(–√3M, –2√3M, 0)cos(x4) + (M, 0, 0)sin(x4)3 3
(Mx, My, Mz)cos(x4)


b a
c


b


ac


Figure 15
Epikernels of the irreducible representation (irrep) mP2P3 (physically irreducible) with a propagation vector
of type (1/3, 1/3, γ) for a parent space group P 3̄ (#147) and corresponding spin arrangements for an atom at
the origin, as obtained from JANA2006 or ISODISTORT. The general form of the spin modulation is also
indicated for each case. These two alternative k-maximal symmetries are realized in the phase diagram of
RbFe(MoO4)2 (82, 93).


modes adapted to the relevant MSSG. This is very important when several irreps are symmetry
allowed, as one can distinguish primary irrep modes from weak or negligible secondary ones.


Figure 15 summarizes the case of RbFe(MoO4)2 (82, 93). This compound has a paramagnetic
phase with space group P 3̄, and it orders with an incommensurate propagation vector (1/3, 1/3,
γ) [line P in the Brillouin zone (58)]. Having the Fe atom at the origin, a spin arrangement with
this propagation vector in the most general case would require five parameters (the amplitude and
phase for the three spin components, minus one phase that can be chosen arbitrarily). However,
the modulation of the spin component along c transforms according to the irrep mP1, whereas
those on the ab plane correspond to the irrep mP2P3 (a physically irreducible irrep). The irrep
mP2P3 has two possible epikernels. This means that two different alternative MSSGs of maximal
symmetry are possible for this irrep. Their labels are indicated in Figure 15, together with the
mathematical form of the spin modulation function and a graphical scheme. The system can either
maintain the 3-fold axis and lose the space inversion symmetry or keep the centrosymmetry but
break the 3-fold axis. In the first case, the MSSG forces the spin modulation to have two orthogonal
components in quadrature on the ab plane; this is sufficient to acquire a typical 120◦ arrangement
on the ab plane, whereas the spins rotate along c, forming a screw with a pitch determined by
the propagation vector. If this MSSG is assigned, the determination of the corresponding spin
configuration requires a single parameter. A magnetic phase with this superspace symmetry has
31′ as point-group symmetry. It is therefore polar along c, with domains related by the lost space
inversion. Induced ferroelectricity, i.e., a multiferroic of type II, should be expected (93).


The other alternative maximal symmetry is a collinear arrangement in which the modulations
of the three moment components are in phase. This second MSSG has three free spin parameters,
but one of them is the Mz component (see Figure 15), which corresponds to the irrep mP1. As
in the commensurate case, the magnetic symmetry allows degrees of freedom corresponding to
symmetry-compatible secondary modes associated with irreps having as epikernel (or kernel) one
supergroup of the actual MSSG. This is the case of the Mz modulation that can be present, as a
secondary mP1 distortion, in a model complying with this MSSG P 1̄1′(α, β, γ )0s, provided it is
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in phase with the primary mP2P3 collinear distortion on the ab plane. This second component
can be small enough to be negligible, reducing the number of free parameters to two. Notice that
for this MSSG, the x and y components of the propagation vector are no longer forced to have
the rational value 1/3, as explicitly indicated in the group label. This second alternative maximal
superspace symmetry is realized in the phase diagram under magnetic field.


The kernel of mP2P3, i.e., the lowest superspace symmetry possible, is the intersection of the
two alternative k-maximal superspace symmetries for mP2P3 discussed above. It reduces to the


Table 6 Databases and programs to analyze magnetic structures using magnetic symmetrya


Program or database Program description
Magnetic group tables (30) Tables of MSGs with illustrations and data analogous to those of the ordinary space groups in the


International Tables for Crystallography. They are set in OG notation and are not computer readable.
ISO-MAG (33) Computer-readable tables and data of MSGs in both BNS and OG notations.
MGENPOS, MWYCKPOS
(34)


Database of symmetry operations and Wyckoff positions of MSGs in both BNS and OG notations.


IDENTIFY MAGNETIC
GROUP (39)


Identifies a magnetic space group (commensurate) from a set of generators in an arbitrary setting.


ISOCIF (41), FINDSYM
(43)


Editor to create or modify a magCIF file of a commensurate magnetic structure. It transforms to any
desired setting and automatically finds the actual MSG of a structure introduced enumerating all
atoms and spins in the unit cell. It includes an online visualization tool.


STRCONVERT (42) Editor to convert, edit, or both a commensurate magnetic structure into different file formats,
including magCIF. Using FINDSYM, it finds the MSG of the structure if transformed or given in
P1 symmetry. VASP files for or from ab initio calculations are also supported.


ISODISTORT (67) Comprehensive online program to enumerate and describe possible magnetic structures caused by one
or more active irreps. The magCIF format is supported. It provides possible epikernels and kernels
(isotropy subgroups) of any magnetic irrep or set of irreps and can yield the mode decomposition of
any commensurate magnetic structure if given in magCIF format. Standard settings are required for
input data, but the resulting models of the magnetic structures can be obtained in any chosen setting.


MAXMAGN (46) Generates all possible magnetic symmetries and the corresponding magnetic structures for a given
propagation vector, starting with those of maximal symmetry.


k-SUBGROUPSMAG (52) Provides all possible magnetic symmetries for a known space group of the paramagnetic phase and a
set of one or more propagation vectors. Their group-subgroup hierarchy is also provided in a graphic
form.


MAGNEXT (34) Provides symmetry-forced systematic absences of nonpolarized neutron magnetic diffraction, along
with the symmetry-adapted form of the magnetic structure factor, for any MSG or MSSG.
Nonstandard settings are also supported.


MAGMODELIZE (56) For any parent structure, provides the magnetic structure model corresponding to any MSG given by
the user, as well as all domain-equivalent ones. It can be combined with k-SUBGROUPSMAG to
explore all possible magnetic arrangements for a known propagation vector following a stepwise
symmetry descent.


JANA2006 (47, 48) General refinement program that includes a tool to construct for each irrep possible alternative
models with their symmetries given by the possible irrep epikernels and kernel. It can deal both with
commensurate and incommensurate structures. Magnetic structures can be uploaded or retrieved
using magCIF files.


FULLPROF (12) General refinement program that supports magCIF files both as input and output. A console
application provides information on MSGs. Any MSG symmetry can be implemented in the model
to be refined.


(Continued )
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Table 6 (Continued )


Program or database Program description
MVISUALIZE (45) Online visualization using Jmol of any magnetic structure (commensurate or incommensurate) if


uploaded as a magCIF file.
VESTA (27) Visualization program that supports magnetic structures in magCIF format and magnetic symmetry


(only commensurate structures).
Jmol (28) Visualization program that supports magnetic structures (both commensurate and incommensurate)


in magCIF format and magnetic symmetry.
MAGNDATA (22) A collection of more than 250 magnetic structures (commensurate and incommensurate) described


using magnetic symmetry and magCIF files.


Abbreviations: BNS, Belov-Neronova-Smirnova; irrep, irreducible representation; magCIF, extension of the crystallographic information file format to
magnetic structures; MSG, magnetic space group; MSSG, magnetic superspace group; OG, Opechowski-Guccione.
aThis is a summary of the most important free databases, computer tools, and programs for the analysis of magnetic structures that use (or are based on)
magnetic symmetry.


MSSG P11′(α,β,γ )0s; i.e., only the ubiquitous operation {1′ | 0, 0, 0, 1/2} is kept. This is the
superspace symmetry of an arbitrary mP2P3 modulation built up with all the irrep basis modes.


In simple cases such as the one above, the incommensurate spin configurations of higher sym-
metry are intuitively clear, and they are often tested in the refinements without appealing to
concrete symmetry arguments. But for more general cases, the enumeration for a given irrep of
distinct spin arrangements of higher symmetry is not obvious. The application of superspace sym-
metry allows the systematic exploration of these possible privileged configurations, distinguishing
them from simplifying features that are not symmetry dictated. For an atom in a general position,
the superspace symmetry of the phase does not restrict the form of its spin modulation, and it is
only the relation of its (arbitrary) modulation with those of the other symmetry-related atoms in
the average unit cell that is forced by the MSSG.


If the magnetic modulation is anharmonic or the magneto-structural coupling is strong enough
to induce a structural modulation, the knowledge of the superspace symmetry of the magnetic
phase is especially important, as it dictates the features of all induced effects. For 1k structures, the
presence of the superspace symmetry operation {1′ | 0, 0, 0, 1/2} in the MSSG ensures that the spin
modulation can only have odd harmonics, whereas any magnetically induced structural modulation
is restricted to even harmonics of the primary propagation vector. Hence, the existence of this
very simple superspace symmetry operation is the reason for this general property satisfied by
magnetically induced structural modulations. Higher harmonics of both the spin and the structural
modulation are subject to the same MSSG as the first harmonic, but this in general implies
transformation properties corresponding to irreps different from the one of the first harmonic. For
instance, for the case of RbFe(MoO4)2 under the trigonal MSSG P31′(1/3, 1/3, γ )ts, the presence
of the symmetry operation {3+ | 0, 0, 0, 1/3} not only enforces the helical spin arrangement
for the first harmonic but also restricts the third harmonic (actually all 3n harmonics) to be a
modulation with the spin component along c, i.e., an mP1 distortion. Similarly, any induced
structural distortion should comply with the MSSG, and this means specific restrictions on each
induced harmonic modulation. For instance, the Fe atoms can suffer a displacive modulation with
wave vector 2k, but it is restricted to the ab plane (82).


Conversely, if the paramagnetic phase is itself incommensurate owing to a structural modula-
tion, the symmetry of the paramagnetic phase is then given by a gray superspace group, and the
propagation vector of the magnetic ordering can be commensurate with the incommensurate wave
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vector of the structural modulation. The MSSG of the magnetic phase is then related directly to
the one of the paramagnetic phase (86).


5. CONCLUSIONS


Various computational tools developed during the past few years have made possible the rela-
tively simple, systematic, and comprehensive application of magnetic symmetry in the analysis
of magnetic structures, both commensurate and incommensurate. In the incommensurate case,
the symmetry constraints of these phases are efficiently described and handled using superspace
symmetry concepts with the introduction of MSSGs. A principle of maximal symmetry underlies
most of the observed magnetic structures and their traditional description using irreps. The new
computational instruments go beyond the traditional representation method and exploit the sym-
metry hierarchy among possible ordering models, such that a full characterization of the relevant
symmetry breaking becomes a straightforward process. We have outlined this novel scenario by
reviewing several examples and explaining the main concepts involved. We hope to have clearly
shown that the representation method and a symmetry-based description of magnetic structures
should be considered as complementary, and not alternative, approaches. The assignment of a
magnetic symmetry in the form of an MSG or MSSG is not equivalent to the assignment of an
irrep, except for 1-D irreps. Also, contrary to common belief, the assignment of an irrep, if multidi-
mensional, generally introduces fewer constraints than an MSG. In complex situations, the most
appropriate approach is a comprehensive application of both magnetic symmetry and irrep modes,
and this is facilitated by the computational tools reviewed here and summarized in Table 6.
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A free web page under the name MAGNDATA, which provides detailed


quantitative information on more than 400 published magnetic structures, has


been developed and is available at the Bilbao Crystallographic Server (http://


www.cryst.ehu.es). It includes both commensurate and incommensurate


structures. This first article is devoted to explaining the information available


on commensurate magnetic structures. Each magnetic structure is described


using magnetic symmetry, i.e. a magnetic space group (or Shubnikov group).


This ensures a robust and unambiguous description of both atomic positions and


magnetic moments within a common unique formalism. A non-standard setting


of the magnetic space group is often used in order to keep the origin and unit-


cell orientation of the paramagnetic phase, but a description in any desired


setting is possible. Domain-related equivalent structures can also be down-


loaded. For each structure its magnetic point group is given, and the resulting


constraints on any macroscopic tensor property of interest can be consulted.


Any entry can be retrieved as a magCIF file, a file format under development by


the International Union of Crystallography. An online visualization tool using


Jmol is available, and the latest versions of VESTA and Jmol support the


magCIF format, such that these programs can be used locally for visualization


and analysis of any of the entries in the collection. The fact that magnetic


structures are often reported without identifying their symmetry and/or with


ambiguous information has in many cases forced a reinterpretation and


transformation of the published data. Most of the structures in the collection


possess a maximal magnetic symmetry within the constraints imposed by the


magnetic propagation vector(s). When a lower symmetry is realized, it usually


corresponds to an epikernel (isotropy subgroup) of one irreducible representa-


tion of the space group of the parent phase. Various examples of the structures


present in this collection are discussed.


1. Introduction


The quantitative characterization of the magnetic ordering


realized in magnetic phases is an essential part of research into


the magnetic properties of solids. It is certainly fundamental


for the cross-checking of theoretical models and for the


exploration of complex solid-state magnetic phenomena.


Furthermore, the determination of magnetic structures,


mainly using neutron diffraction data, is a fundamental step in


the search for functional materials for magnetic and/or


magnetostructural applications. Since the first report of a


magnetic structure determined from neutron diffraction data


in 1949 (Shull & Smart, 1949), the magnetic structures of


thousands of compounds have been investigated and reported.


In 1976, an important effort was made to gather information


available on all the magnetic structures known at that point,
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and a compilation of about 1000 magnetic structures was


published (Oles et al., 1976). This effort continued with an


additional listing of about 100 structures in 1984 (Oles et al.,


1984). Since then, experimental facilities, instruments and


analysis methods have improved enormously, and hundreds of


magnetic structures are being reported each year. We estimate


that, at the moment, there must be about 5000 published


magnetic structures. In this scenario, the convenience of a


digital database of magnetic structures seems clear, but


despite some early work in this direction (Dul et al., 1997), the


lack of standards in the description and communication of


magnetic structures has precluded the development of an


appropriate computer database.


Two recent developments have, however, opened up new


possibilities for the systematic application of magnetic


symmetry and the achievement of a standardized framework


for the description and digital storage of magnetic structures.


Firstly, computer-readable listings of the magnetic space


groups (or Shubnikov groups) have been made available


(Litvin, 2013; Stokes & Campbell, 2011). Secondly, the


superspace formalism (the standard approach for the quanti-


tative description of non-magnetic incommensurate struc-


tures) has been extended in detail to incommensurate


magnetic structures (Petřı́ček et al., 2010; Perez-Mato et al.,


2012). These fundamental steps have been the basis for the


development of a series of computer tools for a comprehen-


sive application of magnetic symmetry properties that allow an


efficient crystallography-like methodology in the analysis and


description of commensurate and incommensurate magnetic


phases (Perez-Mato et al., 2015). This methodology not only


permits the exploration of the possible magnetic orderings


associated with one or more propagation vectors in a form that


complements and goes beyond the traditional representation


method, but can also be employed to store and retrieve any


magnetic structure in a robust and unambiguous form analo-


gous to that employed for ordinary non-magnetic crystalline


structures.


Another milestone has been the development by the


Commission on Magnetic Structures of the IUCr (Interna-


tional Union of Crystallography, 2015) of the so-called


magCIF format, i.e. an extension of the CIF (crystallographic


information file) format (Brown & McMahon, 2002), which


provides a robust and unambiguous file format for the


archiving and exchange of magnetic structure information. Its


preliminary version is already supported by the above-


mentioned new symmetry-based computer tools.


Within this framework, we have collected at the Bilbao


Crystallographic Server, under the name MAGNDATA,


comprehensive information on more than 400 commensurate


and incommensurate magnetic structures (Fig. 1). MAGN-


DATA is intended to be a benchmark and starting point for a


complete database of magnetic structures, where magnetic


symmetry is systematically employed and the magCIF format


is the communication file format. Here, we present and discuss


its main features for the case of commensurate structures. We


concentrate on the information made available for each


structure, and the way this information can be retrieved and


analysed.


2. Description of commensurate magnetic structures


A magnetically long-range ordered structure can be consid-


ered fully determined if the available information unambigu-


ously defines the average position of any atom and its average


magnetic moment. In the case of a commensurate magnetic


ordering, this can be achieved by providing three basic data


items:


(i) The lattice unit cell that defines the periodicity of the


magnetic ordering, i.e. the so-called magnetic unit cell.


(ii) The magnetic space group (MSG) or Shubnikov group,


with the lattice described by (i), which defines the symmetry of


the phase.


(iii) The atomic positions (in relative units with respect to


the unit cell) and magnetic moments (if the atom is magnetic)


of a set of atoms in the unit cell that are not symmetry related


and form an asymmetric unit. From these symmetry-inde-


pendent atomic positions and magnetic moments, the position


and magnetic moment of any other atom in the unit cell can be


derived through the application of the symmetry operations of


the MSG defined in (ii).


This is the basic information that is stored for any of the


commensurate magnetic structures compiled in MAGN-


DATA, and it is an essential part of the corresponding


magCIF file that can be downloaded. These magCIF files are


supported by various programs, for example for visualization


using VESTA (Momma & Izumi, 2011) and Jmol (Hanson,


2013), for editing using ISOCIF (Stokes & Campbell, 2015) or


STRCONVERT (Perez-Mato et al., 2015), for analysis using


ISODISTORT (Campbell et al., 2006), or for further refine-


ment using experimental data and FullProf (Rodrı́guez-


Carvajal, 1993) or JANA (Petřı́ček et al., 2014).
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Figure 1
A screenshot showing a partial view of the online list with icons of the
magnetic structures stored in MAGNDATA.







As an example, Tables 1 and 2 present these three basic data


items for the magnetic structure of Ba2CoGe2O7 (Hutanu et


al., 2012), which is depicted in Fig. 2(a), as retrieved from


MAGNDATA, where it is entry 0.56. In the following, the


entry number of each example in MAGNDATA will be


indicated in parentheses with the symbol #, e.g. (#0.56). With


respect to the data in these tables the following remarks are


important.


2.1. Symmetry operations


The listed symmetry operations fully define the MSG of the


structure. They are given in a similar form to the symmetry


operations of space groups in conventional crystallography.


Each symmetry operation is described by the corresponding


transformation of a general position (x, y, z) (Hahn, 2002)


(second column in Table 1) or in the Seitz notation (Glazer et


al., 2014) (last column in Table 1). These operations in the first


format are the only obligatory data concerning symmetry in a


magCIF file. The only difference with respect to the symmetry


operations of ordinary space groups is that the presence or not


in the symmetry operation of the action of time reversal is also


indicated: in the first format this is achieved by means of an


additional symbol, �1 or +1, while in the Seitz notation a


prime symbol is added or not to the rotation or roto-inversion


symbol. As additional (redundant) information, the transfor-


mation of a magnetic moment (given in relative components


with respect to the unit-cell basis) through the action of the


symmetry operation is also listed (third column). The


symmetry operations are described with respect to the


magnetic unit cell that defines the lattice periodicity of the


spin arrangement. In this sense, we use in all cases the Belov–


Neronova–Smirnova (BNS) notation (Belov et al., 1957). In


the case of MSGs with antitranslations (i.e. operations


combining a translation and time reversal), the alternative


Opechowski–Guccione (OG) notation (Opechowski &


Guccione, 1965) uses unit cells that are often closer to the


reference lattice used in experiment, but in general they do


not define the lattice periodicity of the MSG. The OG notation


therefore requires a deviation from a straightforward exten-


sion of the group theoretical methods of ordinary crystal-


lography, where symmetry operations and atomic variables are


processed ‘modulo 1’ with respect to the employed unit cell.


We have preferred to avoid this complication and therefore


MAGNDATA has been developed in all aspects using the


BNS approach.


2.2. Magnetic space groups


In most cases we have used a unit cell that keeps the origin


and orientation of the crystallographic axes of the para-


magnetic phase. This is the reason why, in most cases, as in this


example, the MSG is in a non-standard setting. As the


symmetry information provided by MAGNDATA is the list of


symmetry operations in this non-standard basis, this causes no


particular problem and no ambiguity exists. The transforma-


tion from the used basis to a basis correponding to the stan-


dard setting of the MSG is given for each entry in the


collection under the heading ‘Transformation to standard


setting’.
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Table 1
Symmetry operations of the MSG describing the symmetry of the
magnetic structure of Ba2CoGe2O7 (#0.56; Hutanu et al., 2012).


These operations correspond to the MSG Cm0m20 (No. 35.167) in a non-
standard setting. The transformation to a standard setting is (a + b, �a + b, c;
1
2 ; 0; 0).


No. x, y, z, �1 mx, my, mz Seitz notation


1 x, y, z, +1 mx, my, mz {1|0}
2 y + 1


2, x + 1
2, z, +1 �my, �mx, �mz {m110|12 ;


1
2 ; 0}


3 �x, �y, z, �1 mx, my, �mz {20001j0}
4 �y + 1


2, �x + 1
2, z, �1 �my, �mx, mz {m0110| 1


2 ;
1
2 ; 0}


Figure 2
(a) The magnetic structure of multiferroic Ba2CoGe2O7 (Hutanu et al.,
2012) retrieved from MAGNDATA (#0.56). A magnetically induced
ferroelectric polarization along c is symmetry allowed. (b) An alternative
model with the same but rotated spin arrangement, which has different
magnetic symmetry and no multiferroic character. The associated MSG is
indicated below each panel. The basis transformation in parentheses
beside the MSG label transforms the MSG to its standard setting.


Table 2
Positions and magnetic moments of symmetry-independent atoms in the
magnetic structure of Ba2CoGe2O7 (#0.56; Hutanu et al., 2012).


Unit cell a = 8.46600, b = 8.46600, c = 5.44500 Å, � = 90, � = 90, � = 90�. MSG
Cm0m20 (a + b, �a + b, c; 1


2 ; 0; 0). Magnetic moment components are given in
Bohr magnetons.


Magnetic atoms.


Label
Atom
type x y z


Multi-
plicity


Symmetry
constraints
on M Mx My Mz |M|


Co Co 0.0 0.0 0.0 2 mx, my, 0 2.05 2.05 0.0 2.90


Non-magnetic atoms.


Label Atom type x y z Multiplicity


Ba_1 Ba 0.83464 0.33466 0.50765 2
Ba_2 Ba 0.33464 0.16536 0.49235 2
Ge_1 Ge 0.64073 0.14073 0.95981 2
Ge_2 Ge 0.14073 0.35927 0.04019 2
O1_1 O 0.00000 0.50000 0.15942 1
O1_2 O 0.50000 0.00000 0.84058 1
O2_1 O 0.63791 0.13793 0.27045 2
O2_2 O 0.13791 0.36209 0.72955 2
O3_1 O 0.07906 0.18446 0.18857 4
O3_2 O 0.18446 0.92094 0.81143 4







In other words, the MSG defined by the listed operations in


Table 1 is necessarily one of the 1651 Shubnikov groups, but its


setting, i.e. the form of the operations, does not necessarily


coincide with the one that is used in the listings of the MSGs


that we can take as standard (Litvin, 2013; Stokes & Campbell,


2011; Bilbao Crystallographic Server, 2013). In the example


above, if the change in unit cell and origin (a + b, �a + b, c;
1
2 ; 0; 0) is done, the symmetry operations transform into the


BNS standard form of the MSG with the label Cm0m20 and


BNS number 35.167 (Bilbao Crystallographic Server, 2013).


This means that the ao and bo basis vectors of the standard


orthorhombic unit cell are given by the oblique vectors a + b


and �a + b, respectively, while the origin should be shifted by


a/2. We can summarize this information by saying, in short,


that the symmetry of this structure is given by the MSG


Cm0m20 (a + b, �a + b, c; 1
2 ; 0; 0). Having computer-readable


standard listings of all MSGs, this is the notation that can be


used to define unambiguously any MSG under any setting.


Notice, however, that the transformation to the standard


setting is in general not unique, and different choices of unit


cell and origin are possible for a standard setting of the MSG.


In general, the transformation to standard setting given in


each case is just one of the many possible ones.


The label provided for the relevant MSG is in fact not


needed for describing the structure, as the listed set of


symmetry operations of the MSG is sufficient to define the


MSG that should be used to build up the full structure. The


assignment of a standard label and a transformation to the


MSG standard setting are, however, included in the magCIF


file and in the database as additional complementary infor-


mation. This summarizes the symmetry properties of the


structure in a short unambiguous form and, for instance, the


list of symmetry operations in Table 1 could be obtained by


the application of the inverse of the transformation (a + b,


�a + b, c; 1
2 ; 0; 0) to the BNS standard form of the operations


of the MSG Cm0m20 (No. 35.167), which are retrievable from


the databases available on the internet (Bilbao Crystal-


lographic Server, 2013; Stokes & Campbell, 2011). Thus


Table 2, with its heading that defines the unit cell, and the


MSG label together with the transformation to its standard


setting, can be considered a complete, unambiguous and


robust form to report the magnetic structure, without the need


for Table 1.


2.3. The metrics of the unit cell


As the paramagnetic phase is tetragonal and no ortho-


rhombic strain has been detected, the unit cell of the example


above has tetragonal metrics despite the MSG being ortho-


rhombic. This is a common situation, as magnetoelastic


couplings are usually very weak and the symmetry break,


which in principle is relevant for all degrees of freedom, is


often not observed in the lattice. However, it is important to


know that, according to the symmetry of the phase, an


orthorhombic strain of the unit cell is possible. From the


orientation of the standard unit cell of the MSG, one can see


that this symmetry-allowed strain is in fact a shear strain,


namely a deviation of the � angle from 90�, while the a and b


parameters must keep equal values.


2.4. Positions and magnetic moments of the symmetry-
independent magnetic atoms


The magnetic moments of the magnetic atoms are given as


components (in Bohr magnetons) along the a, b and c unit-cell


basis vectors. Other alternative parameterizations of the


magnetic moments are included in the magCIF dictionary, but


they have not been implemented in this database. As shown in


Table 2, we list not only the positions and magnetic moments


of the symmetry-independent magnetic atoms, but also the


symmetry constraints acting on the magnetic moments. It can


then be seen that, although according to the model the


magnetic moments are aligned along the (1, 1, 0) direction, a


deviation from this direction is symmetry-allowed.


2.5. Positions and magnetic moments of all atoms in the unit
cell


Optionally, MAGNDATA provides the positions and


magnetic moments of all the atoms in the unit cell. They are


derived from those in the asymmetric unit using the symmetry


operations of the MSG: if r and m are the position and


magnetic moment, respectively, of an atom in the asymmetric


unit, a symmetry operation {R | t} implies the presence of


another atom of the same species at r0 = Rr + t, with magnetic


moment given by det(R)R �m, while if the symmetry operation


is {R0 | t}, i.e. it includes time reversal, the magnetic moment


has an additional change of sign and is given by �det(R)R �m.


The listing that can be retrieved for the magnetic atoms of our


example is shown in Table 3. One can see in this table that the


additional symmetry-allowed moment component in the


orthogonal direction (1; 1; 0) breaks the collinearity of the


spin configuration and is ferromagnetic. Thus, one can predict


from the symmetry assignment that this structure is bound to


exhibit weak ferromagnetism on the ab plane, more specifi-


cally along (1; 1; 0). The possible existence of weak ferro-


magnetism can also be derived directly from the magnetic


point group symmetry associated with the MSG (see below).


2.6. Atomic positions of non-magnetic atoms


In principle, the MSG of a commensurate magnetically


ordered phase describes the symmetry constraints of all


degrees of freedom, not only of the magnetic ones. Thus, the


atomic positions of all the non-magnetic atoms are also


derived from those listed within the asymmetric unit by the
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Table 3
Full set of symmetry-related atoms in the unit cell, and their magnetic
moments, generated from the symmetry-independent Co atom listed in
Table 2 (MAGNDATA #0.56), as retrieved from MAGNDATA.


Atom x y z


Symmetry
constraints
on M Mx My Mz


1 0.00000 0.00000 0.00000 mx, my, 0 2.05 2.05 0.0
2 0.50000 0.50000 0.00000 �my, �mx, 0 �2.05 �2.05 0.0







action of the MSG operations, knowing that the presence or


not of time reversal in the operation is irrelevant for the non-


magnetic degrees of freedom. The positions and occupancies


of all atomic sites are therefore subject to an effective ordinary


space group that can be derived from the relevant MSG by


eliminating the presence or not of time reversal in its opera-


tions. The effective space group in the above example is


therefore Cmm2 (a + b, �a + b, c; 1
2 ; 0; 0), with the same


transformation to its standard description as for the MSG. As


the parent paramagnetic phase of this compound has space


group P421m, some atomic sites are split with respect to the


paramagnetic structure, and this is reflected in the listing of


Table 2 with the split atoms having composite numbers in their


labels, such as O1_1, O1_2 etc. Also, the unsplit Co atomic site


acquires some additional freedom, as the position is now free


along the polar c direction. The atomic positions listed in


Table 2 reflect all the positional degrees of freedom released


by the magnetic ordering that could in principle be relevant if


the magnetostructural coupling becomes important. It is in the


framework of this effective symmetry break P421m ! Cmm2


for the non-magnetic degrees of freedom that the multiferroic


properties of this material can be explained (Perez-Mato &


Ribeiro, 2011).


In most cases, the magnetostructural coupling is very weak


and the symmetry break for the positional structure associated


with the magnetic ordering, even if formally present, remains


undetected within the accuracy of the experimental data.


Thus, it is usual that the atomic positions of a magnetic


structure are modelled within a good approximation using the


constraints associated with the symmetry of the paramagnetic


phase, independently of the magnetic ordering producing or


not a symmetry break for the atomic positions. Most magnetic


structures are therefore refined considering the positional


structure and the spin configurations as two separate phases,


with the positional structure being modelled under the space


group of the paramagnetic phase. Often, the positional


structure is even assumed to be identical to that determined in


the paramagnetic phase. Although this type of approximation


is often justified, a unique common rigorous approach to all


structures, including those where a significant magneto-


structural coupling is observed, seemed more appropriate for


a database. We have therefore preferred to describe in all


cases all the degrees of freedom, both for atomic positions and


magnetic moments, under the symmetry constraints of the


MSG that is relevant for the reported magnetic arrangement.


This is the case for the example above where, despite having


an observable electric polarization, the accompanying struc-


tural distortion was too weak to be detected and the positional


structure was reported under the space group P421m. There-


fore, the symmetry-split atomic sites in Table 2 corresponding


to an effective Cmm2 space group are only virtual and have


been derived from the reported P421m positional structure.


This may seem inefficient for some purposes, but it has the


advantage of making explicit the structural degrees of


freedom that become free in the magnetic phase and which


must be taken into account in any eventual investigation of


magnetostructural effects.


2.7. Transformation from the original published data


A good number of the magnetic structures published in the


past or being published at present are determined using the


representation method (Bertaut, 1968; Izyumov et al., 1991)


without making use of or identifying the MSG of the resulting


magnetic structure. This has meant that, in many cases, we had


to reinterpret the spin arrangement of the original article and


transform it to the crystallographic symmetry-based descrip-


tion explained above. In this process, the identification of the


symmetry group of the reported structure was essential.


In order to identify the relevant MSG, instead of applying a


brute force search, a deductive process starting from the


knowledge of the parent symmetry and the propagation


vector(s) was followed. In most cases, this basic knowledge


was sufficient to reduce the possible MSGs to a quite limited


set of subgroups of the grey magnetic group associated with


the parent phase. These MSGs have a hierarchy according to


their group–subgroup relations, and are readily obtained using


computer tools such as MAXMAGN or k-SUBGROUPS-


MAG, also available on the Bilbao Crystallographic Server


(Perez-Mato et al., 2015). Using these programs, combined if


necessary with MAGMODELIZE, also available there, the


different spin-ordering models corresponding to the alter-


native possible symmetries could be obtained in a straight-


forward manner and compared with the reported structure. In


this way, the relevant symmetry was in general easily identi-


fied, and in most cases it was one of the (few) maximal


subgroups in the hierarchical tree of possible MSGs (see x5 for


an example). Once the appropriate magnetic symmetry had


been identified, the above-mentioned tools were also


employed to produce an appropriate magCIF file of the


magnetic structure.


2.8. Visualization and analysis


The output page for each structure includes a pair of figures


obtained with VESTA (Momma & Izumi, 2011). One of the


figures depicts all the atoms, while the second reduces the


graphical representation to the magnetic atoms. The VESTA


files corresponding to these figures can also be downloaded,


but in any case the latest versions of VESTA support the


magCIF format and commensurate magnetic symmetry.


Therefore, the magCIF file provided by MAGNDATA can be
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Figure 3
A screenshot of the online visualization of Mn3Pt (Krén et al., 1967)
(#0.109).







used directly as input for VESTA, which can be used to


visualize/analyse the structures.


A direct link to an online three-dimensional viewer that


uses Jmol (Hanson, 2013) is also available (see Fig. 3). This


online tool makes directly accessible the simplest and most


important commands of Jmol through specific buttons, while


the innumerable commands available to manipulate and


analyse the graphical representation can be applied through a


command window or pop-up console. The latest version of


Jmol fully supports MSGs and accepts magCIF files as input


files. Therefore, Jmol can also be used locally if the magCIF


file of the sructure is downloaded, provided that the user has


previously installed this free program.


3. Additional information


Apart from the minimal information necessary to build up the


magnetic structure in three-dimensional space, MAGNDATA


provides additional important data. This information is also


included in the corresponding magCIF file that can be


retrieved (local tags beyond the official magCIF dictionary are


used for some of the items). We list and discuss here the most


important items


3.1. Magnetic point group


The magnetic point group (MPG) associated with a


commensurate magnetic structure can be derived in a


straightforward manner from the knowledge of its MSG,


simply by taking the rotation or roto-inversion operations


combined (or not) with time reversal present in the group.


This is a very important piece of information, as the magnetic


point group governs the macroscopic crystal tensor properties.


For instance, the point group of Ba2CoGe2O7 (#0.56)


discussed above is m0m20 (No. 7.3.2) (Litvin, 2013) (in a non-


standard setting). MAGNDATA explicitly lists the operations


of the magnetic point group in the used setting (see Table 4).


A direct link to MTENSOR (another program on the


Bilbao Crystallographic Server) then allows the user to


explore, for this specific point group and the setting used, the


symmetry-adapted form of any macroscopic tensorial


magnetic, structural or magnetostructural property (see next


section). For the simplest properties in this example the results


are rather obvious: the point group is polar along the c


direction, while it allows ferromagnetism along the b direction


of the standard unit cell, i.e. the (1; 1; 0) direction in the basis


used. The parent symmetry being non-polar, the magnetic


point group symmetry is thus sufficient for the characteriza-


tion of the system as having a non-polar/polar symmetry break


and therefore as a type II multiferroic, where one can expect


some induced electric polarization and some weak ferro-


magnetism, in accordance with the discussion in x2.


One must be aware that, in general, the point group


symmetry of a magnetic structure not only is determined by


the spin arrangement but also depends on the positions of the


non-magnetic atoms: the simple spin arrangement depicted in


Fig. 2(a), if considered in a purely mono-atomic Co structure,


would have implied a rather different MSG and point group,


which would forbid both ferroelectricity and weak ferro-


magnetism. Only the presence of the non-magnetic atoms


reduces the parent symmetry, and as a consequence also the


symmetry of the magnetic structure, to the MSGs discussed


above.


It is also important to remark that both the MSG and the


corresponding magnetic point group, and therefore also the


multiferroic properties of this particular example, depend on


the orientation of the collinear spin arrangement (see Fig. 2).


The MSG, and as a consequence the magnetic point group,


change if this orientation is changed. For instance, if the spins


align along the a direction, the MSG changes to P2121
020 (�b,


a, c; 0, 0, 0), with point group 20202 (a, �c, b), which is non-


polar, but it also has a ferromagnetic (FM) component allowed


along the b direction, perpendicular to the direction of the


antiferromagnetic (AFM) arrangement (Perez-Mato &


Ribeiro, 2011). An electric polarization is not possible for this


configuration and therefore magnetically induced ferro-


electricity, which can be present for the oblique orientation of


the spins, is forbidden for this alternative orientation. One can


then predict that an external magnetic field rotating on the ab


plane, through its coupling with the weak FM component,


should induce the rotation of the AFM spin arrangement and


a switch between the two limiting polar and non-polar


symmetries, producing a sinusoidal oscillation of the induced


electric polarization along c. This is indeed what is observed


experimentally (Murakawa et al., 2010).


Although the magnetic anisotropy may favour some specific


direction, and hence some specific MSGs, it is sometimes


difficult, as in this example, to determine the absolute orien-


tation of the spins and, even if that is experimentally feasible,


this orientation may be easily manipulated with external fields.


In practice, this can mean some uncertainty over the actual


MSG of the magnetic phase and the corresponding point


group. In these ambiguous cases, we have generally assumed a


spin orientation that maximizes the resulting magnetic


symmetry. Known macroscopic properties, as shown in this


example, can help to avoid ambiguities over the relevant MSG.


3.2. Parent space group and relation of the basis used to that
of the parent phase


By definition, a magnetic structure is distorted with respect


to a so-called parent structure without magnetic order. This is


independent of the magnetic phase being accessible directly
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Table 4
Symmetry operations of the magnetic point group of Ba2CoGe2O7


(Hutanu et al., 2012) as given in MAGNDATA (#0.56).


These operations form the magnetic point group m0m20 (No. 7.3.2) in a non-
standard setting. The transformation to a standard setting is a + b, �a + b, c.


No. x, y, z, �1 mx, my, mz Seitz notation


1 x, y, z, +1 mx, my, mz 1
2 y, x, z, +1 �my, �mx, �mz m110


3 �x, �y, z, �1 mx, my, �mz 20001


4 �y, �x, z, �1 �my, �mx, mz m0110







from a paramagnetic phase or being bordered in the phase


diagram by other magnetic phases. Although a magnetic


structure is in principle fully defined using the data discussed


in the previous section, the knowledge of the symmetry of its


parent paramagnetic structure is fundamental to characterize


the possible domains and the switching properties of the


system. Therefore, this parent space group is included as


additional information. If the parent structure has been


considered in a non-standard setting, the transformation of its


basis to the standard setting is also given.


In the above example of Ba2CoGe2O7 (#0.56), the parent


space group is P421m, with the same unit cell and origin as


those employed to describe the magnetic structure. This


means that the magnetic phase results from a symmetry break


that can be represented as


P421m ! Cm0m20 ap þ bp;�ap þ bp; cp ; 1
2; 0; 0


� �
; ð1Þ


where the transformation to the standard setting is now


described with respect to the basis of the parent phase. The


index of the MSG Cm0m20, as a subgroup of the parent grey


tetragonal magnetic space group P421m10 of the paramagnetic


phase, is 4, and therefore four domain types are possible.


Removing the trivial ones related by time reversal and having


all spins reversed, one has to consider two distinct non-trivial


domains related, for instance, by the lost operation


{4001 j 0; 0; 0}. This means that the two domains will have their


spins rotated by 90� and opposite electric polarization along c.


This switching property is directly related to the symmetry of


the parent phase. A magnetic structure with the same


symmetry Cm0m20, and for instance a parent space group


Cmmm10, would have different switching properties, having


the spins in the two non-trivial domains related by space


inversion.


The database includes information about the relation of the


bases used for the reference parent phase and the magnetic


unit cell. This is given under the heading ‘Transformation from


parent structure’. In the example above this transformation is


the identity, i.e. (a, b, c; 0, 0, 0). As a more complex example,


we show in Fig. 4 the case of Ba3Nb2NiO9 (Hwang et al., 2012)


(#1.13). Here, the parent space group is P3m1 and the


propagation vector of the magnetic ordering is (1
3 ;


1
3 ;


1
2). The


magnetic unit cell that we use keeps the orientation and origin


of the parent unit cell. Therefore, the indicated ‘Transforma-


tion from parent structure’ is (3a, 3b, 2c; 0, 0, 0). This is not a


standard setting for the MSG Pc31c of the structure, and under


the heading ‘Transformation to a standard setting’ the trans-


formation (2
3 a + 1


3 b, � 1
3 a + 1


3 b, c; 1
9 ;


2
9 ; 0) is indicated. One


should be aware that the first transformation refers to the


parent basis, while the second one refers to the working


magnetic unit cell that is being used for the MSG. The three


bases/unit cells can be visualized online, as shown in Fig. 4.


Combining the two basis transformations (from parent unit


cell to the used magnetic unit cell, and from the used magnetic


unit cell to a magnetic unit cell in a standard setting), the


symmetry break between the parent and the magnetic phase is


fully defined. Thus, in this example, the symmetry break is


P3m110 ! Pc31c 2ap þ bp;�ap þ bp; 2cp ; 1
3;


2
3; 0


� �
; ð2Þ


In most cases, the parent space group is clearly defined, as it


corresponds to the symmetry of the experimental para-


magnetic phase, and this structure is usually known and used


as a reference for the subsequent determination of the


magnetic structure. However, if the paramagnetic structure


also includes some structural distortion with respect to a


higher symmetry, the concept of parent symmetry becomes


ambiguous and the formal choice of a parent space group is


not unique. In these cases, we have usually considered as the


parent structure the one that was used as a reference for the


magnetic diffraction in the article reporting the structure.


However, in some exceptional cases a better choice was


detected and a different parent symmetry has been consid-


ered. This may happen, for instance, in magnetic phases where


the presence of a concomitant structural distortion has led to


the use of the distorted structure as a reference for the


refinement of the magnetic diffraction data.


3.3. Propagation vector(s)


The propagation vectors that are active as primary wave-


vectors of the magnetic ordering are part of the character-


ization of a magnetic phase. These wavevectors can be derived


in a straightforward manner from knowledge of the MSG and


the parent space group of the magnetic structure, and the


relation of their respective unit-cell bases. In practice,


however, the propagation vectors are directly accessible in


diffraction experiments, and knowledge of them is usually the


first step in the process of determining the magnetic structure.


Thus, although the form in which the magnetic structures are


described in MAGNDATA does not require the explicit


definition of these propagation vectors, this information is


included as an important complementary feature which is


directly related to the experiment. If the magnetic arrange-


ment includes spin waves with wavevectors corresponding to


harmonics of a primary propagation vector, they are also


listed.


The components of the propagation vectors are given in the


reciprocal conventional basis of the parent space group. In our


first example of Fig. 1, the propagation vector is k = (0, 0, 0),


which means that magnetic ordering keeps the lattice of the
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Figure 4
The spin arrangement in the magnetic structure of Ba3Nb2NiO9 (#1.13)
reported by Hwang et al. (2012), as given by the online Jmol visualization
tool of MAGNDATA, showing (a) the magnetic unit cell used and the
parent unit cell, and (b) the magnetic unit cell used and that
corresponding to the standard setting of the MSG.







parent structure, and neutron magnetic diffraction peaks will


superpose with the nuclear ones. In Fig. 4, the propagation


vector is (1
3 ;


1
3 ;


1
2).


The propagation vectors are used in this collection as the


most basic feature for classifying the magnetic structures, and


this is reflected in the entry labels. The structures are divided


into six fundamental classes:


Class 0. Magnetic structures with a null propagation vector


[k = (0, 0, 0)] which keep the lattice of the parent structure,


and their MSG is necessarily of type I or III (Bradley &


Cracknell, 1972), which means that the MSG does not include


antitranslations of type {10 | t} (i.e. combinations of translations


with time reversal).


Class 1. Commensurate magnetic structures with a single


primary nonzero propagation vector k, such that nk is a


reciprocal lattice vector of the parent space group, with n


even. The MSGs of these structures are necessarily of type IV


(Bradley & Cracknell, 1972), i.e. they contain anti-translations


of type {10 | t}. Higher harmonics with wavevectors mk (m odd)


may be present in the spin arrangement (if these vectors are


not equivalent to k). The point group of these materials


includes time reversal, i.e. it is a grey point group, and


therefore linear magnetostructural effects are not possible.


Class 1.0. Commensurate magnetic structures with a single


primary nonzero propagation vector k, such that nk is a


reciprocal lattice vector of the parent space group, with n odd.


The MSGs of these structures are necessarily of type I or III


(Bradley & Cracknell, 1972), as in Class 0, but some lattice


translations of the parent structure are lost and the lattice of


the magnetic structure is described by a supercell of the parent


unit cell. As in the previous class, higher harmonics with


wavevectors mk (m odd) can be present in the spin arrange-


ment, and in this case these possible higher harmonics


necessarily include a wavevector equivalent to (0, 0, 0). This


means that some magnetic neutron diffraction peaks can


superpose with the nuclear ones if such a harmonic is present


in the spin arrangement.


Class 2. Commensurate magnetic structures with two


independent primary propagation vectors.


Class 3. Commensurate magnetic structures with three


independent primary propagation vectors. Among the struc-


tures in classes 2 and 3 with more than one primary propa-


gation vector, those having propagation vectors that are


symmetry-related by the MSG operations form an important


special set. However, the number of multi-k magnetic struc-


tures that are being reported is minimal, and therefore we


have not introduced further divisions within classes 2 and 3.


Class 1.1. Incommensurate magnetic structures with a single


primary incommensurate propagation wavevector. The


symmetry of magnetic structures with incommensurate


propagation wavevectors cannot be described using an MSG


or Shubnikov group. Their systematic description requires a


different methodology. Its symmetry can be described by a


magnetic superspace group (MSSG), similar to what happens


in the case of incommensurate non-magnetic crystals and


quasicrystals (Perez-Mato et al., 2012). The specific form in


which incommensurate magnetic structures are stored in


MAGNDATA using magnetic superspace symmetry is


described in detail in a separate publication (Gallego et al.,


2016).


3.4. Representation analysis


Commensurate magnetic structures are described in this


database under the framework and constraints associated with


their MSG, without using the so-called representation method


(Bertaut, 1968; Izyumov et al., 1991). However, once a


magnetic structure is described under its relevant MSG


symmetry and a corresponding magCIF file is prepared, the


symmetry mode decomposition of the magnetic structure with


respect to the parent structure, in terms of basis spin modes


corresponding to the different possible irreducible repre-


sentations (irreps) of the parent space group, can be done in a


straightforward manner with the program ISODISTORT


(Campbell et al., 2006). Following this procedure, we have


obtained for most structures of this collection their irrep mode


decomposition, and we have included a brief summary of the


magnetic irreps that are active in each phase and their


restrictions. Only in the trivial cases for which the assignment


of the MSG has a one to one correspondence with the


assignment of an irrep has this step often been skipped.


Table 5 lists a set of examples of the information provided


on the irrep mode decomposition. The irrep labels are those


provided by ISODISTORT. This labelling convention is


robust and unambiguous, and can be applied through


computer-readable irrep listings (Stokes et al., 2013). It has


been adopted by the Bilbao Crystallographic Server and by


JANA (Petřı́ček et al., 2014). This irrep labelling is also


consistent with the most extended notation for k vectors


corresponding to symmetry points, lines and planes of the


Brillouin zone (Aroyo et al., 2014). Note that the irreps


associated with spin modes, which are odd for time reversal,


are distinguished from the analogous non-magnetic ones,


which are even for time reversal, by means of the letter ‘m’ as


a prefix. For each active irrep, the dimensions of the small and


the full representations are given. The factor between these


two numbers is the number of k vectors in the star of the irrep


(Bradley & Cracknell, 1972; Stokes et al., 2013).


If the irrep is multidimensional, the direction of the


magnetic order parameter in irrep space is classified as either


‘general‘ or ‘special’. A ‘general’ order parameter direction


indicates that the MSG allows any arbitrary combination of


the irrep spin basis modes and the MSG is the minimum


magnetic symmetry compatible with this irrep distortion, i.e.


the so-called kernel of the irrep, in contrast with the higher


symmetries for some specific irrep subspaces, the so-called


irrep epikernels (Ascher, 1977). If the order parameter


direction is termed ‘special’, we mean that the symmetry


constraints of the MSG imply the restriction to some specific


linear combinations of the irrep spin basis modes, and there-


fore the spin degrees of freedom of the magnetic phase are


fewer than those provided by the full set of irrep spin basis


functions.
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In the case of irreps with more than one arm in their star of


k vectors and with k equivalent to �k, spin arrangements


restricted to a single k imply a special direction for the order


parameter of a rather trivial character. This restriction is


introduced automatically in the traditional representation


method, when the exploration of spin arrangements is limited


to those coming from the spin basis functions associated with a


single k of the irrep star. Non-trivial symmetry constraints in


1k magnetic structures that are not included in the traditional


representation method appear when the star of k vectors


includes the vector �k as non-equivalent and/or when the


small irrep is multidimensional. In both cases, the irrep


restricted to the symmetry operations that either keep k


invariant or change it into �k (the so-called extended small


space group) is multidimensional. The effective order para-


meter for the single-k spin arrangements is therefore multi-


dimensional in these cases and, for special directions within


the order parameter space, a higher MSG (irrep epikernel)


may be realized. These are the cases that are indicated in the


database as having a ‘special’ direction for the irrep, and they


are of interest because the correspondence between the MSG


and the irrep assignment is not one to one, with different


MSGs being possible for the same active irrep.


In the case of multi-k structures with several propagation


vectors belonging to the same irrep star, even if the small irrep


is one dimensional and k is equivalent to�k, special directions


of the order parameter with different MSGs can occur,


depending on the way the spin basis functions corresponding


to different propagation vectors of the irrep star are


combined. These structures are distinguished in the database


by denoting them as ‘special-2’ for the direction of the order


parameter.


The information on the irrep mode decomposition is


completed with the qualification of the active irreps which are


listed as ‘primary’ or ‘secondary’. A symmetry-allowed irrep


distortion is identified as primary if the spin modes can be


considered as the driving agent for the symmetry break of the


magnetic phase, while it is secondary if they are symmetry


allowed but their presence in the magnetic ordering can be


considered a secondary induced effect, which could be negli-


gible.


In most cases, only one irrep is compatible with the MSG of


the structure, and therefore its primary character is obvious.


This is the case for the first seven examples in Table 5, where


one can see that, when the small irrep is multidimensional, in


most cases the magnetic phase corresponds to a special irrep


direction, and therefore the description using the MSG implies


additional constraints. Other structures have an MSG that is


compatible with more than one magnetic irrep [see


Ca3LiOsO6 (#0.3; Calder et al., 2012) and subsequent entries in


Table 5], but one of the possible irreps is the primary one,


yielding the symmetry break in the observed MSG. The


distinction between primary and secondary irreps has rele-


vance only in this type of structure. Secondary irrep distor-


tions, although symmetry-allowed, are usually absent. They


can appear as weak secondary induced effects, and they are


often negligible. The absence of these secondary irrep


distortions implies that the effective number of spin degrees of


freedom of the structure decreases, with respect to those


allowed by the MSG, by constraining the model to the spin
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Table 5
Examples of the information available on the symmetry mode decomposition of the magnetic structures in MAGNDATA.


Compound Reference†
Parent space
group k vector(s)


Magnetic space
group Irrep(s) ds‡ df§


Order parameter
direction Action


MnTe2 (#0.20) (a) Pa3 (0, 0, 0) Pa3 (No. 205.33) mGM1 1 1 Primary


LiFeGe2O6 (#1.39) (b) P21/c (1
2, 0, 0) Pa21/c (No. 14.80) mY1+ 1 1 Primary


ErAuGe (#1.33) (c) P63mc (1
2, 0, 0) PCna21 (No. 33.154) mM2 1 3 Primary


Mn3Pt (#0.109) (d) Pm3m (0, 0, 0) R3m0 (No. 166.101) mGM4+ 3 3 Special Primary


Na2MnF5 (#1.55) (e) P21/c (0, 1
2, 0) Pbc (No. 7.29) mZ1 2 2 Special Primary


HoMnO3 (#1.20) ( f ) Pnma (1
2, 0, 0) Pbmn21 (No. 31.129) mX1 2 2 Special Primary


TbMn2O5 (#1.108) (g) Pbam (1
2 ; 0; 1


4) Cam (No. 8.36) mG1 2 4 General Primary


Ca3LiOsO6 (#0.3) (h) R3c (0, 0, 0) C20=c0 (No. 15.89) mGM3+ 2 2 Special Primary


mGM2+ 1 1 Secondary


NiO (#1.6) (i) Fm3m (1
2 ;


1
2 ;


1
2) Cc2/c (No. 15.90) mL3 2 8 Special Primary


mL2+ 1 4 Secondary


TmAgGe (#3.1) (j) P62m (1
2 ; 0; 0) P602m0 (No. 189.224) mM2 1 3 Special-2 Primary


(1
2 ;


1
2 ; 0)


(0; 1
2 ; 0)


FePO4 (#0.17) (k) Pnma (0, 0, 0) P212121 (No. 19.25) mGM1+ 1 1 Primary


mGM1� 1 1 Primary


Bi2MnRuO7 (#0.153) (l) Fd3m (0, 0, 0) Fd0d0d (No. 70.530) mGM4+ 3 3 Special Primary


mGM5+ 3 3 Special Primary


LuFe4Ge2 (#0.140) (m) P42/mnm (0, 0, 0) Pn0n0m (No. 58.399) mGM2� 1 1 Primary


GM2+ 1 1 Primary


mGM1� 1 1 Secondary


† References: (a) Burlet et al. (1997), (b) Redhammer et al. (2009), (c) Baran et al. (2001), (d) Krén et al. (1967), (e) Núñez et al. (1994), ( f ) Muñoz, Casáis et al. (2001), (g) Blake et al.
(2005), (h) Calder et al. (2012), (i) Ressouche et al. (2006), (j) Baran et al. (2009), (k) Rousse et al. (2003), (l) Martı́nez-Coronado et al. (2014), (m) Schobinger-Papamantellos et al.
(2012). ‡ Dimension of small irrep. § Dimension of full irrep.







degrees of freedom of the primary irrep. However, it is


important to remark that, in the traditional refinement


method, the possible presence of allowed secondary irrep


distortions may have been discarded a priori without an


experimental check. A combined application of magnetic


symmetry and representation analysis is especially recom-


mended in these structures. Representation analysis allows the


decomposition of the spin degrees of freedom within the


relevant MSG into primary and secondary ones, and the


performance of a controlled and systematic check of the


significance of possible secondary modes in the spin arrange-


ment. However, the identification of the relevant MSG for the


phase is a necessary previous step in order to ‘symmetry


adapt’ the spin basis modes of the primary irrep.


The explicit separation of the magnetic degrees of freedom


into primary and secondary ones (if these latter exist) within


the constraints of an MSG can be done using ISODISTORT.


In MAGNDATA, we have only included some information


about the number of degrees of freedom associated with each


irrep, and a flag indicating whether the secondary irrep is


really present with nonzero amplitude in the distortion. This


information does not pretend to be comprehensive. In any


case, users can always download the corresponding magCIF


and, with the CIF of the appropriate parent phase, obtain in a


few minutes with ISODISTORT (and previous transformation


with ISOCIF if the magCIF file is in a non-standard setting)


the symmetry mode decomposition of any of the commensu-


rate structures in MAGNDATA. A direct link to another


program on the Bilbao Crystallographic Server also provides a


survey of all compatible irreps (see next section).


Magnetostructural coupling is usually too weak to allow


observation of secondary non-magnetic structural displacive


distortion modes induced by the magnetic ordering. If they


exist in the reported structure, they have generally not been


included in the summary of the irrep mode decomposition of


the structure, which is limited to the magnetic irreps. Non-


magnetic irreps have only exceptionally been included in the


irrep summary, as for instance in the case of LuFe4Ge2 (#0.140;


Schobinger-Papamantellos et al., 2012). This compound is


reported to exhibit a structural phase transition simulta-


neously with the magnetic ordering. From its symmetry


properties one can deduce that the observed structural


distortion is not a magnetic induced effect, as this distortion


produces an additional symmetry break that must be taken


into account for the MSG of the magnetic phase. Therefore,


the non-magnetic irrep associated with this structural distor-


tion should be considered as a primary irrep, and it is listed


accordingly in the irrep summary.


3.5. Transition temperature and experiment temperature


If available, the transition temperature below which the


reported structure becomes stable is given. This usually


coincides with the Néel temperature of a paramagnetic–


antiferromagnetic phase transition, but in systems with


multiple magnetic phases the temperature given can be the


upper temperature bordering a neighbouring magnetic phase.


If available, the temperature at which the magnetic diffraction


data were measured (experiment temperature) is also listed.


3.6. References


Magnetic structures are often reported without providing a


detailed account of the atomic positional structure that has


been considered, or if provided, it may correspond to the


paramagnetic phase or to a measurement at a different


temperature from the one at which the magnetic ordering was


measured. In order to have as complete a description of the


magnetic structure as possible, we have in most cases used (if


available) the atomic positions from the same reference, as


retrieved from the Inorganic Crystal Structure Database


(ICSD, 2007), and the ICSD entry number is indicated. If not


available, an ICSD entry for the same compound (usually at


room temperature) has been employed. In other cases the


positional structure has been manually retrieved from the


reference. In general, one should be aware that atomic posi-


tions are often only approximate, as they may have been


determined independently of the magnetic ordering and under


different experimental conditions.


3.7. Comments


The comments that appear for a particular structure are


normally reduced to information on the experimental tech-


nique used for the data, details of the experimental conditions


or the phase diagram of the material, the existence of similar


structures etc. If the MSG corresponds to a so-called


k-maximal symmetry (Perez-Mato, 2015) (see next section),


this is also stated in the comments. The presence of a magnetic


structure in this collection should not be taken as a kind of


validation, as we have not performed any cross-check of the


proposed structures, and the only requirement was that the


model is self-consistent and unambiguous. In fact, the data-


base contains more than one model for some magnetic phases,


and they do not necessarily agree. If, according to our analysis,


a structure presents some contradictions, compared with


either the information given in the same publication or that in


other references, these problems are mentioned in the


comments. If the way that the structure has been reported


strongly indicates that it was fitted without fully exploring all


possible spin arrangements, or introducing some strong


aprioristic constraints, this may also be mentioned here.


4. Links to other programs


By means of direct links, the relevant data for any entry can be


introduced for further analysis into other programs of the


Bilbao Crystallographic Server. The most important linked


programs are the following:


STRCONVERT. This tool allows automatic online editing,


some transformations and different output formats.


MAGNEXT (Gallego et al., 2012). This program provides


the systematic absences to be expected on the non-polarized


neutron magnetic diffraction diagram due to the MSG of the


crystal. The program can also list the symmetry-forced form of
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the magnetic structure factor for special symmetry directions


or planes in reciprocal space. This information can be used to


derive additional systematic absences if the orientation of the


spins has constraints that are not dictated by the MSG.


Possible extra systematic absences due to the restrictions of


the magnetic sites to some specific Wyckoff positions are not


included. It is important to remark that the systematic


absences are expressed in terms of (h, k, l) indices with respect


to the reciprocal unit cell of the basis used for the description


of the magnetic structure in the present database. This unit cell


does not necessarily coincide with that considered in the


original publication.


MTENSOR. This program provides the symmetry-adapted


form of any crystal tensor property (equilibrium, optical or


transport properties). All kinds of crystal tensors (up to eighth


rank) can be consulted. The tensor constraints are derived


considering the magnetic point group of the structure in the


setting (in general non-standard) defined by the unit cell used


in the present database. For example, Fig. 5 reproduces the


output of MTENSOR for the linear magnetoelectric tensor


relating electric polarization and magnetic field for the case of


Ba2CoGe2O7 (#0.56), the example discussed in x2. From the


form of the magnetoelectric tensor, one can derive that the


application of a magnetic field along c is bound to induce some


electric polarization along the (1; 1; 0) direction, which is the


direction of the weak ferromagnetism. Alternatively, the


application of the magnetic field along this particular basal


direction induces some electric polarization along c, which


should be added to the ferroelectric spontaneous polarization


along this direction. Although in general this magnetoelectric


response may be difficult to disentangle from additional


magnetoelectric effects due to field-induced reorientation of


the spins and domain switching, one must be aware of its


existence when interpreting magnetoelectric experiments.


Through this link with MTENSOR, our database provides the


necessary information for any kind of crystal tensor property


that may be of interest. This program can also be used to


explore tensor switching properties when switching the system


to domain-related configurations.


MVISUALIZE. Apart from being a Jmol-based visualiza-


tion tool, with similar features to the online viewer mentioned


in x2, this separate program, which can work with any


magnetic structure introduced with a magCIF file, can be used


to produce domain-equivalent structures or to change the


description of the structure to any setting/unit-cell basis that


may be wished, including the standard setting.


From the knowledge of the parent space group and the


MSG of the structure, the program provides a complete set of


parent symmetry operations that, applied to the original


structure, produce all possible distinct domain-related


equivalent structures. These alternative domain-related


equivalent descriptions of the magnetic structure can then be


visualized and saved as magCIF files.


Let us consider the case of Cs2CoCl4 (#1.51; Kenzelmann et


al., 2002). The symmetry break of the magnetic ordering in this


compound is


Pnma10 ! Pa201 cp; ap; bp þ cp ; 0; 3
8;�


1
8


� �
; ð3Þ


with the propagation vector k = (0; 1
2 ;


1
2). The primitive


magnetic cell is duplicated with respect to that of the parent


lattice, while the point group symmetry reduces from the 16


operations of mmm10 to the four operations in 210. Hence the


index of the magnetic group, as a subgroup of the parent grey


group, is 8 and we should expect eight types of domain. The


domain-related structures are obtained by transforming the


structure stored in the database by the lost symmetry opera-


tions of the paramagnetic phase. Only a coset representative


for each of the eight cosets of the coset decomposition of the


MSG Pa21 with respect to the parent group Pnma10 is neces-


sary to obtain the eight distinct domain-related configurations


of the magnetic structure with respect to the parent para-


magnetic phase. After elimination of the trivial domains


obtained by switching all spins to opposite values by the action


of the lost time reversal, there are then four non-trivial


domains. This means that four distinct but equivalent


descriptions of the magnetic structure exist if the parent


paramagnetic phase is taken as a common reference.


MVISUALIZE makes a choice for this set of distinct non-


trivial coset representatives (see Fig. 6) and provides, if


desired, the magnetic structure models corresponding to each


of them (see Fig. 7).


Enumeration of the different domain-related descriptions is


very important when comparing structures proposed by
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Figure 5
The symmetry-adapted form of the magnetoelectric tensor (inverse
effect) relating electric polarization and magnetic field, in the form Pi =
�T


ijHj, for Ba2CoGe2O7 (MAGNDATA #0.56) as given by MTENSOR
through its link with MAGNDATA. Note that the setting of the
orthorhombic point group symmetry is not standard.


Figure 6
A screenshot of the ouput for Cs2CoCl4 (#1.51) listing the chosen set of
symmetry operations (coset representatives) in the magnetic phase,
whose action on the magnetic structure produces all the distinct non-
trivial domain-related spin arrangements, which are physically equivalent.







different studies or when refining the structure. It allows the


researcher to enumerate all possible models that are experi-


mentally indistinguishable because of their full equivalence.


Particularly in the case of powder diffraction, it is not


uncommon to confuse or mix these alternative descriptions of


the same model with physically different ones that may fit the


experimental data equally well. A systematic determination of


all domain-related descriptions not only precludes this


confusion, but can also help to detect pseudosymmetry in the


model. In Fig. 6 for instance, one can see that the inversion


symmetry is only broken by the slight canting of the spins. But


the spin z component of the Co atoms is 0.4 (2) Bohr


magnetons, compared with 1.6 (4) for the y component


(Kenzelmann et al., 2002). The spin canting that breaks the


centrosymmetry of the structure is therefore close to its


standard deviation. Cs2CoCl4 (#1.51) is one of the few


magnetic structures in MAGNDATA where the spin


arrangement associated with a single multidimensional irrep


corresponds to a general direction within the irrep, and the


symmetry is reduced to the irrep kernel (see Table 6 in x6).


Get_mirreps. This program provides a list of compatible


irreps for a given magnetic symmetry break from a parent grey


group. It includes all magnetic and non-magnetic irreps of the


parent grey group that are allowed to be active in a distorted


structure with the symmetry given by the input subgroup. The


corresponding wavevectors and special directions within the


irrep spaces are also indicated. Through the direct link to this


program, one obtains for each commensurate structure


information about all possible primary and secondary irreps


that can be relevant. It should be stressed that the program


lists all compatible irreps from the viewpoint of symmetry,


without considering the specificity of the structure. This means


that some of these irreps may be irrelevant, because they are


not present in the irrep decomposition of the degrees of


freedom of the structure.


5. Trend to maximal symmetry: the example of
pyrochlore-type structures


A general principle of maximal symmetry is generally at work,


and the symmetry of the majority of the structures that are


being reported is given by a ‘maximal subgroup’ among the set


of possible ones. These most favourable MSGs can be termed


‘maximal’ in the sense that there is no supergroup (subgroup


of the parent grey symmetry) that fulfils the same conditions.


If only the compatibility condition with the observed propa-


gation vector(s) is taken into account, we denote these most


favourable MSGs as ‘k-maximal subgroups’, ‘k-maximal


MSGs’, ‘k-maximal symmetries’ etc. (Perez-Mato et al., 2015).


However, the compatibility condition can be more restrictive


if the magnetic atoms occupy special Wyckoff positions, and


some of the MSGs compatible with the observed propagation


vector(s) can be discarded, either because they force a null


magnetic moment at all magnetic sites or because they do not


represent any additional degree of freedom with respect to


those already allowed by a supergroup.


As an example, Fig. 8 shows the possible MSGs for a


magnetic structure with parent space group Fd3m (parent


MSG Fd3m10), zero propagation vector, and magnetic atoms


at the positions 16c (0, 0, 0) and/or 16d (1
2 ;


1
2 ;


1
2). The figure


shows the group–subgroup hierarchy among all the possible


symmetries which could be realized. This is the relevant


scenario for all magnetic orderings in pyrochlore-type struc-


tures that do not break the parent lattice periodicity. In the


figure, one can see that there are six possible maximal


symmetries in the sense explained above, and three of them


are realized in some of the collected structures. Fig. 9 depicts


some examples. Although we could not find any experimental


structure with any of the other three maximal symmetries, one


should be aware that these magnetic structures are often


determined with ‘trial and error’ methods, and in some cases it


is doubtful that all possible alternative arrangements have


been explored and cross-checked. In other cases, powder


diffractometry is unable to distinguish between alternative


spin modes or their combination, and an arbitrary choice has


been made among indistinguishable (but different) config-


urations (Wills et al., 2006).


Only three of the ten pyrochlore-type zero-field magnetic


phases with 16c or 16d as the magnetic site and with k = 0,


which are present in MAGNDATA, do not possess a maximal


symmetry in the sense explained above. Two of them have the


symmetry I41
0/am0d. As shown in Fig. 8, this group is a


subgroup of Fd3m0 and is therefore not maximal among the


possible subgroups. It is, however, maximal among the


possible symmetries for magnetic ordering if, according to
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Figure 7
Graphical representation of the four non-trivial domain-related equiva-
lent descriptions of the magnetic structure of Cs2CoCl4 (#1.51), as
obtained using the corresponding link in MAGNDATA. Only the
magnetic atoms within a parent unit cell are shown. The spins are
repeated in consecutive parent cells with the same or opposite
orientation, according to the set of centring translations and anti-
translations of the corresponding MSG or, equivalently, according to the
phase factor for the propagation vector k = ð0; 1


2 ;
1
2Þ. The lost symmetry


operation (coset representative listed in Fig. 6) that has been employed to
generate the transformed structure is indicated below each case. Four
additional domains, trivially related to those in the figure through the
switch of the direction of all spins, complete the set.







Landau theory (see x3 above), it is assumed to be triggered by


a single irrep. As shown in Fig. 10, this subgroup is indeed one


of the two possible maximal symmetries resulting from a spin


arrangement according to the two-dimensional irrep GM3+.


In general, all maximal MSGs for a given propagation vector


and specific magnetic sites are maximal irrep epikernels, but


the reverse is not true. Some irrep epikernels of maximal


symmetry may be subgroups of one or more MSGs, which are


epikernels (or kernels) for another irrep. This is the case in


Fig. 10 for the MSG I41
0/am0d, which is a subgroup of Fd3m0,


the kernel of irrep mGM2+ (see Fig. 8). This means that this


MSG allows the presence of a secondary mGM2+ spin mode


of symmetry Fd3m0, apart from the primary irrep mode


corresponding to mGM3+.


The structure of Bi2RuMnO7 (#0.153; Martı́nez-Coronado


et al., 2014) is the only one of the pyrochlore-type structures


that could not be classified as having maximal symmetry, in the


broad sense summarized in Fig. 8, or in the restrictive sense of


a maximal epikernel of a single irrep, as described by Fig. 10.


As can be seen in the irrep decomposition summary of this


simple collinear structure, this model represents the super-


position of spin modes corresponding to two different irreps,


namely mGM4+ and mGM5+ (see Table 5), and it is therefore


not simple from this viewpoint. It is not clear if the collinearity
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Figure 10
Possible MSGs (epikernels and kernel) for spin arrangements according
to the two-dimensional irrep mGM3+ of Fd3m (#227), with k = 0, showing
their group–subgroup relationship. Maximal subgroups are surrounded
by black ovals. One single group for each conjugacy class of equivalent
subgroups is shown. (Obtained with k-SUBGROUPSMAG; Perez-Mato
et al., 2015.)


Figure 9
Examples of magnetic structures in MAGNDATA having one of the
maximal symmetries indicated in Fig. 8, corresponding to Cd2Os2O7


(Yamaura et al., 2012), Gd2Sn2O7 (Wills et al., 2006) and Ho2Ru2O7


(Wiebe et al., 2004).


Figure 8
Possible symmetries for a magnetic structure having a parent structure with space group Fd3m and a null propagation vector, with the magnetic atoms at
sites 16c ð0; 0; 0Þ and/or 16d ð12 ;


1
2 ;


1
2Þ. The symmetries are shown as subgroups of the parent grey MSG using standard BNS labels (Stokes & Campbell,


2011), indicating their group–subgroup relationship. Maximal subgroups are surrounded by black ovals. Only one MSG is shown for each conjugacy class
of physically equivalent subgroups. The symmetries realized by the experimental pyrochlore structures gathered in MAGNDATA are highlighted with
red ellipses in the case of maximal symmetries or with blue squares otherwise. (Obtained with k-SUBGROUPSMAG; Perez-Mato et al., 2015.)







was an a priori assumption or whether more complex models


were explored during the refinement. In any case, the authors


reporting the structure seem to be unaware of the fact that the


proposed collinear model, despite its apparent simplicity,


implies the presence of two active primary irreps.


From this example, it becomes clear that an efficient


methodology for the structure determination of such a type of


complex phase would require the systematic contrast of the


experimental data with each of the models corresponding to


all possible alternative maximal symmetries, monitoring


within these symmetries the degrees of freedom corre-


sponding to different irreps if more than one is allowed, and


eventually descending to lower MSGs, if necessary.


6. A survey of the collection


MAGNDATA includes a set of sampling and search tools that


can be used to explore various properties among the more


than 370 collected commensurate structures. Here, we


summarize some of the features that can be explored with


these tools.


6.1. Experimental technique


While neutron powder diffraction is the main technique for


the determination of most of the structures, about one-fifth of


them are based on data from neutron single-crystal experi-


ments.


6.2. Structures with a single active primary one-dimensional
irrep


About 95% of the structures are single-k structures, and


50% of them have a one-dimensional order parameter trans-


forming according to an irrep which is one-dimensional when


restricted to the subspace of spin arrangements with the


observed propagation vector. In the language of representa-


tion analysis, this means that the small irrep is one-dimen-


sional and the propagation vectors k and �k are equivalent.


These are the most simple magnetic structures. The MSG is


necessarily k maximal in the sense explained in previous


sections, and space inversion symmetry is necessarily


conserved if existing in the parent phase. Apart from the


domains corresponding to possible symmetry-related distinct


propagation vectors, only two types of domain exist, which are


trivially related by time reversal (switch of all the spins).


6.3. Structures with a single primary multidimensional irrep
active


About 100 single-k structures have a primary irrep which is


multidimensional when restricted to the subspace of spin


arrangements for the given propagation vector. The relevant


MSG in about 80% of these structures corresponds to an irrep


epikernel of maximal symmetry (see xx4 and 5). This means


that the spin arrangement includes symmetry-dictated


constraints restricting the possible combination of the irrep


basis functions. In these structures, the effective point group


for the non-magnetic degrees of freedom is lower than the set


of parent point group operations keeping the propagation


vector invariant, and non-trivial orientational domains with


the same propagation vector exist.


6.4. Structures with maximal symmetry


About 76% of the single-k commensurate structures have a


k-maximal symmetry, and if one adds those with their


symmetry given by a maximal epikernel of a multidimensional


irrep that is not k maximal, the number of structures with


maximal symmetry within the constraint of a k vector or irrep


is about 85%. There are therefore about 15% of structures


with symmetries that are not maximal in either of these two


senses. These cases require either the action of two or more


primary irreps or some arbitrariness in the direction taken by


the magnetic order parameter, which in these exceptional


cases would not be fully dictated by symmetry.


6.5. Structures with exceptionally low symmetries


We could only detect eight structures where the direction of


the magnetic order parameter within the multidimensional


irrep is ‘general’ in the sense explained in x4, such that it does


not take one of the possible symmetry-dictated directions of


higher symmetry. These are listed in Table 6. Most of them are


rather complex structures with many spin degrees of freedom,


even if they are restricted to a single active irrep [see, for


instance, DyFe4Ge2 (#1.98; Schobinger-Papamantellos et al.,


2006) and Tm5Ni2In4 (#1.170; Szytuła et al., 2014) in Fig. 11].


Often, the articles accompanying the reports of these struc-


tures suggest that the MSG of the model has not been moni-


tored, and models with possible higher symmetries associated


with the epikernels of the irrep have not been explored and


contrasted with the proposed structure. In some cases, the


macroscopic properties of the phases also suggest the possi-


bility of a higher MSG and therefore a special direction for the


order parameter. This happens, for instance, with the multi-


ferroics BiMn2O5 (#1.75; Vecchini et al., 2008), and TbMn2O5


(#1.108) and HoMn2O5 (#1.109; Blake et al., 2005), where the


direction of the induced electric polarization is along one of


the orthorhombic directions, which would be consistent with


one of the irrep epikernels. In the case of BiMn2O5, such an
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Figure 11
The magnetic structures of DyFe4Ge2 (Schobinger-Papamantellos et al.,
2006) and Tm5Ni2In4 (Szytuła et al., 2014) as retrieved from MAGN-
DATA (#1.98 and #1.170). These models belong to the few (listed in
Table 6) where the magnetic symmetry realized is not maximal for the
active irrep.







alternative structure of higher symmetry has in fact been


reported in another study (#1.74; Muñoz et al., 2002).


Among this set of structures of exceptionally low symmetry,


there are also quite simple ones such as Cs2CoCl4 (#1.51;


Kenzelmann et al., 2002), already discussed in x4 (see Fig. 7),


where the general direction and the deviation from an MSG of


higher symmetry are due to a small spin canting, close to its


standard deviation. The spin arrangement of NiSb2O6 (#1.113;


Ehrenberg et al., 1998), depicted in Fig. 12(a), is also very


simple, but its simplicity is deceptive from the point of view of


magnetic symmetry. Non-collinear arrangements could


conserve higher symmetries, which correspond to the epi-


kernels of the only possible active irrep. Sketches of these


alternative models are also shown in Fig. 12. Certainly, the


prevalence of the exchange interaction in conjunction with


crystal anisotropy may favour the reported collinear


arrangement, despite its larger symmetry reduction. Never-


theless, sometimes it seems that the non-collinear models


corresponding to possible higher symmetries have not been


fully checked.


It should be remarked that there are also a few structures


where the order parameter direction is termed ‘general’ in the


database, but the irrep is a two-dimensional so-called ‘physi-


cally irreducible’ representation. Two-dimensional physically


irreducible representations do not possess special directions of


higher symmetry and have no epikernel, the maximal


symmetry being the irrep kernel, realized for any direction of


the order parameter. Therefore, in these cases, a general


direction for the order parameter is the only one possible, and


they have not been included in Table 6.


6.6. Structures with several primary irreps


Most of the structures are the consequence of an order


parameter transforming according to a single primary irrep, in


agreement with the usual assumption based on the Landau


theory of phase transitions. However, about 10% require the


action of two or more primary irreps. Table 5 lists the example


of FePO4 (#0.17; Rousse et al., 2003), where the spin


arrangement includes spin modes corresponding to two one-


dimensional irreps, the resulting MSG being the intersection


of the kernels of the two irreps, and therefore both irreps


being primary. The reason for the presence of two primary


irreps is often quite obvious, like the existence of two conse-


cutive phase transitions, or the independent ordering of two
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Table 6
Single-k magnetic structures where the multidimensional order parameter takes a general direction and the symmetry is not maximal for the relevant
irrep.


The dimension of the irrep restricted to the subspace of the k vector is given in the last column in parentheses, together with the label of the irrep.


Compound Reference† k vector Parent space group Magnetic space group Magnetic point group Irrep (dimension)


Cs2CoCl4 (#1.51) (a) (0; 1
2 ;


1
2) Pnma Pa21 (No. 4.10) 210 mT1 (2)


BiMn2O5 (#1.75) (b) (1
2 ; 0; 1


2) Pbam Cam (No. 8.36) m10 mU1 (2)


DyFe4Ge2 (#1.98) (c) (1
4 ;


1
4 ; 0) P42/mnm Pccc2 (No. 27.82) mm210 mSM4 (2)


TbMn2O5 (#1.108) (d) (1
2 ; 0; 1


4) Pbam Cam (No. 8.36) m10 mG1 (4)


HoMn2O5 (#1.109) (d) (1
2 ; 0; 1


4) Pbam Cam (No. 8.36) m10 mG1 (4)


NiSb2O6 (#1.113) (e) (1
2 ; 0; 1


2) P42/mnm PS1 (No. 2.7) 110 mR1+ (2)


NiS2 (#1.167) ( f ) (1
2 ;


1
2 ;


1
2) Pa3 PS1 (No. 2.7) 110 mR1+R3+ (4)


Tm5Ni2In4 (#1.171) (g) (0; 1
2 ;


1
2) Pbam Cam (No. 8.36) m10 mT1 (2)


† References: (a) Kenzelmann et al. (2002), (b) Vecchini et al. (2008), (c) Schobinger-Papamantellos et al. (2006), (d) Blake et al. (2005), (e) Ehrenberg et al. (1998), ( f ) Yano et al. (2016),
(g) Szytuła et al. (2014).


Figure 12
(a) A scheme of the collinear magnetic structure reported for NiSb2O6


(Ehrenberg et al., 1998) (#1.113) with the lowest possible symmetry,
despite its collinearity. Only the spins in a parent unit cell are shown; the
signs of the spins in consecutive unit cells are determined by the
propagation vector ð12 ; 0; 1


2Þ. Its MSG, and a transformation from the
parent tetragonal basis to its standard setting, are indicated below the
sketch. The magnetic sites at the origin and at the unit-cell centre are
symmetry independent and have their three spin components fully free.
(b) and (c) Alternative models with higher symmetry according to the
group–subgroup hierarchy of possible subgroups shown in part (d). In the
Pa21/c symmetry the two Ni sites are symmetry related, only one having
its three spin components free, and the arrangement is necessarily non-
collinear, except if the easy axis is either along b or on the ac plane. In the
case of the MSG Ca2/m the two sites are independent, with one having the
spin restricted along c and the other on the ab plane, also forcing either a
non-collinear arrangement or a null spin in one of the magnetic atoms.







different magnetic atoms, but in other cases it is not clear and


would require deeper investigation.


The case of La2O2Fe2OSe2 (#1.58; Reehuis et al., 2011)


shown in Fig. 13 is especially remarkable. This simple collinear


arrangement with propagation vector (1
2 ; 0; 1


2) involves two


primary irreps and breaks the space inversion of the parent


phase with space group I4/mmm. The reason is that any of the


irreps, if considered alone, would force a null spin in half of the


magnetic sites, which are located at Wyckoff position 4c of the


parent phase. Therefore, the collinear ordering of all atoms is


sufficient here to yield a symmetry break into polar symmetry


and the system, being a semiconductor, could be expected to


exhibit type II multiferroic properties with spin-driven


ferroelectricity (Perez-Mato et al., 2016). A similar situation,


where the reported collinear arrangement requires two


primary irreps, happens in Bi2RuMnO7 (#0.153; Martı́nez-


Coronado et al., 2014), already discussed in x5.


6.7. Collinearity and canting


About 50% of the collected structures are collinear, as


expected from the usually dominant exchange-type inter-


actions. In contrast with the unusual example of Fig. 13, these


collinear arrangements are often compatible with one of the


maximal MSGs. Their collinearity can even be part of the


constraints of the MSG and in such cases it is symmetry


protected [see, for instance, LiFePO4 (#0.95; Rousse et al.,


2003) or CrN (#1.28; Corliss et al., 1960)]. In most cases,


however, the MSG allows spin components that can break the


collinearity. In such cases, assuming collinearity reduces the


effective number of spin degrees of freedom with respect to


those really allowed by the relevant MSG. The identification


of the MSG identifies these possible spin cantings, which are


often too weak to be detected, especially in powder experi-


ments. Nevertheless, the collection in MAGNDATA includes


a good number of structures where they are significant and


have been fully characterized (see Fig. 14 for some examples).


These structures mostly come from single-crystal studies and it


is noticeable that, among the structures that have been


determined from single-crystal data, the models with


collinearity that is not forced by symmetry amount to only


about 10%. This percentage is much larger among the struc-


tures determined from powder data


An exceptional case is CoSe2O5 , where the results seem to


be in contradiction with the general trend: while a powder


diffraction study (Melot et al., 2010) reported the structure


represented in Fig. 14, with a considerable symmetry-allowed


spin canting, a more recent single-crystal study (#0.161;


Rodriguez et al., 2016) has refuted the existence of any


observable deviation from collinearity.


6.8. Weak ferromagnetics and ferrimagnetics


Any antiferromagnetic phase with a magnetic point group


compatible with homogeneous magnetization is susceptible to


exhibiting weak ferromagnetism. In other words, weak ferro-


magnetism can appear in any AFM phase where the cancelling


of the global magnetization is not symmetry dictated. In most


cases, the symmetry-allowed FM component is too weak to be


observed in diffraction experiments, but it is in general


detectable in macroscopic measurements. There are about 100


structures with MSGs allowing ferromagnetism, among them


the well known systems where weak ferromagnetism was first


analysed: �-Fe2O3 (#0.66; Hill et al., 2008), MnCO3 (#0.115;


Brown & Forsyth, 1967), CoCO3 (#0.114; Brown et al., 1973),


NiCO3 (#0.113; Plumier et al., 1983) and FeBO3 (#0.112;


Pernet et al., 1970). This large set of structures also includes


ferrimagnetic structures, which have more than one symmetry-


independent magnetic site, and have their easy axis along an


FM direction of the MSG. In principle, weak ferromagnetism


can be expected to be especially favourable if the symmetry-


allowed FM mode belongs to the same irrep as the primary
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Figure 13
The collinear magnetic structure of La2O2Fe2OSe2 (Free & Evans, 2010)
(#1.58) with an indication of the symmetry break with respect to the
paramagnetic phase. Two active primary irreps for the wavevector ð12 ; 0; 1


2Þ


are required in order to have non-null spins at all magnetic sites and the
symmetry reduces to a polar monoclinic MSG, with potential multiferroic
properties.


Figure 14
Examples of magnetic structures retrieved from MAGNDATA [MgV2O4


(#1.138; Wheeler et al., 2010), CoSe2O5 (#0.119; Melot et al., 2010) and
LiNiPO4 (#0.88; Jensen et al., 2009)] with significant spin canting
compatible with their MSG. Below each figure, the parent grey group
and the MSG of the structure are indicated, including the transformation
from the parent basis to the standard setting of the MSG.







AFM order parameter, and therefore can be linearly coupled


with it, as happens in the classical weak ferromagnets


mentioned above. The identification of the primary irrep and


its equality or not with that of the FM mode(s) can easily be


derived from the information available in MAGNDATA on


the irrep decomposition of each structure. In any case, the


large number of structures fulfilling the necessary symmetry


conditions shows that weak ferromagnetism can be a rather


common phenomenon, and it can be foreseen if the MSG of


the structure is identified.


6.9. Multiferroics


Structures with polar symmetry and with their polarity


being induced by the magnetic ordering can easily be retrieved


from the collection, by looking for entries with a polar point


group and a non-polar one for the parent phase. There are


about 40 entries with this property, and those that are insu-


lators fulfil the symmetry condition for being type II multi-


ferroics. They are bound to have some magnetically induced


electric polarization (whatever its size) with switching prop-


erties coupled with the magnetic order parameter. Many of


them are well known multiferroics, but the possible ferro-


electric character of a few additional ones has been shown for


the first time through the symmetry assignment done in this


database. A detailed discussion of these materials is the


subject of a separate article (Perez-Mato et al., 2016).


6.10. Magnetoelectrics


There are 56 non-polar structures that have an MSG which


forbids zero-field electric polarization but allows linear


magnetoelectricity in the case of insulators. Only 14 of them


have a transition above 80 K, and this is reduced further to


eight if compounds with known metallic properties are


excluded. These eight structures are listed in Table 7. The


publications where these structures were reported do not


mention their potential magnetoelectricity, with the exception


of the well known cases of Cr2O3 and Fe2TeO6.


6.11. Ferrotoroidics


In recent years, magnetic structures with spin arrangements


possessing a nonzero toroidal moment have become the


subject of special attention (Schmid, 2001; Spaldin et al., 2008;


Ederer & Spaldin, 2007). The development of a spontaneous


nonzero toroidal moment, being odd for time reversal and


space inversion, is considered a fourth primary ferroic order,


the so-called ferrotoroidicity, to be added to the traditional


ferromagnetism, ferroelectricity and ferroelasticity. The


possible presence of a nonzero toroidal moment in a magnetic


structure is restricted by its point group symmetry. The


number of magnetic point groups allowing a nonzero macro-


scopic toroidal moment is quite limited, namely 31 from the


122 possible magnetic point groups. About 60 structures, i.e.


15%, have one of these favourable symmetries. If one restricts


the sample further to magnetic phases where the symmetry


break is such that the primary magnetic order parameter


describing the symmetry break has the properties of a toroidal


moment, this number is further reduced. Table 8 lists the 29


structures from this set that do not allow electric polarization


and/or macroscopic magnetization and can thus be denoted


‘pure’ ferrotoroidic. All possible orientational domains of


these structures have a different orientation for the allowed


toroidal moment, and the magnetic order parameter is linearly


coupled with the so-called toroidal field (H � E). Domain


switching in these systems could in principle be possible with a


combined application of magnetic and electric fields.


6.12. Contrast with macroscopic properties


Consistency with observed macroscopic properties can be a


stringent test for a magnetic structure, and some of the models


collected here are clearly inconsistent from this viewpoint. For


instance, this is the case for LuFe2O4 (#1.0.7; Christianson et


al., 2008), which is claimed to be multiferroic, although the


symmetry of the reported structure is incompatible with spin-


driven or intrinsic ferroelectric properties. Something similar


happens with the model of Cu3Mo2O9 (#1.129; Vilminot et al.,


2009). Its 20220 point group symmetry would not allow the


ferroelectricity and weak ferromagnetism along a or c that is


reported in other work (Hamasaki et al., 2008; Hase et al.,


2015). Analogous situations were detected in other structures


like DyVO3 (#0.106; Reehuis et al., 2011), Co3TeO6 (#0.145


and #1.164; Ivanov et al., 2012) etc. In all such cases, the


consistency problem is briefly indicated in the comments.
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Table 7
Non-polar magnetic phases in MAGNDATA with a transition temperature above 80 K which allow linear magnetoelectric properties if non-metallic.


Magnetoelectrics that support nonzero electric polarization at zero field are excluded by the non-polar condition on the MSG. Compounds that, to our knowledge,
are metallic have also been excluded from the list.


Compound Reference† Parent space group Magnetic space group‡ Magnetic point group T (K)§


FePO4 (#0.17) (a) Pnma P212121 (No. 19.25) (ap, bp, cp; 0; 1
2 ;


3
4) 222 125


Cr2O3 (#0.59) (b) R3c R30c0 (No. 167.106) (ap, bp, cp; 0, 0, 0) 30m0 343
Cr2TeO6 (#0.76; #0.143) (c), (d) P42/mnm Pn0nm (No. 58.395) (ap, bp, cp; 1


2 ;
1
2 ;


1
2) m0mm 93


BaMn2Bi2 (#0.89) (e) I4/mmm I40/m0m0m (No. 139.536) (ap, bp, cp; 0, 0, 0) 40/m0m0m 390
CaMn2Sb2 (#0.92) ( f ) P3m1 C20/m (No. 12.60) (ap + 2bp, �ap, cp; 0, 0, 0) 20/m 83
Cr2O3 (#0.110) (g) R3c C20/c (No. 15.87) (1


3 ap + 2
3 bp �


4
3 cp, ap, � 1


3 ap �
2
3 bp + 1


3 cp; 0; 1
2 ; 0) 20/m 308


MnGeO3 (#0.125) (h) R3 R30 (No. 148.19) (ap, bp, cp; 0, 0, 0) 30 120
Fe2TeO6 (#0.142) (i) P42/mnm P42/m0n0m0 (No. 136.503) (ap, bp, cp; 0, 0, 0) 4/m0m0m0 219


† References: (a) Rousse et al. (2003), (b) Brown et al. (2002), (c) Zhu et al. (2014), (d) Kunnmann et al. (1968), (e) Calder et al. (2014), ( f ) Ratcliff et al. (2009), (g) Fiebig et al. (1996), (h)
Tsuzuki et al. (1974), (i) Kunnmann et al. (1968). ‡ For the magnetic space group, the transformation to its standard setting from the parent basis is indicated. § Transition
temperature.







6.13. Secondary modes: higher harmonics
The MSG of about 10% of the structures allows the


presence of secondary irrep spin modes, i.e. spin modes


transforming according to an irrep which is not that of the


order parameter. These spin modes are not necessary for the


symmetry break, but they are symmetry allowed and may be


present in the structure as a secondary induced effect. These


secondary irrep spin distortions, which are expected to be very


weak, remain unobserved in most cases, but one must take


into account that the traditional representation method used


in the refinements, which only considers possible models


subject to a single irrep, implies their a priori exclusion. In any


case, structures with MSGs that allow secondary modes are


those where a combined application of the constraints coming


from the relevant MSG and from the assumption of a single


primary irrep is most convenient, in order to reduce the


number of degrees of freedom with respect to the sole appli-


cation of the MSG symmetry relations.


It is remarkable that secondary modes, generally absent,


have large amplitudes in structures where they have been


forced a priori in the refined model. For instance, this is the


case for structures that allow secondary modes corresponding


to higher harmonics of the propagation vector, i.e. cases where


3k is not equivalent to k. The 11 structures classified with the


labels 1.0.xxx in MAGNDATA are all of this type. Many of


these structures are modelled assuming collinear spin


arrangements, where the spin modulus and orientation are


maintained at all sites and only its direction can switch sign.
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Table 8
Magnetic structures in MAGNDATA that can be classified as ‘pure’ ferrotoroidic phases, with their magnetic order parameter having the transformation
properties of a toroidal moment, and the presence of a spontaneous electric polarization and/or macroscopic magnetization being symmetry forbidden.


Compound Reference† Parent space group Magnetic space group‡ Magnetic point group


U3Ru4Al12 (#0.12) (a) P63/mmc Cmcm0 (No. 63.461) (bp, �2ap � bp, cp; 0, 0, 0) m0mm
Gd5Ge4 (#0.14) (b) Pnma Pnm0a (No. 62.444) (ap, bp, cp; 0, 0, 0) m0mm
EuTiO3 (#0.16) (c) I4/mcm Fm0mm (No. 69.523) (ap � bp, ap + bp, cp; 0; 1


2 ;
1
2) m0mm


MnTiO3 (#0.19) (d) R3 R30 (No. 148.19) (ap, bp, cp; 0, 0, 0) 30


DyB4 (#0.22) (e) P4/mbm Pb0am (No. 55.355) (bp, �ap, cp; 0, 0, 0) m0mm
LiFeSi2O6 (#0.28) ( f ) P21/c P21/c0 (No. 14.78) (ap, bp, cp; 0, 0, 0) 2/m0


RbyFe2�xSe2 (#0.54) (g) I4/m I4/m0 (No. 87.78) (ap, bp, cp; 0, 0, 0) 4/m0


KyFe2�xSe2 (#0.55) (h) I4/m I4/m0 (No. 87.78) (ap, bp, cp; 0, 0, 0) 4/m0


Cr2WO6 (#0.75) (i) P42/mnm Pn0nm (No. 58.395) (bp, �ap, cp; 0, 0, 0) m0mm
Cr2TeO6 (#0.76) (i) P42/mnm Pn0nm (No. 58.395) (ap, bp, cp; 1


2 ;
1
2 ;


1
2) m0mm


KMn4(PO4)3 (#0.86) (j) Pnam Pnma0 (No. 62.445) (ap, cp, �bp; 0, 0, 0) m0mm
NaFePO4 (#0.87) (k) Pnma Pnma0 (No. 62.445) (ap, bp, cp; 0, 0, 0) m0mm
LiNiPO4 (#0.88) (l) Pnma Pnm0a (No. 62.444) (ap, bp, cp; 0, 0, 0) m0mm
CaMn2Sb2 (#0.92) (m) P3m1 C20/m (No. 12.60) (ap + 2bp, �ap, cp; 0, 0, 0) 20/m
LiFePO4 (#0.95) (n) Pnma Pnma0 (No. 62.445) (ap, bp, cp; 0, 0, 0) m0mm
Cr2O3 (#0.110) (o) R3c C20/c (No. 15.87) (1


3 a + 2
3 b � 4


3 c, a, � 1
3 a � 2


3 b + 1
3 c; 0; 1


2 ; 0) 20/m
CoSe2O5 (#0.119) (p) Pbcn Pb0cn (No. 60.419) (ap, bp, cp; 0, 0, 0) m0mm
MnGeO3 (#0.125) (q) R3 R30 (No. 148.19) (ap, bp, cp; 0, 0, 0) 30


TbGe2 (#0.141) (r) Cmmm Cm0mm (No. 65.483) (ap, bp, cp; 0, 0, 0) m0mm
Cr2TeO6 (#0.143) (s) P42/mnm Pn0nm (No. 58.395) (bp, �ap, cp; 0, 0, 0) m0mm
Cr2WO6 (#0.144) (s) P42/mnm Pn0nm (No. 58.395) (bp, �ap, cp; 0, 0, 0) m0mm
Co3TeO6 (#0.145) (t) C2/c C20/c (No. 15.87) (ap, bp, cp; 0, 0, 0) 20/m
EuZrO3 (#0.146) (u) Pnma Pnm0a (No. 62.444) (ap, bp, cp; 0, 0, 0) m0mm
LiFePO4 (#0.152) (v) Pnma P21/c0 (No. 14.78) (�bp, �cp, ap; 0, 0, 0) 2/m0


CaMnGe2O6 (#0.156) (w) C2/c C20/c (No. 15.87) (ap, bp, cp; 0, 0, 0) 20/m
TbCoO3 (#0.160) (x) Pbnm Pnm0a (No. 62.444) (�bp, cp, �ap; 0, 0, 0) m0mm
CoSe2O5 (#0.161) (y) Pbcn Pb0cn (No. 60.419) (ap, bp, cp; 0, 0, 0) m0mm
NdCrTiO5 (#0.162) (z) Pbam Pbam0 (No. 55.356) (ap, bp, cp; 0, 0, 0) m0mm
MnPS3 (#0.163) (aa) C2/m C20/m (No. 12.60) (ap, bp, cp; 0, 0, 0) 20/m


† References: (a) Troć et al. (2012), (b) Tan et al. (2005), (c) Scagnoli et al. (2012), (d) Shirane et al. (1959), (e) Will & Schafer (1979), ( f ) Redhammer et al. (2009), (g) Pomjakushin et al.
(2011), (h) Pomjakushin et al. (2011), (i) Zhu et al. (2014), (j) López et al. (2008), (k) Avdeev et al. (2013), (l) Jensen et al. (2009), (m) Ratcliff et al. (2009), (n) Rousse et al. (2003), (o)
Fiebig et al. (1996), (p) Melot et al. (2010), (q) Tsuzuki et al. (1974), (r) Schobinger-Papamantellos et al. (1988), (s) Kunnmann et al. (1968), (t) Ivanov et al. (2012), (u) Avdeev et al. (2014),
(v) Toft-Petersen et al. (2015), (w) Ding et al. (2016), (x) Knı́žek et al. (2014), (y) Rodriguez et al. (2016), (z) Buisson (1970), (aa) Ressouche et al. (2010). ‡ For the magnetic space
group, the transformation to its standard setting from the parent basis is indicated.


Figure 15
Single-k magnetic structures of AgCrO2 (Matsuda et al., 2012) and
SrNiIrO6 (Lefrançois et al., 2014) as examples of the two different
approaches when dealing with structures with propagation vectors and
symmetries that allow the presence of secondary modes in the form of
spin wave harmonics. In the first structure, the harmonic with propagation
vector 3k is necessarily present in the model to produce equality of all
spin moduli, while in the second one, a sinusoidal spin wave according to
the primary propagation vector is proposed and the symmetry-allowed 3k
(= 0) component is absent. In both cases, no experimental evidence of a
third harmonic seems to exist. Below each structure, the parent grey
space group, the MSG and the modulation wavevectors present in the
structure are indicated.







These spin arrangements do not fulfil the usual single-irrep


assumption and require significant nonzero amplitudes of


higher harmonics of the primary spin mode. Magnetic Bragg


peaks for odd multiples of the propagation vector should be


present in the diffraction diagram, but often these simplified


models are assumed without experimental evidence for higher


harmonics in the spin wave. The equality of the spin modulus


at all sites is generally considered physically more appealing


than the single-irrep assumption, which would imply a sinu-


soidal spin wave. However, one can find both types of


approach in the proposed models in the literature. Fig. 15


shows two examples.


6.14. Secondary modes with the primary propagation vector


From the approximately 30 structures with MSGs that allow


the presence of secondary modes with the same propagation


vector as the primary spin arrangement, there are only six


where the amplitude of these secondary degrees of freedom is


nonzero. The case of Er2Ru2O7 (#0.154; Taira et al., 2003) is an


interesting example. Its MSG is I41
0/am0d, i.e. it is one of the


maximal epikernels of the irrep mGM3+ (see x5 and Fig. 10).


Fig. 16 shows the reported structure of this compound


compared with that of Er2Ti2O7 (#0.29; Poole et al., 2007).


While the spin arrangement in Er2Ti2O7 has been modelled


assuming the presence of only the primary irrep mGM3+, and


therefore the symmetry-allowed secondary spin mode


according to irrep mGM2+ is absent, the spin ordering in


Er2Ru2O7 has been refined as a collinear arrangement. The


simplicity of this second model hides a rather exceptional


behaviour when seen in terms of irreps. The collinearity does


not imply an MSG different from that of Er2Ti2O7, but it


requires the presence of a spin mode according to the


secondary irrep mGM2+, and with a large specific amplitude


correlated with that of the primary active irrep. From the


original publication, it is not clear if this rather unusual weight


of a secondary irrep mode is the result of an a priori


collinearity assumption, or whether it was constrasted with a


pure mGM3+ model, being then fully supported by the


experimental data. The presence of secondary irrep modes of


this type in four of the six structures can be traced back to such


types of assumption or extrinsic conditions. This is the case for


Mn3GaC (#1.153; Fruchart et al., 1970), where collinearity also


forces the presence of a secondary irrep mode, U3Ru4Al12


(#0.12; Troć et al., 2012), where some specific relative spin


orientations not forced by symmetry are included in the


model, and Tb2Ti2O7 (#0.77; Sazonov et al., 2013), which is a


structure stabilized by an external magnetic field.


Therefore, only two structures in the whole collection


include a significant contribution of a secondary irrep mode


that was independently monitored and did not originate from


some assumption. These are the structures of Cr2S3 (#0.5;


Bertaut et al., 1968) and Nd3Ru4Al12 (#0.149; Gorbunov et al.,


2016). In both cases, the amplitudes of both primary and


secondary modes are comparable, and therefore it does not


seem appropriate to consider one of them as an induced


secondary effect. Despite the symmetry compatibility of one


of the modes with respect to the other, it seems that, in these


two cases, one should consider the two spin components as


ordering modes associated with two independent primary


order parameters.


6.15. Multi-k structures


Reported magnetic structures with more than one propa-


gation vector are scarce. Despite our efforts to find well


defined experimental structures in the literature with several


independent propagation vectors, the numbers of 2k and 3k


structures that we could collect were only 15 and eight,


respectively. These include structures with symmetry-related


propagation vectors. Only six 2k structures have a parent


symmetry relating the two active propagation vectors, while in


the case of the 3k structures, seven of the eight involve three


primary propagation vectors related by the parent symmetry,


either cubic or hexagonal. Fig. 17 shows some examples.
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Figure 16
Two magnetic structures complying with the same MSG I401=am0d. The
structure reported for Er2Ti2O7 (Poole et al., 2007) includes a single spin
mode with two-dimensional mGM3+ irrep basis functions specialized to
this MSG, while the collinear model of Er2Ru2O7 (Taira et al., 2003)
requires the additional presence of a secondary mGM2+ mode
compatible with the same MSG.


Figure 17
The magnetic structures of NdMg (Deldem et al., 1998), TmAgGe (Baran
et al., 2009) and NpBi (Burlet et al., 1992) as examples of multi-k
structures with symmetry-related propagation vectors. Below each figure,
the parent grey space group, the MSG of the phase and the active
independent propagation vectors with respect to the parent structure are
indicated.







It must be stressed that the magnetic symmetry of a


commensurate multi-k structure is also given by an MSG,


having from this viewpoint no essential difference from a


single-k structure. The number of independent propagation


vectors associated with the spin modulation comes from a


comparison with the parent paramagnetic structure, and it is


not an intrinsic property of the spin arrangement. The


magnetic structure is fully defined by its relevant MSG, its unit


cell, and the set of atomic positions and magnetic moments of


its asymmetric unit, without any reference to the underlying


propagation vectors with respect to the parent structure. For


instance, the magnetic structure of NpBi (#3.7; Burlet et al.,


1992) represented in Fig. 17 has a parent phase with space


group Fm3m. The magnetic ordering breaks all the centring


translations while keeping the cubic unit cell and results in the


MSG Pn3m0. This can be described by the condensation of


spin waves with the propagation vectors (1, 0, 0), (0, 1, 0) and


(0, 0, 1) on the reference paramagnetic face-centred cubic


structure. However, the same spin arrangement for the same


magnetic sites and with the same MSG can be realized in a


magnetic phase having a parent structure with a primitive


cubic lattice and space group Pn3m10. In such a case, the same


spin arrangement would be described as a single-k magnetic


structure with k = 0.


Multi-k structures with symmetry-related k vectors are in


general indistinguishable from single-k structures in powder


diffraction experiments. Even in the case of single-crystal


studies, the distinction between a multi-k and a single-k


structure with appropriate domain populations can be


problematic. Most of the collected multi-k structures with


symmetry-related k vectors correspond to single-crystal


studies, but not all [see, for instance, TmAgGe (#3.1; Baran et


al., 2009)]. It is generally believed that the diffraction diagrams


of single-k structures should change considerably under an


external magnetic field owing to changes in the domain


populations, while those of multi-k structures should be rather


insensitive. Under this assumption, the study of the variation


in a single-crystal diffraction diagram under a magnetic field


has become a traditional form of identifying multi-k spin


arrangements, and was used in the studies of some of the


structures collected here.


More than 50 single-k structures in this collection have a


propagation vector and a parent symmetry such that alter-


native multi-k models would be possible. In most cases, these


multi-k models have not been explored as possible alternative


models. Usually when confronted with this problem, the


single-k model is preferred a priori and it is the one reported.


One should be aware, however, that multi-k models could


equally well fit the experimental data in most such cases. If an


alternative multi-k model has also been reported, both have


been included in the collection, but this situation rarely


happens.


6.16. Multi-axial structures


Sometimes the so-called multi-axial structures, where the


spins orientate according to several different fixed directions,


are assimilated with the multi-k structures. However, multi-


axial spin arrangements are not exclusive to multi-k structures


and they can also be a symmetry-protected feature of single-k


structures. Fig. 18 shows some examples where multiple axes


for the spin orientations are symmetry dictated and a single


propagation vector exists with respect to the parent phase.


6.17. Conflicting models


MAGNDATA has more than one magnetic structure for


around 50 compounds. In most cases they correspond to


different magnetic phases or to the same phase under a


different temperature, field etc. In other cases they correspond


to a different model for the same phase reported by different


authors, and the structures are very similar. In a few cases they


represent several alternative indistinguishable models that


have been reported in the same reference. But in the case of 12


compounds, and for apparently the same phase, this collection


has gathered magnetic structures that differ by a significant


amount. They are summarized in Table 9.


In EuZrO3 (Avdeev et al., 2014; Saha et al., 2016), one finds


a typical case where the easy axis of a collinear arrangement


seems difficult to establish and two different studies report


different directions. But, depending on this direction, the


relevant MSG changes, and this dictates different magneto-


structural properties, like the allowance or not of linear


magnetoelectric (ME) effects. Through the direct link to the


program MAGNEXT, one can also see that the two models


imply different systematic absences in the diffraction diagram,


which could in principle help to differentiate between the two
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Figure 18
The magnetic structures of Mn3Cu0.5Ge0.5N (Iikubo et al., 2008),
Dy3Al5O12 (Hastings et al., 1965), NiS2 (Yano et al., 2016) and Ce3NIn
(Gäbler et al., 2008) as examples of multi-axial structures with a single
propagation vector. Below each figure, the label of the corresponding
MSG and the propagation vector are indicated.







models. There are also cases where the two models have the


same symmetry, and the difference is the presence or not of a


significant spin canting fully compatible with the MSG of the


structure. We have already mentioned the case of CoSe2O5


(Melot et al., 2010; Rodriguez et al., 2016), and something


similar happens for Sr2IrO4 (Lovesey et al., 2012; Ye et al.,


2013).


The cases of BiMn2O5 (Vecchini et al., 2008; Muñoz et al.,


2002), already discussed above, and LiFePO4 (Rousse et al.,


2003; Toft-Petersen et al., 2015) are representative of situa-


tions where the structural models differ only slightly, but this


difference breaks the symmetry further, therefore implying an


important qualitative difference. In one case it reduces the


MSG of the structure to the kernel of the irrep, and in the


other it implies the activity of a second primary irrep with a


very weak amplitude. A detailed comparison of the two


models of the magnetic structure of BiMn2O5 can be seen in


Table 10. One can observe that the deviations of the low-


symmetry model from one of higher symmetry are close to


their standard deviations, which would imply that the system


complies with one of the maximal epikernels of the active


irrep. However, apart from the larger magnetic moments of


the high-symmetry model, one can see that the spin canting


components along b for the Mn2 sites have opposite signs in


the two structures. It can also be noted that the model of


higher symmetry, apart from the moment relations consistent


with the indicated irrep epikernel, includes some additional


constraints that are not symmetry-forced. Its asymmetric unit


has three Mn sites, namely Mn1_1, and two independent sites


Mn2_1 and Mn2_2, which are the result of the splitting of the


single Mn2 site in the parent Pbam10 symmetry. The model


reported by Muñoz et al. (2002) includes some specific


correlation between the components of these two independent


sites and has the allowed z component of Mn1_1 fixed to zero,


but the structure has only a single irrep active and its


symmetry is maximal. Therefore, these additional constraints


are not justified by either the assumption of a specific irrep


spin mode or any other symmetry argument, and they could


have been skipped, even if they are fulfilled approximately.


This is an example of overconstraints in the structure model-


ling, an issue discussed below in more detail.


The remaining pairs of structures summarized in Table 9


correspond to models which differ in a higher degree: they


have no group–subgroup-related MSGs, different active irreps


etc. For instance, Fig. 19 shows the two very different magnetic


structures proposed for Cu3Mo2O9 (Vilminot et al., 2009; Hase


et al., 2015). The case of La0.333Ca0.667MnO3 (Radaelli et al.,


1999; Fernández-Dı́az et al., 1999) is also remarkable.


Although the spin arrangements of the two models are very


similar, their orientation relative to the parent structure is


completely different, both structures having distinct MSGs. A


small structural distortion of the parent structure is also
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Table 9
Conflicting structures for the same magnetic phase in MAGNDATA.


In the column headed ‘Experimental technique’, NPD denotes neutron powder diffraction and NSD denotes neutron single-crystal diffraction. In the column
headed ‘SA’, a cross (�) indicates that the systematic absences are different for the two proposed models.


Compound Entries Reference†


Parent
space
group


Magnetic
space
group Comparison


Experimental
technique SA


BiMn2O5 1.74 (a) Pbam Camc21 Same irrep NPD
1.75 (b) Cam Group–subgroup relation NSD


CaMnGe2O6 0.156 (c) C2/c C20/c One-irrep model NPD
0.155 (d) Ps1


0 Two-irrep model NPD
CoSe2O5 0.119 (e) Pbcn Pb’cn Same irrep NPD �


0.161 ( f ) With and without spin canting NSD
Cu3Mo2O9 0.129 (g) Pnma P21


021
021 Two irreps, one equal and the other different NPD �


0.130 (h) Pm0c21
0 NPD


EuZrO3 0.146 (i) Pnma Pnm0a Different easy axis NPD �


0.147 (j) Pn0m0a Different single irrep, ME effect allowed in one of the models NPD
Gd2CuO4 0.82 (k) Aeam Cm0ca0 Different parent symmetry NSD


0.104 (l) I4/mmm CAccm Inclusion or not of a structural distortion NSD
HoMnO3 0.33 (m) P63cm P63cm Different single irrep NPD


0.43 (n) P63
0cm0 NSD


LiFePO4 0.95 (o) Pnma Pnma0 One-irrep and two-irrep models; second irrep: small spin
canting that breaks the symmetry


NPD �


0.152 (p) P21/c0 Group–subgroup relation NSD
NiTa2O6 1.112 (q) P42/mnm Pc21/c Two irreps, one equal and the other different NPD


1.172 (r) Abba2 NPD
Sr2IrO4 1.3 (s) I41/acd PIcca Same irrep, same symmetry NPD �


1.77 (t) Without and with canting NSD
YMnO3 0.6 (u) P63cm P63cm One-irrep and two-irrep models NPD


0.44 (n) P63
0 No common irrep NSD


La0.333Ca0.667MnO3 1.174 (v) Pnma Pbmc21 Different parent structure, different orientation of the
propagation vector


NPD
1.175 (w) Pbmn21 NPD


† References: (a) Muñoz et al. (2002), (b) Vecchini et al. (2008), (c) Ding et al. (2016), (d) Redhammer et al. (2008), (e) Melot et al. (2010), ( f ) Rodriguez et al. (2016), (g) Vilminot et al.
(2009), (h) Hase et al. (2015), (i) Avdeev et al. (2014), (j) Saha et al. (2016), (k) Brown & Chatterji (2011), (l) Chattopadhyay et al. (1992), (m) Muñoz, Alonso et al. (2001), (n) Brown &
Chatterji (2006), (o) Rousse et al. (2003), (p) Toft-Petersen et al. (2015), (q) Law et al. (2014), (r) Ehrenberg et al. (1998), (s) Lovesey et al. (2012), (t) Ye et al. (2013), (u) Muñoz et al.
(2000), (v) Radaelli et al. (1999), (w) Fernández-Dı́az et al. (1999).







oriented differently in the two models. The tetragonal pseudo-


symmetry of the parent structure, and especially of the Mn


sites, seems to be the cause for these two very different models


being able to fit the diffraction data reasonably well. A model


very similar to the one reported by Radaelli et al. (1999) has


recently been reported for a compound with a similar


composition, La0.375Ca0.625MnO3 (#1.173; Martinelli et al.,


2016).


6.18. ‘Concomitant’ structural transitions


About 60% of the collected structures have a magnetic


ordering whose symmetry implies some symmetry break for


the non-magnetic degrees of freedom. In other words, the


MSG of the magnetic structure allows structural distortions


forbidden in the parent space group, which can in principle


become nonzero through magnetostructural coupling. These


include of course the spin-driven multiferroics discussed


above. In most cases, the structural distortions that are


consistent with the MSG and break the parent space group are


too weak to be detected. As they are so rare, if they are


detected such distortions are often erroneously considered as


a so-called concomitant or simultaneous structural phase


transition.


Table 11 summarizes the structures in the collection where


such types of concomitant structural distortions have been


reported. The effective space group relevant for the non-


magnetic degrees of freedom is given by the space group used


to label the MSG in the OG setting. Although this collection


employs the BNS notation for the MSG labels, a link in the


BNS label of the MSG of each entry allows the user to obtain


the corresponding OG label and extract from it the effective


space group that is relevant for the non-magnetic degrees of


freedom. Table 11 indicates this effective space group for the


18 listed structures. The structural distortions of all


compounds in Table 11 seem consistent with the corre-


sponding effective space group, except for YFe4Ge2 and


LuFe4Ge2 (Schobinger-Papamantellos et al., 2001, 2012). In


these two compounds, the reported simultaneous structural


symmetry break P42/mnm! Pnnm cannot be explained as an


induced effect of the reported spin arrangement, which


without the conjunction of the structural distortion would


have a higher MSG. Hence, these two compounds are the only


cases in the collection where a genuine simultaneous inde-


pendent structural phase transition takes place. One must be


aware, however, that spin arrangements alternative to those


reported could explain the symmetry break observed in these


compounds in the non-magnetic structural degrees of freedom


as an induced effect, and it seems they were not explored.


The symmetry-breaking structural distortions of the other


16 structures in Table 11 seem to comply with the expected


symmetry constraints resulting from the MSG associated with


the spin ordering. Some of them have been refined under the


corresponding effective space group and are therefore fully


consistent as an induced effect. In a couple of cases, the space


group employed in the refinement of the positional structure is


a supergroup of the effective space group, and therefore the


observed structural distortion is also consistent with the MSG,


but it was partially constrained by the assumed model. In some


other cases, the structural distortion is observed and reported,
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Table 10
Comparison of the magnetic structures #1.74 and #1.75, reported for BiMn2O5 by Muñoz et al. (2002) and Vecchini et al. (2008) at 1.5 and 10 K,
respectively.


The MSG for each structure and the corresponding asymmetric unit for the Mn atoms are listed. The basis (2ap, bp, 2cp; 0, 0, 0) with respect to the parent Pbam unit
cell is used for the description. Only approximate atomic positions are listed. In the case of the model with higher symmetry and smaller asymmetric unit, the spins
of symmetry-related atoms are also included for comparison. Structure #1.74 has been transformed to the domain-related equivalent with all spins switched.


BiMn2O5 (#1.75) BiMn2O5 (#1.74)


Pbam10 ! Cam (2ap, �cp, 2bp; 0, 0, 0) Pbam10 ! Camc21 (2cp, ap, 2bp; 1
8 ; 0; 0)


Label x y z Constraints† Mx My Mz |M| Constraints† Mx My Mz |M|


Mn1_1 0.00 0.50 0.37 mx, my, mz 2.10 (3) �0.33 (6) �0.25 (6) 2.14 mx, my, mz 2.44 (10) �0.6 (2) 0.0 2.51
Mn1_2 0.25 0.00 0.13 mx, my, mz 2.07 (3) 0.56 (6) 0.08 (6) 2.15 mx, �my, mz 2.44 0.6 0.0 2.51
Mn2_1 0.20 0.35 0.25 mx, my, 0 �2.83 (5) 0.33 (10) 0.0 2.85 mx, my, 0 �3.12 (9) �0.8 (2) 0.0 3.22
Mn2_3 0.05 0.85 0.25 mx, my, 0 �2.83 (5) �0.23 (10) 0.0 2.84 mx, �my, 0 �3.12 0.8 0.0 3.22
Mn2_2 0.30 0.65 0.25 mx, my, 0 2.80 (5) �0.34 (9) 0.0 2.82 �mx, �my, 0 3.12 0.8 0.0 3.22
Mn2_4 0.45 0.15 0.25 mx, my, 0 �2.74 (5) �0.64 (10) 0.0 2.81 mx, �my, 0 �3.12 0.8 0.0 3.22


† Symmetry constraints on the magnetic moment M.


Figure 19
Conflicting magnetic structures for the same phase of Cu3Mo2O9


(Vilminot et al., 2009; Hase et al., 2015), with indications of the MSGs
and the transformation to the standard setting of each group from the
parent Pnma basis.







but owing to its weakness it was not characterized and was not


included in the magnetic structure.


6.19. Overconstrained structures


The description of magnetic structures in MAGNDATA


using their MSG allows us to distinguish in the model, in a


straightforward form, the constraints that are forced and


protected by symmetry from those that are not. Constraints


that are not symmetry dictated are very common, and they


reduce the number of free parameters with respect to a


general model complying with the relevant MSG. There can be


good reasons for having a structure with fewer free parameters


than those allowed by the associated magnetic symmetry, and


some of them have already been discussed above. They can be


summarized in the following points:


(i) Collinearity favoured by exchange-type interactions can


prevail and strict collinearity can be assumed, despite the


MSG allowing non-collinear spin canting. See, for instance, the


case of ErAuGe (#1.33; Baran et al., 2001).


(ii) If the magnetic structure has a single active irrep but the


resulting MSG allows secondary magnetic irreps, the presence


of these additional degrees of freedom is usually negligible


and the model can be restricted to the primary irrep


(constrained along the direction dictated by the MSG). See,


for instance, the case of GdBiPt (#1.111; Müller et al., 2014).


(iii) If several irreps are active, the resulting MSG usually


has a very low symmetry. As a consequence, several additional


secondary irreps may be symmetry allowed, but they corre-


spond to very weak high-order effects. In such cases, the


restriction of the spin arrangement to the primary irreps


implies a substantial reduction in the effective number of


degrees of freedom. See, for instance, the case of CsNiCl3
(#1.0.4; Yelon & Cox, 1973).


In the traditional representation method, restrictions on the


possible combinations of basis spin modes corresponding to


the active irrep (or irreps) are usually introduced through a


mixture of ad hoc simplifications and/or intuitive assumptions


combined with trial and error methods. This implies that, in


general, the final model may include constraints that cannot be


justified on symmetry or physical grounds. Thus, in complex


structures the constraints corresponding to a particular irrep


epikernel, or the three types of physical restriction mentioned


above, are usually mixed up with others that can only be


considered convenient simplifications to reduce the number of


refinable parameters. An example has already been shown


above when discussing the structure of BiMn2O5 (Muñoz et al.,


2002), summarized in Table 10. This kind of simplification is so


common that it sometimes seems as if it is introduced auto-


matically without being necessitated by the limitations of the


experimental data.


One of the most common contraints not forced by


symmetry and present in many structures of this database is


the restriction of the modulus of the magnetic moment for the


same atomic species to have equal value at sites that are


symmetry independent in the paramagnetic phase. This ad hoc


assumption can often represent a reasonable simplification


and can be necessary owing to the lack of sufficient data for a


more complex model but, in general, independent sites can


have different magnetic moments and this collection also
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Table 11
Structures in MAGNDATA where a symmetry-breaking structural distortion is reported to be concomitant with the magnetic transition.


The column headed ‘Structural distortion’ indicates if the structural distortion is fully consistent as an induced effect (‘Present’), has been constrained a priori by
the refined model (‘Present partially’), is reported in another reference (‘Other reference’), is reported but not characterized (‘Reported but not characterized’), or
is inconsistent as an induced effect and must be considered an independent structural transition (‘Concomitant structural transition?’).


Entry Reference† k vector(s)
Parent space
group Magnetic space group


Effective space
group‡ Structural distortion


BaFe2As2 (#1.16) (a) (1
2 ;


1
2 ; 0) I4/mmm CAmca (No. 64.480) Fmmm Present


CaFe2As2 (#1.52) (b) (1
2 ;


1
2 ; 0) I4/mmm CAmca (No. 64.480) Fmmm Present


CoO (#1.69) (c) (1
2 ;


1
2 ;


1
2) Fm3m Cc2/c (No. 15.90) C2/m Present


�-Mn (#1.85) (d) (1, 0, 0) I43m PI421c (No. 114.282) I42m (No. 121) Present


GeV4S8 (#1.86) (e) (1
2 ;


1
2 ; 0) F43m Pana21 (No. 33.149) Pmn21 Present


AgCrS2 (#1.136) ( f ) (� 3
4 ;


3
4 ;�


3
4) R3m Ccm (No. 8.35) Cm Present


MnCuO2 (#1.57) (g) (� 1
2 ;


1
2 ;


1
2) C2/m Ps1 (No. 2.7) P1 Present


Sr2CoOsO6 (#1.72) (h) (1
2 ;


1
2 ; 0) I4/m Cc2/c (No. 15.90) C2/c Present


Ag2CrO2 (#1.0.1) (i) (1
5 ;


1
5 ; 0) (2


5 ;
2
5 ; 0) P3m1 C20/m (No. 12.60) C2/m Present partially


DyFe4Ge2 (#1.98) (j) (1
4 ;


1
4 ; 0) P42/mnm Pccc2 (No. 27.82) Pmm2 Present partially


NiF2 (#0.36) (k) (0, 0, 0) P42/mnm Pnn0m0 (No. 58.398) Pnnm Other reference


ErVO3 (#0.104) (l) (0, 0, 0) Pbnm P21
0/m0 (No. 11.54) P21/m Reported but not characterized


ErVO3 (#0.105) (m) (0, 0, 0) Pbnm P21/c (No. 14.75) P21/c Reported but not characterized


DyVO3 (#0.106) (m) (0, 0, 0) Pbnm P21
0/m0 (No. 11.54) P21/m Reported but not characterized


BaFe2Se3 (#1.120) (n) (1
2 ;


1
2 ;


1
2) Pnma Cac (No. 9.41) Pc Reported but not characterized


Mn3CuN (#2.5) (o) (1
2 ;


1
2 ; 0) (0,0,0) Pm3m P4/n (No. 85.59) P4/n Reported but not characterized


YFe4Ge2 (#0.27) (p) (0, 0, 0) P42/mnm Pn0n0m0 (No. 58.399) Pnnm Concomitant structural transition?


LuFe4Ge2 (#0.140) (q) (0, 0, 0) P42/mnm Pn0n0m0 (No. 58.399) Pnnm Concomitant structural transition?


† References of the magnetic structures: (a) Huang et al. (2008), (b) Goldman et al. (2008), (c) Jauch et al. (2001), (d) Lawson et al. (1994), (e) Müller et al. (2006), ( f ) Damay et al. (2011),
(g) Damay et al. (2009), (h) Yan et al. (2014), (i) Matsuda et al. (2012), (j) Schobinger-Papamantellos et al. (2006), (k) Brown & Forsyth (1981), (l) Chattopadhyay et al. (1992), (m)
Reehuis et al. (2011), (n) Caron et al. (2011), (o) Fruchart & Bertaut (1978), (p) Schobinger-Papamantellos et al. (2001), (q) Schobinger-Papamantellos et al. (2012). ‡ For non-magnetic
degrees of freedom.







includes many examples where they have been refined inde-


pendently.


A more subtle simplifying constraint is the assumption of


equal moment modulus at magnetic sites which are symmetry


independent in the magnetic phase but come from the splitting


of a single orbit in the paramagnetic phase. Traditionally, it has


been assumed that, if the propagation vector k is not


equivalent to �k, sites related by operations that transform k


into �k become symmetry split in the magnetic phase. This is


not correct in general, as these operations may be maintained


within the irrep epikernels. In such cases these sites are kept


symmetry related, and therefore the assumption of equal


moduli for their magnetic moments is one of the MSG


constraints of the phase. In other cases, however, the MSG


produces a genuine splitting of the atomic sites, and the


assumption of keeping correlated spins is not justified by


symmetry arguments. Most of the structures that have genuine


split magnetic sites include this simplifying constraint and


their spins are assumed to have equal modulus. Table 12 and


Fig. 20 summarize the magnetic structure of �-Mn (#1.85;


Lawson et al., 1994). This is one of the few examples in the


collection where this assumption was not introduced and the


refinement was done fully consistent with the active irrep and


relevant MSG, with split sites having independent magnetic


moment values.


7. Conclusions


We have gathered a digital collection of more than 400


published magnetic structures under the name MAGNDATA,


where magnetic symmetry is applied as a robust unambiguous


common framework for their description, and a preliminary


version is used of the so-called magCIF format, which extends


the CIF format to magnetic structures. No validation check


has been applied to the structures, and inclusion in the


collection has only been subject to the requirement that the


published model is self-consistent and unambiguous. The


collection is freely available at the Bilbao Crystallographic


Server (http://www.cryst.ehu.es) and is intended to be a


benchmark for a future complete database. This article


presents and explains the information that can be retrieved for


any of the more than 370 collected commensurate magnetic


structures. The various tools that are available for visualiza-


tion and analysis of each entry have been explained using


multiple examples. We have also included a detailed survey of


the properties of the collected structures, which shows the


power and efficiency of the employed symmetry classification.


A subsequent article (Gallego et al., 2016) deals with the more


than 40 incommensurate structures that are also included in


this collection, using magnetic superspace symmetry as the


framework for their description.


We do not have the means to extend MAGNDATA to


cover all magnetic structures published in the past, or to


maintain it and update it regularly for all those published in


the future, and therefore this collection does not pretend to


become the necessary complete database of all published


magnetic structures. However, we hope that this work will


stimulate further efforts within the community in the direction


of the standardization and unambiguous communication of


magnetic structures, with the aim of making such a database


possible in the foreseeable future. Meanwhile, authors who


have reported a magnetic structure that is absent from this


collection and who are interested in having it included are


invited to contact us through the given email address.
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Table 12
The asymmetric unit of the magnetic structure of �-Mn (#1.85; Lawson et al., 1994) as an example of a structure determined including only constraints
forced by the MSG with split sites refined independently.


The approximate relations of the magnetic moments at different sites, if fulfilled exactly, cannot be justified by any increase in the symmetry or any additional irrep
restriction, as the symmetry is maximal and only one irrep is active.


�-Mn (#1.85), I43m10 !PI421c (bp, ap, �cp; 0, 0, 0)


Label x y z Constraints† Mx My Mz |M|


Mn1 0.00000 0.00000 0.00000 0, 0, mz 0.0 0.0 2.83 (13) 2.83
Mn2 0.3192 (2) 0.3192 0.3173 (3) mx, mx, mz 0.14 (12) 0.14 1.82 (6) 1.83
Mn3_1 0.3621 (1) 0.3621 0.0408 (2) mx, mx, mz 0.43 (8) 0.43 0.43 (8) 0.74
Mn3_2 0.3533 (2) 0.0333 (1) 0.3559 (2) mx, my, mz �0.25 (10) �0.25 (10) �0.32 (4) 0.48
Mn4_1 0.0921 (2) 0.0921 0.2790 (3) mx, mx, mz 0.27 (8) 0.27 �0.45 (8) 0.59
Mn4_2 0.0895 (2) 0.2850 (1) 0.0894 (2) mx, my, mz �0.08 (4) �0.45 (8) 0.48 (5) 0.66


† Symmetry constraints on M.


Figure 20
The magnetic structure of �-Mn (#1.85; Lawson et al., 1994), one of the
few structures in MAGNDATA with a considerable number of
independent magnetic sites (some of them symmetry-split by the
magnetic order) and which does not include simplifying constraints.







Finally, it should be stressed again that the description of


many of the structures within a common framework, with full


application of their symmetry properties, has in many cases


required a complete transformation and reinterpretation of


the information provided by the original references. This may


have led to errors and misinterpretations. We therefore


welcome and will greatly appreciate any report that may point


out such problems.
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Martı́nez, J. L. & Fernández-Dı́az, M. T. (2000). Phys. Rev. B, 62,
9498–9510.
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A free web page under the name MAGNDATA, which provides detailed


quantitative information on more than 400 published magnetic structures, has


been made available at the Bilbao Crystallographic Server (http://www.cryst.


ehu.es). It includes both commensurate and incommensurate structures. In the


first article in this series, the information available on commensurate magnetic


structures was presented [Gallego, Perez-Mato, Elcoro, Tasci, Hanson, Momma,


Aroyo & Madariaga (2016). J. Appl. Cryst. 49, 1750–1776]. In this second article,


the subset of the database devoted to incommensurate magnetic structures is


discussed. These structures are described using magnetic superspace groups, i.e.


a direct extension of the non-magnetic superspace groups, which is the standard


approach in the description of aperiodic crystals. The use of magnetic


superspace symmetry ensures a robust and unambiguous description of both


atomic positions and magnetic moments within a common unique formalism.


The point-group symmetry of each structure is derived from its magnetic


superspace group, and any macroscopic tensor property of interest governed by


this point-group symmetry can be retrieved through direct links to other


programs of the Bilbao Crystallographic Server. The fact that incommensurate


magnetic structures are often reported with ambiguous or incomplete


information has made it impossible to include in this collection a good number


of the published structures which were initially considered. However, as a proof


of concept, the published data of about 30 structures have been re-interpreted


and transformed, and together with ten structures where the superspace


formalism was directly employed, they form this section of MAGNDATA. The


relevant symmetry of most of the structures could be identified with an


epikernel or isotropy subgroup of one irreducible representation of the space


group of the parent phase, but in some cases several irreducible representations


are active. Any entry of the collection can be visualized using the online tools


available on the Bilbao server or can be retrieved as a magCIF file, a file format


under development by the International Union of Crystallography. These CIF-


like files are supported by visualization programs like Jmol and by analysis


programs like JANA and ISODISTORT.


1. Introduction


Under the name MAGNDATA we have collected on the


Bilbao Crystallographic Server (http://www.cryst.ehu.es)


comprehensive information on more than 400 magnetic


structures, both commensurate and incommensurate.


MAGNDATA has been developed as a proof of concept for


the development of a database of magnetic structures based


on the systematic application of magnetic symmetry. This task


has been done within the framework of the efforts of the


Commission on Magnetic Structures of the IUCr (Inter-


national Union of Crystallography, 2015) for achieving a


standard in the communication of magnetic structures and an
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extension of the CIF format (Brown & McMahon, 2002) to


magnetic structures. For a detailed description of the context


under which this small database has been developed, we refer


to our previous article (Gallego et al., 2016), where we


presented and discussed the section of MAGNDATA devoted


to commensurate structures. This has more than 360 entries,


and the structures are described within the framework of the


symmetry relations described by the magnetic space groups


(MSGs), also called Shubnikov groups (Litvin, 2013; Stokes &


Campbell, 2011). MAGNDATA also includes about 40


incommensurate structures (see Fig. 1) which require a


different methodology, with their symmetry being given by


magnetic superspace groups (MSSGs). Here, we present and


discuss the main features of this second part of the collection.


We concentrate on the explanation of the information avail-


able for each structure, and the way this information can be


retrieved and analysed.


The symmetry of magnetic structures with incommensurate


propagation vector(s) cannot be described by an MSG (Litvin,


2013; Stokes & Campbell, 2011). Its symmetry is given instead


by a superspace group (Petřı́ček et al., 2010; Perez-Mato et al.,


2012). The superspace formalism was developed decades ago


to describe the symmetry properties of aperiodic crystals, i.e.


incommensurate crystals and quasicrystals, and it has become


the standard approach for any quantitative analysis of these


systems (Janssen et al., 2006, 2007; Van Smaalen, 2007; Stokes


et al., 2011; Janssen & Janner, 2014). Although it was clear


from the beginning (Janner & Janssen, 1980) that the new


concept was also extensible and applicable to incommensurate


magnetic structures, superspace symmetry has been under-


utilized in the characterization of magnetic order until very


recently, when computer programs which make use of the so-


called magnetic superspace groups were developed (Petřı́ček


et al., 2014; Campbell et al., 2006; Perez-Mato et al., 2015).


Using these symmetry groups defined in a (3 + d)-dimensional


superspace (d is the number of rationally independent


propagation vectors in the modulation), incommensurately


magnetic structures can be described following a crystal-


lographic methodology, similar to the case of non-magnetic


incommensurately modulated crystals and quasicrystals. For a


review of the properties and application of MSSGs, see Perez-


Mato et al. (2012). The use of magnetic superspace symmetry


ensures a robust and unambiguous description of both atomic


positions and magnetic moments within a common unique


formalism, and this is the approach followed in MAGNDATA.


The CIF format was extended years ago for the case of non-


magnetic incommensurate crystals and their superspace


symmetry (Brown & McMahon, 2002; Madariaga, 2005). The


magCIF file format that is being developed by the Commision


on Magnetic Structures of the IUCr has also extended the CIF


format to incommensurate magnetic structures with the


inclusion of the features associated with the MSSGs (Inter-


national Union of Crystallography, 2015). We could therefore


employ a preliminary version of the magCIF file format not


only for commensurate magnetic structures but also for


incommensurate structures. For the moment, only structures


with a single rational independent incommensurate propaga-


tion vector have been included, which means that their


superspace symmetry is described by a (3 + 1)-dimensional


superspace group. Extension to structures with (3 + d)-


dimensional superspace symmetry with d > 1 is, however,


straightforward.


2. Description of incommensurate magnetic structures


Under the superspace formalism, the data items defining an


incommensurate magnetic structure with a single rationally


independent incommensurate propagation vector are the


following:


(i) A unit cell that defines the average lattice periodicity of


the magnetic ordering if the incommensurate modulation is


taken out. This lattice acts as a reference, and its unit cell is


called the basic unit cell.


(ii) A primary incommensurate propagation vector (also


termed modulation wavevector in the usual superspace


formalism).


(iii) The magnetic (3 + 1)-dimensional superspace group


(MSSG), which defines the symmetry of the phase. The


symmetry operations of this group define both the symmetry


relations between the average positions of the atoms within


the average lattice, and those between their spin, displacive


and occupational modulations. These symmetry relations are


expected to be satisfied within the whole thermodynamic


stabilitity range of the incommensurate phase. The fourth


dimension included in these groups represents the argument


of the modulation functions, and a translation along this


internal coordinate corresponds to a global shift of the phase


of all modulation functions.


(iv) The average atomic positions (in relative units with


respect to the basic unit cell) and average magnetic moments


(if the atom is magnetic) of a set of atoms in the basic unit cell


that are not symmetry related and form an asymmetric unit.


The average position and average magnetic moments of any
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Figure 1
A screenshot, with a partial view of the online icon list of the
incommensurate magnetic structures that can be retrieved from
MAGNDATA.







other atom in the unit cell can be derived from those of the


asymmetric unit through the application of the symmetry


operations of the MSSG defined in (iii). The term ‘average’ is


used here to denote the periodic magnetic structure that


would be obtained if the reported incommensurate modulated


distortions present in the structure were cancelled. This


average periodic structure, also called the basic structure in


the traditional language of superspace formalism, acts as a


reference for both the magnetic and structural modulations,


where by construction k = 0 terms are not included. This


average structure, usually obtained from a refinement


considering all diffraction peaks, is to be distinguished from


the structure that could be obtained in a refinement in which


only the main reflections are used.


(v) Atomic modulation functions for the atoms in the


asymmetric unit in (iv), from which the atomic modulation


functions of any other atom in the basic unit cell can be


derived through the application of the symmetry operations of


the MSSG defined in (iii).


These five items constitute the basic information that is


stored for any of the incommensurate magnetic structures


gathered in MAGNDATA and this is the essential part of the


corresponding magCIF file that can be downloaded. It should


be remarked that some of the programs supporting


commensurate magCIF files that were mentioned by Gallego


et al. (2016) do not yet support magCIF files of incommen-


surate structures. Among those that are fully compatible, the


most important ones are Jmol (Hanson, 2013), ISOCIF


(Stokes & Campbell, 2014), ISODISTORT (Campbell et al.,


2006) and JANA (Petřı́ček et al., 2014).


As an example, Tables 1, 2 and 3 present the data available


in MAGNDATA for the incommensurate magnetic structure


of Ba3NbFe3Si2O14 reported by Marty et al. (2008) and


depicted in Fig. 2. These data are sufficient for a full definition


of this structure. The following remarks are important with


respect to these data.


2.1. Symmetry operations


The list of symmetry operations (see Table 1) is the only


obligatory information in a magCIF file with respect to


symmetry, and it fully defines the MSSG of the structure.


Operations are described with respect to the basic unit cell


that defines the average lattice. They are given in a form


similar to the symmetry operations of the magnetic space


groups, which was explained in the previous article on the


commensurate section of MAGNDATA (Gallego et al., 2016).


A direct extension of the standard notation for non-magnetic


superspace groups (Janssen et al., 2006) is used. Each


symmetry operation is described by the transformation of a


general four-dimensional position (x1, x2, x3, x4) plus the


‘�1/+1’ symbol to indicate the inclusion or not of time reversal


(second column of Table 1); this is also the format used in the


magCIF files. For a better direct visualization of the opera-


tions, MAGNDATA also includes an alternative generalized


Seitz notation (last column in Table 1), where the point-group


operations are indicated with labels that can be easily inter-


preted (Glazer et al., 2014).
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Table 1
Symmetry operations of the MSSG P32110(00�)000s describing the
superspace symmetry of the magnetic structure of Ba3NbFe3Si2O14


(#1.1.17; Marty et al., 2008).


The MSSG label is obtained from a direct extension of the notation
convention used for non-magnetic superpace groups (Janssen et al., 2006),
which essentially agrees with that employed by ISODISTORT (Campbell et
al., 2006) and JANA (Petřı́ček et al., 2014). The MSSG label included in
MAGNDATA is only illustrative, as there are no standard labels and the
group is fully defined by the provided list of symmetry operations.


N (x1, x2, x3, x4, �1) Seitz notation


1 x1, x2, x3, x4, +1 {1 | 0}
2 �x2, x1 � x2, x3, x4, +1 {3+


001 | 0}
3 �x1 + x2, �x1, x3, x4, +1 {3�001 | 0}
4 x2, x1, �x3, �x4, +1 {2110 | 0}
5 x1 � x2, �x2, �x3, �x4, +1 {2100 | 0}
6 �x1, �x1 + x2, �x3, �x4, +1 {2010 | 0}
7 x1, x2, x3, x4 + 1


2, �1 {10 | 0, 0, 0, 1
2}


8 �x2, x1 � x2, x3, x4 + 1
2, �1 {30+001 | 0, 0, 0, 1


2}
9 �x1 + x2, �x1, x3, x4 + 1


2, �1 {30�001 | 0, 0, 0, 1
2}


10 x2, x1, �x3, �x4 + 1
2, �1 {20110 | 0, 0, 0, 1


2}
11 x1 � x2, �x2, �x3, �x4 + 1


2, �1 {20100 | 0, 0, 0, 1
2}


12 �x1, �x1 + x2, �x3, �x4 + 1
2, �1 {20010 | 0, 0, 0, 1


2}


Table 2
Average atomic positions (average magnetic moments are all zero) of
symmetry-independent atoms in the incommensurate magnetic structure
of Ba3NbFe3Si2O14 (#1.1.17; Marty et al., 2008).


Unit cell a = 8.539 (1), b = 8.539 (1), c = 5.2414 (1) Å, � = 90, � = 90, � = 120�,
MSSG P32110(00�)000s (see Table 1).


Label Atom type x y z Multiplicity


Fe1 Fe 0.24964 (4) 0 0.5 3
Ba1 Ba 0.56598 (2) 0 0 3
Nb1 Nb 0 0 0 1
Si1 Si 0.666667 0.333333 0.5220 (1) 2
O1 O 0.666667 0.333333 0.2162 (4) 2
O2 O 0.5259 (2) 0.7024 (2) 0.3536 (3) 6
O3 O 0.7840 (2) 0.9002 (2) 0.7760 (3) 6


Figure 2
A schematic diagram of the incommensurate magnetic structure of
Ba3NbFe3Si2O14 (Marty et al., 2008), showing only the Fe atoms in three
consecutive basic unit cells along c, as retrieved from MAGNDATA
(#1.1.17) using its Jmol visualization tool.







The linear transformation of the components (x1, x2, x3, x4)


associated with any symmetry operation of an MSSG can be


expressed in the matrix form


0


R 0


0


h1 h2 h3 RI


0
BBB@


1
CCCA


x1


x2


x3


x4


0
BBB@


1
CCCAþ


t1


t2


t3


t4


0
BBB@


1
CCCA; ð1Þ


where R is a 3�3 matrix corresponding to a crystallographic


three-dimensional point-group operation expressed in the


basic unit-cell basis. The value of RI (either +1 or �1) and the


integers (h1, h2, h3) are fully determined by R and the value of


the incommensurate propagation vector k according to the


relation


k � R ¼ RIkþHR; ð2Þ


where HR is a reciprocal lattice vector of the average structure,


given by the integer components (h1, h2, h3) in the reciprocal


basis of the basic unit cell. In the example of Table 1, HR = (0,


0, 0) for any operation. The vector HR can have nonzero


components (h1, h2, h3) if the propagation vector lies on the


Brillouin zone surface, with some commensurate fractional


components. The Seitz notation for the generic operation in


equation (1) is {R0 | t1, t2, t3, t4} or {R | t1, t2, t3, t4}, depending on


the additional action of time reversal or not, where R now


stands for the corresponding three-dimensional point-group


operation. As shown in equation (2), the point-group opera-


tions present in the MSSG either keep the propagation vector


invariant (RI = +1) or change it to its opposite value (RI =�1),


in both cases modulo the basic reciprocal lattice.


2.2. Average structure


The set of operations {R | t1, t2, t3} and {R0 | t1, t2, t3}, which


can be derived from the set of operations of the MSSG, define


a three-dimensional MSG in the basis given by the chosen


basic unit cell, which describes the symmetry of the average


structure. This average structure, as an ordinary commensu-


rate magnetic structure, is defined by the values of the atomic


positions and magnetic moments of a chosen asymmetric unit


(see Table 2). The three-dimensional MSG resulting from the


operations in Table 1 is P32110, and this is the label used as the


first part of the MSSG label. It is a grey space group, as all


operations are present in the group both with and without


time reversal. This is the symmetry of the average structure,


and therefore all average magnetic moments are necessarily


zero. The list of average atomic positions for the asymmetric


unit in our example is given in Table 2. As in most incom-


mensurate structures, the average magnetic moments are


forced by symmetry to be zero and are not explicitly listed. In


general, if not appearing in the table they should be taken as


zero. The average commensurate structure can be recon-


structed from Table 2 and the given unit cell by making use of


the superspace group operations listed in Table 1. The effec-


tive space group to be used can be extracted from this table.


2.3. Modulation functions


The modulation of any atomic quantity A for any atom with


respect to its average value is in general given by a periodic


modulation function (of period 1) A�(x4) along a single


variable x4, such that the value of the quantity A of atom � in


the primitive unit cell L is given by the value of the modulation


function A�(x4) for x4 = k �(L + r�), where r� is the position of


atom � within the primitive unit cell. The modulation func-


tions may be anharmonic, and they are parameterized as


Fourier series in terms of cosine and sine functions. Thus, for


any component i of A, the modulation function is defined by


the real amplitudes A�i cos n and A�i sin n describing the modu-


lation function in the form


A�i x4ð Þ ¼
P


n


A�i cos n cos 2�nx4ð Þ þ A�i sin n sin 2�nx4ð Þ: ð3Þ


In the case of structural modulations, a Fourier series may


be ill-suited to describing the complex anharmonic modula-


tions that are often present in aperiodic crystals, and quite a


number of alternative basis functions are used for the para-


meterization of the modulation functions (Petřı́ček et al., 2014,


2016). In the case of magnetic modulations, however, the


Fourier decomposition of equation (3) reduces in most cases


to a first harmonic, or is limited to a few terms. In our example,


a single harmonic is present in the spin modulation, and its


Fourier cosine and sine amplitudes for the single symmetry-


independent Fe atom are reproduced in Table 3.


For instance, one can see in Table 3 for our example that the


cosine amplitudes of the Fe1 spin modulation are forced to be


zero except for the x component, while the sine amplitudes for


the x and y components are forced to have a 1:2 ratio and a z


component is also allowed. This means that the amplitude of


the sine modulation of the spin of the Fe atom at the position


(x, 0, 1
2 ) is on a plane perpendicular to the a direction, while the


spin cosine modulation is along a. In other words, the spin


modulation is forced by symmetry to follow a mixed screw/
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Table 3
Amplitudes of the cosine and sine functions describing the spin modulation function of the only symmetry-independent magnetic atom in the
incommensurate magnetic structure of Ba3NbFe3Si2O14 (#1.1.17; Marty et al., 2008).


MSSG P32110(00�)000s (see Table 1). k = (0, 0, 0.143). Magnetic moment components along the crystallographic axes are given in Bohr magnetons.


Magnetic moment Fourier cosine coefficients Magnetic moment Fourier sine coefficients


Symmetry constraints Numerical values Symmetry constraints Numerical values


Atom x y z x y z x y z x y z


Fe1 Mxcos1 0 0 4 0.0 0.0 Mxsin1 2Mxsin1 Mzsin1 �2.31 �4.62 0.0







cycloid modulation, the plane of the elliptical spin rotation


being in general oblique to the propagation vector along c,


with its plane director of type (u, 2u, v). One can then see in


Table 3 that the model reported by Marty et al. (2008) has


additional restrictions not forced by symmetry: it is a circular


screw modulation, with the plane of the spin rotation


perpendicular to the c direction and a spin modulus of


approximately 4 mB. This means that the amplitude of Mz sin 1 is


zero, and the nonzero values of Mx sin 1 and My sin 1 are corre-


lated with the value of Mx cos 1 to produce a sine component


along (1, 2, 0) with the same amplitude of 4 mB. (Note that our


parameterization has forced the inclusion of non-significant


digits for these amplitudes Mx sin 1 and My sin 1). The symmetry


constraints reproduced in Table 3 show that the value of


Mx sin 1 is, however, independent of Mx cos 1, and a nonzero


value of Mz sin 1 for Fe1 is also allowed, as these additional


variables do not break the superspace symmetry. Thus, the


number of free parameters in the most general model of the


spin modulation under this symmetry is three instead of one.


Not only can the plane of rotation of the spins be oblique with


respect to the propagation direction, but the rotation can also


be elliptical, instead of circular. To our knowledge this more


general model has never been tested, but an alternative model


for the same phase has been proposed by Scagnoli et al. (2013).


This second model indeed includes a nonzero Mz modulation.


Unfortunately, some quantitative details in the description of


the spin modulations seem to be missing and we have been


unable to interpret the model fully and transform it to an


unambiguous description within the superspace formalism. It


seems, however, that the modulated spin structure proposed


by Scagnoli et al. (2013) is not a mere improvement of the one


reported by Marty et al. (2008), corresponding to nonzero


values for the additional free variables mentioned above. The


spin modulations of the structure reported by Scagnoli et al.


(2013) do not seem to keep a constant rotation plane. Hence,


its superspace symmetry must be different from that of the


model proposed by Marty et al. (2008), and the two models are


therefore in contradiction. This is a clear example where the


systematic use of magnetic superspace symmetry becomes a


fundamental tool in MAGNDATA to classify and compare


different models for incommensurate magnetic structures.


2.4. Symmetry relations between modulation functions


The Fe1 site in the average structure has a multiplicity of 3,


i.e. there are two other Fe sites within the unit cell with spin


modulations that are symmetry related to that of Fe1 defined


in Table 3. Optionally, MAGNDATA can explicitly show these


symmetry-related modulations in the same format. The


general equation relating the spin modulation functions of two


atoms � and �, through an MSSG operation {R | t, t4}, such that


{R | t}r� = r� (modulo an average lattice translation), is (see


Perez-Mato et al., 2012)


M� RIx4 þ t4 þHR � r�ð Þ ¼ � det ðRÞRM� x4ð Þ; ð4Þ


where the parameters in equation (4) have been defined above


in the context of equations (1) and (2). The � sign depends on


the operation being either {R | t, t4} or {R0 | t, t4}. It is important


to remark that the parameterization chosen in the superspace


formalism, with the correspondence between the continuous


coordinate x4 and the factor k �(L + r�) when particularized for


a specific atom, makes the symmetry relation defined by


equation (4) independent of the choice made for atoms � and


� among those equivalent by lattice translations of the average


structure. This avoids a frequent source of confusion and


ambiguity in the traditional description using the factor k �L.


Table 4 shows the three average sites forming the orbit derived


from the Fe1 site in the asymmetric unit and their corre-


sponding modulation functions, as given in MAGNDATA.


The table explicitly shows the relation of the modulation


parameters of the two additional atoms with those of Fe1, as


derived from the general equation (4). This relation forces a


120� pattern of their spins on each plane along c. It is


important to remark that the so-called triangular chirality


(Marty et al., 2008) of the spin helical modulations is dictated


by the MSSG, with the relation of the spin helicities of the


three modulations being unique. The MSSG is chiral (as it is


the space group of the paramagnetic phase) and the
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Table 4
The set of atoms in the unit cell related by symmetry to the chosen independent magnetic atom Fe1 of Ba3NbFe3Si2O14, listed in Table 2 (#1.1.17), and the
symmetry-related amplitudes of the cosine and sine functions describing their spin modulation functions, according to the MSSG P32110(00�)000s,
defined in Table 1.


Magnetic moments are given in Bohr magnetons.


Atom x y z


1 0.24964 0.00000 0.50000
2 0.00000 0.24964 0.50000
3 0.75036 0.75036 0.50000


Magnetic moment Fourier cosine coefficients Magnetic moment Fourier sine coefficients


Symmetry constraints Numerical values Symmetry constraints Numerical values


Atom x y z x y z x y z x y z


1 Mx cos 1 0 0 4.0 0.0 0.0 Mx sin 1 2Mx sin 1 Mz sin 1 �2.31 �4.62 0.0
2 0 Mx cos 1 0 0.0 4.0 0.0 �2Mx sin 1 �Mx sin 1 Mz sin 1 4.62 2.31 0.0
3 �Mx cos 1 �Mx cos 1 0 �4.0 �4.0 0.0 Mx sin 1 �Mx sin 1 Mz sin 1 �2.31 2.31 0.0







enantiomeric form, which is described under the same MSSG,


will have opposite chirality for both the atomic positions and


the spin modulations. The helicities of all spin modulations in


the enantiomeric form will be opposite but maintain their


relative signs, as dictated by the MSSG. The triangular chir-


ality defined by Marty et al. (2008) is therefore the same for


both enantiomeric forms.


The symmetry constraints of the Fe1 spin modulation


discussed in x2.3 also come from the general condition


expressed by equation (4) for the operations that keep the Fe1


site invariant. The average position of this site is invariant for


the operation {2100 | 0, 0, 0, 0} (see Table 1), and equation (4)


particularized for this symmetry operation yields the


constraints of the Fe1 moment modulation that reduce the


possible free parameters of the spin modulation from six to


three.


The parameterization within the superspace formalism


expressed by equation (3) essentially coincides with the


traditional so-called k-vector description, employed for


instance in the FullProf suite (Rodrı́guez-Carvajal, 1993) for


incommensurate magnetic structures. The differences can be


considered minor, namely the use of k �(L + r�) instead of k �L


as the variable of the Fourier wavefunction, and the use of


cosine and sine functions instead of expressing the Fourier


series as complex exponentials. It is, however, the introduction


of symmetry relations between the modulation functions, as


given by equation (4) for each symmetry operation of the


MSSG, and the resulting constraints for the modulations of


atoms at special positions that make the major difference from


traditional parameterization. For the sake of future reference,


as the parameterization employed in FullProf is one of the


most commonly used, we include in Appendix A a transcrip-


tion of the symmetry relations resulting from an MSSG


operation and described by equation (4) into the para-


meterization employed by Basireps in FullProf.


2.5. Assignment of the MSSG


Computer tools for the efficient application of magnetic


superspace symmetry have only been made available very


recently (Petřı́ček et al., 2010, 2014). Hence, the use of


magnetic superspace symmetry is still rare and incommensu-


rate magnetic structures are usually reported without


controlling the possible symmetry of the model, or exploring


the constraints consistent with different possible alternative


MSSGs. Following the traditional representation method


(Bertaut, 1968; Izyumov et al., 1991), the structures are often


described using basis spin functions associated with a single


irreducible representation (irrep) of the parent space group,


but in many cases several MSSGs are possible for a single


active irrep (Perez-Mato et al., 2012, 2015), and therefore the


symmetry assignment becomes ambiguous if the proposed


model for the spin modulations is not reported in full detail. In


principle, any reported incommensurate structure can be


transformed into a symmetry-based description under an


MSSG, if the average structure and atomic modulations are


given without ambiguity. In the worst situation, it may happen


that all modulation functions are symmetry independent, and


the resulting MSSG is then limited to the minimum possible


superspace symmetry with its point group reduced to 1 or 110.


However, in many cases it is very difficult to extract a detailed


account of all spin atomic modulations. In particular, the


relative phase shifts between the spin modulations of different


atoms are often absent or ambiguous in the published reports,


making strenuous or even impossible the transformation of


the published models into the symmetry-based unified


description of this database. This has made it particularly


difficult to include incommensurate structures in this collec-


tion compared with commensurate ones.


As in the commensurate case, instead of identifying the


relevant MSSG with a bottom-up process, we have in most


cases followed a reverse methodology, exploring the possible


MSSGs for the known propagation vector and identifying the


one relevant for the reported structure. For this purpose, we


have used either the representation analysis tool available in


JANA (Petřı́ček et al., 2014), which determines the possible


MSSGs that can result from the action of a single irrep, or


ISODISTORT (Campbell et al., 2006), which can also deter-


mine the possible MSSGs for the cases where several irreps


are active. Both programs can provide a magCIF file for each


of the models corresponding to these possible alternative


symmetries, and they can then be compared with the


published structure. Similarly to the commensurate case


(Gallego et al., 2016), the relevant MSSG could be easily


identified in this way in most cases, except for the above-


mentioned structures where the information provided in the


publication is insufficient or ambiguous. Once the MSSG was


identified, the process was completed by transforming the


structure and modulation parameters of the original publica-


tion to the parameterization employed in the description


under this MSSG. The final model, with these transformed


parameters and any convenient complementary information,


was then added to a magCIF file and introduced into the


database.


In most cases, a label for the MSSG is included. This is given


by extending the labelling rules used for non-magnetic


superspace groups, and in general it does not uniquely


determine the operations of the group. An MSSG label in


general has the form [SG](k1, k2, k3)ab . . . , where [SG] is the


standard label of the MSG of the average structure, (k1, k2, k3)


is a generic expression of the most general form allowed by the


MSSG for the incommensurate propagation vector, and a,


b, . . . are an ordered set of zeros and/or letters that define the


value of t4 that the MSSG associates with each symmetry


operation represented in the label [SG], following the same


order. The zeros in this set of symbols are assigned not only to


the operations with t4 = 0, but also to those for which RI = �1,


as for them the value of t4 is not intrinsic and depends on the


origin chosen along x4. Thus, the MSSG of our example in


Table 1 is P32110(00�)000s, indicating that the average struc-


ture has the grey MSG P32110, i.e. it is non-magnetic, the


average magnetic moments being zero. The ‘000s’ at the end


shows that the threefold rotation 3+ has t4 = 0, while the


symbol s associated with 10 indicates that time reversal is
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maintained combined with a 1
2 translation along x4, i.e. the


operation {10 | 0, 0, 0, 1
2} belongs to the MSSG. For other


fractional values of t4, different letters are used following the


same convention as in non-magnetic superspace groups


(Janssen et al., 2006).


The presence in the incommensurate propagation vector of


some commensurate simple components like 1
2 can introduce


into the symmetry relations described by equation (4) nonzero


values for the vectors HR. This makes the symmetry relations


rather complex, with the phase shifts between modulations


depending explicitly on the specific value of the atomic posi-


tions. This complication can be avoided by using a supercell


for the basic structure, where the commensurate part of the


propagation vector becomes a reciprocal lattice vector, and


the effect of this part of the propagation vector is instead


introduced by a centring of the supercell in the (3 + 1)


superspace. Thus, for instance, an incommensurate propaga-


tion vector ( 1
2, 0, �) on a structure with a basic primitive unit


cell (a, b, c) can be replaced by (0, 0, �), if the basic unit cell is


chosen to be 2a, b, c and a centring {1 | 1
2, 0, 0, 1


2} is included


instead in the MSSG, which equally ensures that the modu-


lations in two consecutive original basic unit cells along a have


their phases shifted by � (or 1
2 for x4). If the MSSG includes


this kind of centring involving internal space, the [SG] label of


the basic space group has an initial letter X, instead of the


usual letters employed in ordinary space groups for indicating


the centring type (Janssen et al., 2006).


It is important to stress that, in contrast with the non-


magnetic superspace groups, there is no listing of all possible


MSSGs. Therefore, there is no setting of the MSSGs that can


be taken as standard. The list of the symmetry operations of


the MSSG compulsorily included in a magCIF file is therefore


more fundamental than in the commensurate case, in order to


define the magnetic symmetry of the structure unambiguously.


In most cases, we keep as the average unit cell that of the


original publication, except for cases where we have avoided


the presence of commensurate components in the propagation


vector through a multiplication of the reference average unit


cell accompanied by appropriate centring operations, as


explained above.


2.6. Ubiquity of the symmetry operation {1000 | 0, 0, 0, 1
2}


All single-k incommensurate structures necessarily have the


symmetry operation {10 | 0, 0, 0, 1
2} within their MSSG (Perez-


Mato et al., 2012). This is reflected in the MSSG label by the


presence of a grey magnetic space group label in the first part


and an s at the end of the label. This superspace symmetry


operation is due to the fact that any single harmonic modu-


lation in any system remains invariant if the action of time


reversal is followed by a global phase shift � (or 1
2 in x4 units)


of the modulation. The presence of this invariance as a


symmetry property of the whole phase implies the well known


restriction of single-k anharmonic incommensurate magnetic


structures, such that any anharmonicity of the magnetic


modulation within the same thermodynamic phase can only be


developed through odd harmonics. See, for instance, the case


of HoMgPb (MAGNDATA reference #1.1.32; Lemoine et al.,


2012), where the third and fifth harmonics have been refined.


The additional presence of a k = 0 component or even


harmonics in the magnetic modulation breaks the symmetry


operation {10 | 0, 0, 0, 1
2}, and this can only be explained by the


independent action of two propagation vectors, with the


magnetic phase thus being a 2k phase, although its symmetry is


still described by a (3 + 1)-dimensional MSSG. This is, for


instance, the case of the modulated structure reported for


DyMn6Ge6 (#1.1.10; Rodriguez-Carvajal & Bouree, 2012)


where, apart from the incommensurate propagation vector, a


k = 0 magnetic component has been observed and the MSSG


of the structure can be labelled as P62020(00�)h00 (the letter h


means that t4 = 1
6 for the sixfold rotation). This is the only entry


where the MSSG does not include the operation {10 | 0, 0, 0, 1
2}.


2.7. Structural modulations


As in the commensurate case, the non-magnetic degrees of


freedom are also subject to the magnetic symmetry group of


the phase. The use of the MSSG in the parameterization of the


structure makes explicit all non-magnetic degrees of freedom


released by the magnetic ordering, which may be significant if


the magnetoelastic coupling is strong enough. Thus, if the


MSG of the average structure is lower than the parent grey


group, new free parameters are present in the listing of its


asymmetric unit. The MSSG in general will also allow struc-


tural modulations, which are subject to symmetry correlations


analogous to those of equation (4), except for the fact that the


inclusion of time reversal in the operation is irrelevant. Thus,


the atomic displacive modulations (if present) of two


symmetry-related atoms � and � must be related according to


the equation


u� RIx4 þ t4 þHR � r�ð Þ ¼ Ru� x4ð Þ; ð5Þ


while for the modulation of a scalar quantity, such as the


occupancy probability or the atomic charge of the sites, the


following relation is required:


p� RIx4 þ t4 þHR � r�ð Þ ¼ p� x4ð Þ: ð6Þ


These equations, particularized for the operation {10 | 0, 0, 0,
1
2}, imply the restriction of the structural modulations to even


harmonics (Perez-Mato et al., 2012). This constraint of


magnetoelastic effects is often observed in single-k incom-


mensurate magnetic structures, and its universal validity for


this kind of structure becomes apparent if superspace


symmetry is considered.


Even-order diffraction satellites showing the presence of


magnetically induced structural modulations are often


observed, but their weakness has hampered any quantitative


analysis. Equations (5) and (6), however, imply that strong


specific correlations between magnetic modulation and


induced structural modulations should be expected, and this


can help to approach the problem of its characterization.


The symmetry-dictated division between odd magnetic and


even structural Fourier terms in the modulations can also


happen in incommensurate magnetic structures where the
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paramagnetic phase is an incommensurate structure with an


intrinsic structural modulation. This is the case for CeRuSn


(#1.1.35; Prokes et al., 2014), where the paramagnetic phase is


a monoclinic incommensurate structure with propagation


vector k = (0, 0, 0.35) and the magnetic propagation vector is


k/2. The resulting magnetic phase has structural and magnetic


modulations complying with an MSSG for the propagation


vector k/2, which also describes the constraints of the intrinsic


structural modulation that has only even Fourier terms.


2.8. Visualization and analysis


The output page for each structure includes an image


obtained using Jmol (Hanson, 2013) with only the magnetic


atoms. A link to an online three-dimensional viewer (Perez-


Mato et al., 2015) that uses JSmol, the JavaScript version of


Jmol, is also available (see Fig. 3). This online tool makes


directly accessible the simplest and most important commands


of Jmol through specific buttons, while the innumerable


commands available to manipulate and analyse the graphical


representation can be applied through a command window or


a pop-up console. The visualization options include the


possibility of shifting the global modulation phase both stati-


cally or dynamically (phase shift and phase sliding buttons) in


order to have access to all the configurations realized along


the modulation. The latest version of Jmol fully supports


MSSGs and accepts magCIF files as input files. Therefore, the


database entries can also be visualized and analysed locally


using Jmol, provided that the user has previously downloaded


this free open-source Java program.


3. Additional information


Apart from the minimal information necessary to build up the


magnetic structure in three-dimensional space, MAGNDATA


provides additional important data for each entry. This


information is also included in the corresponding magCIF file


that can be downloaded (local tags beyond the official magCIF


dictionary are used for some of the items). We list and discuss


here the most important items.


3.1. Magnetic point group


The magnetic point group associated with an incommen-


surate magnetic structure can be derived in a straightforward


manner from the knowledge of its MSSG, simply by taking the


rotation or roto-inversion operations, combined (or not) with


time reversal, which are present in the group. This information


is very important, as the magnetic point group governs the


macroscopic crystal tensor properties. As in the commensu-


rate case, a direct link to MTENSOR, another program on the


Bilbao Crystallographic Server, then allows the user to


explore, for this specific point group and the setting used for


the structure, the symmetry constraints that should be present


in the macroscopic tensorial magnetic, structural or magneto-


structural properties.


3.2. Parent space group, and the relationship between the
basic unit cell and the unit cell of the parent phase


Although a magnetic structure is in principle fully defined


by the data discussed in the previous section, as in the


commensurate case (Gallego et al., 2016), the knowledge of


the symmetry of its parent paramagnetic structure is funda-


mental to characterize the possible domains and the switching


properties of the material. Therefore, this parent space group


is given as additional information. Information about the


relationship between the basis used for this reference parent


phase and the basic unit cell employed is also included. This is
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Figure 3
A screenshot of the online visualization of the incommensurate magnetic structure SrFeO3 (#1.1.26; Reehuis et al., 2012).







given under the heading ‘Transformation from parent struc-


ture’.


If the point group of the MSSG is a strict subgroup of the


point group of the parent phase, structural ferroic properties


are to be expected in the incommensurate magnetic phase.


Thus, for instance, in the example of Ba3NbFe3Si2O14 (#1.1.17;


Marty et al., 2008) the parent space group is P321, i.e. its


magnetic point group is 3210, which is also the point group of


the MSSG. Therefore, there is no point-group symmetry break


and no distinct domains are expected, except those produced


by the loss of coherence in the modulation (in 1k incom-


mensurate structures, the usual trivial domains related by time


reversal with opposite spins are just the same structure with its


free global modulation phase shifted by �, or by 1
2 in x4 units).


On the other hand, if we take the case of MnSb2O6 (#1.1.38;


Johnson et al., 2013), the point-group symmetry break with


respect to the parent phase is 3210 ! 210, and domains related


by the lost threefold rotation are to be expected. Note that in


MAGNDATA we use in general for the average structure a


unit-cell basis as close as possible to that of the parent space


group. Thus, in this example the parent cell is maintained, and


the ‘Transformation from parent structure’ is the identity


transformation, although the monoclinic axis of the MSSG is


along (1, 0, 0) of the parent trigonal lattice. In this example,


knowledge of the symmetry break from a non-polar to a polar


point-group symmetry is sufficient to expect this material to


behave as a type II multiferroic, with a magnetically induced


electric polarization along the monoclinic axis of the MSSG.


The spins in MnSb2O6 follow cycloids along the c direction


(see Fig. 4), which is a typical geometry that introduces


polarity at a local level (Perez-Mato et al., 2015) and which has


been identified in quite a number of incommensurate multi-


ferroics (Tokura et al., 2014). However, it is important to stress


that the presence of spin cycloids is not sufficient for a polar


symmetry. The symmetry of magnetic structures is a global


property and there are other structures with spin cycloids, such


as Cs2CuCl4 (#1.1.1; Coldea et al., 1996), which are centro-


symmetric and therefore non-polar. In this second case, the


spin cycloids are related through the MSSG symmetry


operations, such that the space inversion is maintained with


symmetry-related cycloids of opposite chirality. In fact, in this


second example, compared with the parent symmetry, one can


see that the magnetic ordering does not break at all the point-


group symmetry of the system (see Fig. 4).


3.3. Representation analysis
In accordance with the Landau theory of phase transitions,


the magnetic ordering in most of the magnetic phases of this


collection has an order parameter transforming according to a


single irrep of the parent symmetry group (odd for time


reversal, when considered as a representation of the magnetic


parent grey group). In fact, as mentioned above, in most cases


the original structure determination was done following the


traditional representation method, where the possible spin


waves are restricted to a single irrep and, if necessary, the


process is extended to include additional ones.


The information on the activity of one or more irreps in the


spin ordering and its relation to the MSSG of the structure


that is being used in the database can be found in the


comments included for each entry and/or in a table with the


heading ‘Active irreps’. The irrep labels are those employed in


ISODISTORT, which have also been adopted by JANA and


by other programs on the Bilbao Crystallographic Server.


Finally, similar to the commensurate structures, each entry


also includes information (if available) on the transition and


experimental temperatures, references for the positional


structure, and some complementary comments; see Gallego et


al. (2016) for more details. In particular, it should also be


stressed here that many incommensurate magnetic structures


have been reported without providing a detailed account of


the average structure that has been assumed as the reference


for the modulation. In such cases, an average structure has


been taken from other sources, and the corresponding refer-


ence has been included.


4. Magnetic superspace symmetry versus irrep
descriptions


As mentioned above, in order to transform each structure to


the symmetry-based unified description of this collection, its


MSSG has been identified, if not given in the original refer-
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Figure 4
The spin arrangements in the magnetic structures of MnSb2O6 (#1.1.38;
Johnson et al., 2013) and Cs2CuCl4 (#1.1.1; Coldea et al., 1996), as given by
the online Jmol visualization tool of MAGNDATA, with an indication of
their symmetry properties. Both structures exhibit spin cycloids. In the
first case these produce a symmetry break into a polar symmetry, while in
the second case the centrosymmetric parent point-group symmetry is
maintained, through the MSSG symmetry relations between cycloids of
opposite chirality. A partial trail of the spin value for a shift in the free
global phase of the modulation is depicted, to show the rotation plane and
chirality of each cycloid.







ence, by exploring the possible MSSGs that can be realized if


the magnetic arrangement complies with one or more irreps of


the parent grey group. The MSSG that corresponds to the


correlations between the spin modulations introduced in the


model has then been detected.


The relation of the MSSG description to that using irreps


has been discussed in detail by Perez-Mato et al. (2012, 2015).


The database includes examples of the two different situations


that can happen if a single irrep is active, given below.


(i) A one-to-one correspondence exists between the irrep and


the MSSG. In this case, adapting the spin wave to fulfil the


transformation conditions of a single irrep spin mode for the


active irrep is in principle fully equivalent to the introduction


of the symmetry constraints of the corresponding MSSG.


However, this does not mean in general that the traditional


form in which the representation method is being used


introduces into the reported model equivalent restrictions to


those of the corresponding MSSG. The reason for the differ-


ence between the two approaches in these simple cases is that


the irrep-dictated transformation properties of the spin waves


with respect to the operations that transform k into �k are


usually disregarded. The irrep decomposition of the magnetic


configuration space is usually done considering the so-called


small irreps associated with the small space group Gk, formed


by the operations of the parent group that keep the propa-


gation vector k invariant. However, the operations of the


parent group that invert k imply in general additional


restrictions on the possible form of a spin wave transforming


according to a specific irrep. For instance, atomic sites related


by these operations do not necessarily split [see equations


(18a) and (18b) in Appendix A]. This problem was already


pointed out within the framework of the Landau theory of


some incommensurate magnetic phases (Harris et al., 2008;


Harris, 2007), and its relevance for a proper comparison of the


superspace symmetry formalism with the representation


method was discussed by Perez-Mato et al. (2012, 2015). In


general, the MSSG symmetry properties of a single-k spin


modulation transforming according to a single irrep are


defined for all operations of what we call the extended small


group Gk,�k, which includes both the operations that maintain


or invert the propagation vector.


As an example, let us consider the case of NaFeSi2O6


(#1.1.36; Baum et al., 2015), which has parent space group C2/c


and propagation vector (0, 0.78, 0). This propagation vector is


along the Brillouin zone (BZ) line LD, with its small space


group reduced to C2, and two possible irreps depending on the


one-dimensional small irrep being even or odd for the binary


rotation. The inversion and the mirror plane transform k into


�k, and therefore the two possible magnetic (full) irreps are


two-dimensional, namely mLD1 and mLD2 in the notation of


ISODISTORT (Campbell et al., 2006). It is a general property


that incommensurate spin modulations with the transforma-


tion properties of an irrep that is two-dimensional when


restricted to the (k, �k) subspace have superspace symmetry


properties described by a single MSSG. In these cases there is


a one-to-one correspondence between the irrep and this


MSSG (Perez-Mato et al., 2012). This is illustrated graphically


in Fig. 5 for our example. Each possible irrep results in one


single MSSG, and the corresponding symmetry relations and


constraints on the spin waves can be derived from the general


relation of equation (4).


The only symmetry-independent magnetic atom, Fe1(1), in


the parent phase of NaFeSi2O6 is at Wyckoff position 4e (0, y,
1
4). It is therefore invariant for the symmetry operation {2010 | 0,


0, 1
2}. This symmetry operation is conserved either as {2010 | 0, 0,


1
2, 0} in the MSSG corresponding to mLD1 or as {2010 | 0, 0, 1


2,
1
2}


in the MSSG of mLD2. In the first case, equation (4) forces the


modulation to be longitudinal with the spin constrained along


the b direction, the first harmonic amplitudes being reduced to


the two parameters My cos 1 and My sin 1. In the second case, i.e.


the irrep mLD2, the operation {2010 | 0, 0, 1
2,


1
2} forces a trans-


verse modulation, with four free parameters (Mx cos 1, 0,


Mz cos 1) and (Mx sin 1, 0, Mz sin 1). Both MSSGs include the


inversion operation which, for a convenient choice of origin


along the internal space x4, can be expressed without any shift


along x4 as {�1 | 0, 0, 0, 0}. Equation (4) particularized for the


inversion implies that the modulation amplitudes of Fe1(2)


(see Fig. 5) are related to those of Fe1(1), in the form


M� cos 1[Fe1(2)] = M� cos 1[Fe1(1)] and M� sin 1[Fe1(2)] =


�M� sin 1[Fe1(1)] for � = x, y, z, for any of the two irreps/


MSSGs. Therefore, the magnetic modulation does not split the


Fe sites, and both MSSGs keep a single symmetry-indepen-


dent site, with two and four free parameters for mLD1 and


mLD2, respectively, to describe the Fe spin modulations. For
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Figure 5
Possible MSSGs for an incommensurate magnetic structure with parent
space group C2/c and propagation vector (0, 0.78, 0) (line LD of the BZ),
resulting from the condensation of a spin wave transforming according to
one of the two possible irreps. The two possible groups, one for each irrep,
are depicted as maximal subgroups of the parent grey group. A partial
view of the Fe spin modulation reported for NaFeSi2O6 (#1.1.36; Baum et
al., 2015) is represented below its MSSG, compared with the alternative
model corresponding to the other irrep or MSSG. In both cases, the spin
modulations of the atoms Fe1(1) and Fe1(2), which are symmetry related
by the space inversion in the parent phase, keep a symmetry relation
through the MSSG. While the mLD1 longitudinal wave has two free
parameters to fit, the transverse mLD2 wave has four free parameters,
and its collinearity is not symmetry protected. Transverse helical
modulations or more complex phase relations are possible within the
same irrep/MSSG.







comparison, the traditional representation approach yields


four and eight parameters for the spin basis functions,


respectively, which by fixing the global arbitrary phase of the


incomensurate modulation reduce to three and seven.


It should be remarked that, in the MSSG description, the


arbitrary global phase of the modulation is fixed by the setting


used for the MSSG, if it contains operations transforming k


into �k. The origin along x4 is fixed by the choice of the t4
values of these operations. The structure of NaFeSi2O6


reported by Baum et al. (2015) corresponds to the MSSG C2/


c10(0�0)s0s (irrep mLD2), but the model reported by Baum et


al. (2015) includes additional constraints, as the spin


arrangement is collinear and the number of refined para-


meters has been limited to three. Note however that the irrep,


or equivalently the MSSG, allows more complex arrange-


ments, including transverse helical ellipsoidal modulations.


In contrast with the commensurate case, an incommensu-


rate spin arrangement transforming according to a single irrep,


and having the MSSG symmetry associated with this irrep, can


imply phase relations between the modulations of atoms that


are symmetry independent in the parent space group (Perez-


Mato et al., 2012). This may sound paradoxical, but it is a


special property of incommensurate structures and the


symmetry associated with the phase shift of their modulation.


In order that two incommensurate basis functions associated


with symmetry-independent atoms correspond to a single spin


mode transforming according to a single irrep, their relative


phases should be correlated. Unfortunately, this single irrep


condition, which is part of the constraints of the associated


MSSG, is often not considered. This is a recurrent problem


encountered when translating reported incommensurate


structures into the superspace formalism. For example, the


compound CaFe4As3 (#1.1.5; Manuel et al., 2010) has four


independent Fe sites of type 4c (x, 1
4, z) in the parent space


group Pnma and was reported to have centrosymmetric


properties in the incommensurate phase. The irrep mY1 with


k = (0, 0.375, 0) associated with its spin arrangement


constrains the spin modulations to be longitudinal, but the


transformation properties of this irrep by the inversion


operation also force the modulations for the four independent


Fe atoms to be in phase (Perez-Mato et al., 2012). The


modulation phases of the different sites were refined, however


(Manuel et al., 2010), and reached relative values close to zero


or �, as expected from the centrosymmetric MSSG associated


with a single irrep mode. Accordingly, to keep a centrosym-


metric symmetry we had to ignore the small deviations from


these values when introducing the structure into the database.


(ii) Several alternative MSSGs are possible, depending on


how the spin basis functions of the irrep are combined. If the


active irrep restricted to the extended small group Gk,�k has a


dimension larger than two, more than one MSSG is in general


possible, depending on the direction taken by the order


parameter within the irrep space. This implies that specific


linear combinations of the irrep spin basis modes can yield


different MSSGs (so-called irrep epikernels), while an arbi-


trary combination of the whole set of basis modes reduces the


symmetry to the minimum possible MSSG for the irrep (the


so-called irrep kernel) (Perez-Mato et al., 2012, 2015). The


refined models are usually obtained by introducing ad hoc


restrictions on the combination of irrep spin basis modes or


without using irreps, simply assuming simple models following


a trial-and-error approach. In many cases these restrictions


make the model comply with one of the several possible


MSSGs.


An example is the magnetic structure reported for SrFeO3


(#1.1.26; Reehuis et al., 2012), shown in Fig. 3. Having a


paramagnetic cubic phase with space group Pm3m, the


reported magnetic structure has a propagation vector of type


(u, u, u), i.e. it lies along the line LD of the Brillouin zone, and


the active irrep is mLD3. Fig. 6 shows the group–subgroup


hierarchy of all possible MSSGs which can result from the


action of a magnetic order parameter transforming according


to mLD3. Six different superspace symmetries are in principle


possible for the magnetic phase. The magnetic atom sits at the


origin, and the irrep decomposition of its magnetic repre-


sentation for this propagation vector is mLD3(4) + mLD2(2),


where the dimensions of the irreps restricted to the extended


small group Gk,�k are indicated in parentheses. The subspace


of mLD3-type spin configurations is therefore spanned by four


independent basis modes. As shown in Fig. 6, if these modes


are combined arbitrarily the superspace symmetry is reduced


to a minimum triclinic group, while very specific combinations


can maintain either the trigonal symmetry or centrosymmetric


monoclinic symmetries with the monoclinic axis perpendicular


to the propagation vector. The model reported for SrFeO3


corresponds to one of these three maximum symmetries, and a


single free parameter is to be refined. The magnetic modula-


tion breaks space inversion and maintains the trigonal


symmetry compatible with the propagation vector, but keeps


the system non-polar owing to the binary rotations perpen-


dicular to the propagation vector that are also preserved.
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Figure 6
Possible MSSGs for an incommensurate magnetic structure with parent
space group Pm3m and active irrep mLD3, with its propagation vector on
the symmetry line LD (u, u, u) of the BZ. The groups are depicted
showing their group–subgroup hierarchy and only one subgroup per
conjugacy class is shown. The set of integers (n, m) above each group
indicates the degrees of freedom of the spin wave for a magnetic atom at
the origin under each symmetry, separating those associated with the
irrep mLD3(n) from those with mLD2(m), these latter corresponding to
possible secondary spin modes if m 6¼ 0. The MSSG of the magnetic phase
of SrFeO3 (#1.1.26; Reehuis et al., 2012) is indicated.







As shown in Fig. 6, some of the possible MSSGs resulting


from a single active irrep may have degrees of freedom


associated with secondary irreps having compatible epi-


kernels, which are supergroups of this particular MSSG. For


instance, this is the case for the MSSG C2/m10(�,0,�)0ss, which


implies two free parameters in the spin modulation, but if


restricted to the mLD3 irrep only one parameter is necessary,


the second one corresponding to a secondary symmetry-


compatible longitudinal spin component transforming


according to mLD2.


The database also contains structures whose spin modula-


tion corresponds to the superposition of two primary irreps,


the resulting MSSG being the intersection of the irrep


epikernels associated with each irrep. This intersection


depends in general on the relative phase shift between the two


irrep spin modulations (Perez-Mato et al., 2012), and again


various MSSGs are possible even if the two primary irreps


separately result in a single possible MSSG. Among these


cases, one has to include those with spin modulations corre-


sponding to a single irrep but with arbitrary relative phase


shifts between the basis functions, which decrease the resulting


MSSG, breaking all operations that transform k into �k.


These structures must be considered the result of the action of


two distinct order parameters transforming according to the


same irrep. The possibility of reducing the symmetry through


the superposition of irrep modes of the same irrep is a pecu-


liarity of incommensurate structures, not present in the


commensurate case.


5. Summary of the structures in the collection


Table 5 summarizes the symmetry properties of the incom-


mensurate structures gathered in this collection. The first 13


cases in the list are structures where the magnetic point group


does not vary with respect to the paramagnetic phase. No


ferroic properties are therefore to be expected. No twinning


can exist, not even the simple case of spin switching. In all


these cases a single primary irrep is active and its small irrep is


one dimensional, such that there is a one-to-one correspon-


dence between the MSSG and the irrep; once the active irrep


has been identified, the identification of the corresponding


MSSG is rather straightforward. These structures have usually


been refined assuming some simple form for the modulation as


helical, cycloidal, sinusoidal etc. This kind of modulation


usually complies with the MSSG associated with the active


irrep, except in cases like that of CaFe4As3, discussed in the


previous section, but they often include additional restrictions


that are not forced by the MSSG or by the reduction to a


single irrep. For instance, this is the case for CaCr2O4 (#1.1.15;


Damay et al., 2010), where the most general spin modulation


under its MSSG is a set of elliptical cycloidal modulations with


opposite chiralities by pairs and with the normal to its rotation


plane being allowed to be oblique on the plane perpendicular


to the propagation vector. However, the cycloids of the


reported model lie on the ac plane, and it is not mentioned if a


more general orientation was explored and checked. A similar


situation occurs in the case of Ba3NbFe3Si2O14 (Marty et al.,


2008), discussed in x2.


The remaining structures with a single active primary irrep


break the parent point-group symmetry and can be classified


into three sets:


(i) Structures where the direction of the propagation vector


is the only agent of this symmetry reduction, with the


extended small space group Gk,�k being a strict subgoup of the


parent space group, while the active small irrep is one


dimensional. Also in these cases, there is a one-to-one corre-


spondence between the small irrep and the MSSG, but this


latter only keeps the point-group symmetry corresponding to


Gk,�k, which is lower than that of the parent phase. There are


seven cases of this type.


(ii) Structures where the propagation vector does not break


the parent symmetry, Gk,�k coinciding with the full parent


space group, and the reduction of the point-group symmetry


being due to the fact that the active irrep is multidimensional.


This is the case for the magnetic structures of RbFe(MoO4)2


(#1.1.2), MnAu2 (#1.1.13), CeRhIn5 (#1.1.16), CeAuAl3
(#1.1.33) and FeOCl (#1.1.40). Their MSSG is one of the


epikernels of maximum symmetry of the active irrep. It is


remarkable that the spin modulations in these structures are


circular helical modulations and they are symmetry protected


(see Fig. 7). This contrasts with other entries in the collection,
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Figure 7
The incommensurate magnetic structure of CeRhIn5 (#1.1.16; Bao et al.,
2000), with helical spin modulations that are symmetry dictated by the
superspace symmetry of the phase. Only Ce atoms are shown. The label
of its MSSG is indicated. The space group of the paramagnetic phase is
P4/mmm and the incommensurate propagation vector is of type ð12 ;


1
2 ; �Þ.


The spin modulation breaks space inversion but maintains a non-polar
point-group symmetry. This MSSG is one of seven possible for the
magnetic order parameter active in this phase, corresponding to a four-
dimensional irrep.







where the regular spin helical or cycloidal spin arrangement


which has been reported is not symmetry dictated and other


more complex arrangements are possible for the same irrep


and the same MSSG. For instance, this is the case for MnGe


(#1.1.14; Makarova et al., 2012), where the Mn atom occupies a


general position and therefore its spin modulation has no


symmetry restriction, while the refinement was done assuming


pure helical modulations.


The case of FeOCl (#1.1.40) within this set is also repre-


sentative of the problems that have arisen when transforming


the published structures into an unambiguous symmetry-


based description. According to our interpretation, the figures


in the publication show spin cycloids with chiralities that are


inconsistent with the corresponding equations in the text. We


therefore had to decide which of the two representations was


the correct one, and finally considered the equations to be


more reliable.


(iii) Structures where the propagation vector and a multi-


dimensional irrep are both agents of the point-group


symmetry break. This is the case for SrFeO3 (#1.1.26),


discussed in the previous section, and also for Cr (#1.1.3).


The remaining 13 structures involve the presence of spin


modulations according to two irreps. In all cases except one,


the two irreps refer to the same propagation vector. The


superposition of two irreps implies in general a drastic


symmetry reduction. This set includes those structures where


the symmetry reduction takes place through the superposition


of two spin modes transforming according to the same irrep,
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Table 5
A list of the incommensurate magnetic structures included in MAGNDATA, with a summary of their symmetry properties.


Compounds having no point-group symmetry break are listed first. The dimension of the small irrep is given with an asterisk in those cases where the refined model
includes restrictions that are not symmetry forced and apparently have not been fully assessed. Type II multiferroics are indicated with the suffix (MFII).


Material Reference†
Parent space
group


Propagation
vector


Magnetic
superspace
group


Magnetic
point
group


No. of
primary
irreps


Dimension
of small
irrep


Cs2CuCl4 (#1.1.1) (a) Pnma (No. 62) (0, 0.472, 0) Pnma10(0�0)000s mmm10 1 1
CaFe4As3 (#1.1.5) (b) Pnma (No. 62) (0, 0.475, 0) Pnma10(0�0)000s mmm10 1 1
TbMnO3 (#1.1.6) (c) Pbnm (No. 62) (0, 0.27, 0) Pbnm10(0�0)s00s mmm10 1 1*
MnWO4 (#1.1.12) (d) P2/c (No. 13) (�0.214, 0, 0.457) X2/c10(�0�)0ss 2/m10 1 1
CaCr2O4 (#1.1.15) (e) Pbnm (No. 62) (0, 0, 0.477) Pbnm10(00�)s00s mmm10 1 1*
Ba3NbFe3Si2O14 (#1.1.17) ( f ) P321 (No. 150) (0, 0, 0.143) P32110(00�)000s 3210 1 1*
NdFe3B4O12 (#1.1.18) (g) R32 (No. 155) (0, 0, 1.502) R3210(00�)t0s 3210 1 1
UPtGe (#1.1.19) (h) Imm2 (No. 44) (0.554 (1), 0, 0) Imm210(�00)0s0s mm210 1 1
Li2IrO3 (#1.1.20) (i) Fddd (No. 70) (0.5768 (3), 0, 0) Fddd10(�00)0s0s mmm10 1 1
PrNi2Si2 (#1.1.34) ( j) I4/mmm (No. 139) (0, 0, 0.87) I4/mmm10(00�)00sss 4/mmm10 1 1
CeRuSn (#1.1.35) (k) C2/m (No. 12) (0, 0, 0.175) C2/m10(�0�)0ss 2/m10 1 1
NaFeSi2O6 (#1.1.36) (l) C2/c (No. 15) (0, 0.78, 0) C2/c10(0�0)s0s 2/m10 1 1*
Ca3Co2O6 (#1.1.39) (m) R3c (No. 167) (0, 0, 1.02) R3c10(00�)00s 3m10 1 1
Cr (#1.1.4) (n) Im3m (No. 229) (0, 0, 0.95) I4/mmm10(00�)00sss 4/mmm10 1 1
Ce2Pd2Sn (#1.1.9) (o) P4/mbm (No. 127) (0.105, 0, 0) Pbam10(�00)0s0s mmm10 1 1
MnGe (#1.1.14) (p) P213 (No. 198) (0, 0, 0.167 (4)) P21212110(00�)00ss 22210 1 1*
TmCu2Ge2 (#1.1.23) (q) I4/mmm (No. 139) (0.117, 0.117, 0) Fmmm10(�00)0s0s mmm10 1 1
CeMgPb (#1.1.27) (r) I4/mmm (No. 139) (0.448, 1


2, 0) I112/m10(��0)00s 2/m10 1 1*
TmMgPb (#1.1.28) (r) I4/mmm (No. 139) (0.412, 0, 0) Immm10(�00)0s0s mmm10 1 1
ErMgPb (#1.1.29) (r) I4/mmm (No. 139) (0.816, 0, 0) Immm10(�00)0sss mmm10 1 1
RbFe(MoO4)2 (#1.1.2) (MFII) (s) P3 (No. 147) (1


3,
1
3, 0.458) P310(1


3
1
3�)ts 310 1 2


MnAu2 (#1.1.13) (t) I4/mmm (No. 139) (0, 0, 0.283) I42210(00�)q00s 42210 1 2
CeRhIn5 (#1.1.16) (u) I4/mmm (No. 139) (1


2,
1
2, 0.297) P42210(1


2
1
2�)q00s 42210 1 2


CeAuAl3 (#1.1.33) (v) I4mm (No. 107) (0, 0, 0.52) I410(00�)qs 410 1 2
FeOCl (#1.1.40) (w) Pmmn (No. 59) (0.286, 1


2, 0) X2/n10(��0)00s 2/m10 1* 2
Cr (#1.1.3) (n) Im3m (No. 229) (0, 0, 0.95) Immm10(00�)s00s mmm10 1 2
SrFeO3 (#1.1.26) (x) Pm3m (No. 221) (0.129, 0.129, 0.129) R3210(00�)t0s 3210 1 2
TbMnO3 (#1.1.7) (MFII) (c) Pbnm (No. 62) (0, 0.27, 0) Pbn2110(0�0)s00s mm210 2 1, 1
TbMnO3 (#1.1.8) (MFII) (c) Pbnm (No. 62) (0, 0.27, 0) Pbn2110(0�0)s00s mm210 2 1, 1
MnWO4 (#1.1.11) (MFII) (d) P2/c (No. 13) (�0.214, 0, 0.457) X210(�0�)0s 210 2 1, 1
Li2IrO3 (#1.1.21) (y) Cccm (No. 66) (0.57 (1), 0, 0) C22210(�00)s00s 22210 2* 1, 1
Sr3Fe2O7 (#1.1.22) (z) Im3m (No. 229) (0.1416, 0.1416, 0) X22210(��0)s00s 22210 2* 1, 1
CrAs (#1.1.24) (aa) Pnma (No. 62) (0, 0, 3562) P21212110(00�)00ss 22210 2* 1, 1
TbMgPb (#1.1.30) (r) I4/mmm (No. 139) (0.843 (1), 0, 0) I2/m10(��0)00s 2/m10 2 1, 1
DyMgPb (#1.1.31) (r) I4/mmm (No. 139) (0.841 (1), 0.016 (1), 0) I2/m10(��0)00s 2/m10 2 1, 1
HoMgPb (#1.1.32) (r) I4/mmm (No. 139) (0.835, 0, 0) I2/m10(��0)00s 2/m10 2 1, 1
MnSb2O6 (#1.1.38) (MFII) (bb) P321 (No. 150) (0, 0, 0.182) C210(00�)0s 210 2 1, 1
LiFeAs2O7 (#1.1.25) (cc) C2 (No. 5) (0.709, 0, 0.155) C110(���)0s 110 2 (2�1) 1, 1
NaFeSi2O6 (#1.1.37) (MFII) (l) C2/c (No. 15) (0, 0.78, 0) C210(0�0)ss 210 2 (2�1) 1, 1
DyMn6Ge6 (#1.1.10) (o) P6/mmm (No. 191) (0, 0, 0.1651) P62020(00�)h00 62020 2 2, 1


† References for the magnetic structures: (a) Coldea et al. (1996), (b) Manuel et al. (2010), (c) Kenzelmann et al. (2005), (d) Urcelay-Olabarria et al. (2013), (e) Damay et al. (2010), ( f )
Marty et al. (2008), (g) Janoschek et al. (2010), (h) Mannix et al. (2000), (i) Biffin, Johnson, Choi et al. (2014), ( j) Blanco et al. (2010), (k) Prokes et al. (2014), (l) Baum et al. (2015), (m)
Agrestini et al. (2008), (n) Perez-Mato et al. (2012), (o) Rodriguez-Carvajal & Bouree (2012), (p) Makarova et al. (2012), (q) Penc et al. (2012), (r) Lemoine et al. (2012), (s) Kenzelmann
et al. (2007), (t) Herpin & Meriel (1961), (u) Bao et al. (2000), (v) Adroja et al. (2015), (w) Hwang et al. (2000), (x) Reehuis et al. (2012), (y) Biffin, Johnson, Kimchi et al. (2014), (z) Kim et
al. (2014), (aa) Keller et al. (2015), (bb) Johnson et al. (2013), (cc) Rousse et al. (2013).







mentioned in the previous section. Two cases of this type have


been collected, namely LiFeAs2O7 (# 1.1.25) and NaFeSi2O6


(#1.1.37). In the case of NaFeSi2O6 (Baum et al., 2015), the


condensation of two independent order parameters trans-


forming according to the same irrep seems well established, as


this phase is preceded by another one with a single order


parameter belonging to this irrep (see #1.1.36). In contrast, the


model of NaFeSi2O6 (#1.1.37) was derived following the


traditional representation method, where irrep restrictions


coming from the operations transforming k into �k are not


considered, and a more symmetrical model with a single irrep


order parameter was not tested.


The last structure in the list, DyMn6Ge6 (#1.1.10), is the only


case where the incommensurate irrep superposes with a k = 0


spin modulation. As mentioned above, this implies that the


operation {10 | 0, 0, 0, 1
2}, present in all other structures, is


absent, and the MSG of the average structure does not include


the time-reversal operation. In contrast with all the other


cases, the atomic magnetic moments therefore have nonzero


average values. Typical incommensurate systems belonging to


this class, with an additional k = 0 spin mode and a non-grey


point-group symmetry, are all structures with conical spin


modulations.


The magnetic point-group symmetry change between the


paramagnetic and magnetic structures listed in Table 5 for


each structure governs its possible ferroic properties. In


particular, a symmetry break from a non-polar to a polar


point-group symmetry is sufficient to have the symmetry


conditions for a type II multiferroic, if it is an insulator. In


general, a necessary (but not sufficient) condition for a non-


polar/polar symmetry break is either a multidimensional small


irrep for the magnetic order parameter, or the presence of two


or more primary irreps, if their small irrep is one dimensional.


As shown in Table 5, this collection includes five type II


multiferroics. In four of them the symmetry break involves the


superposition of two primary irreps (TbMnO3, MnWO4,


MnSb2O6 and NaFeSi2O6), and only in the case of


RbFe(MO4)2 is a single multidimensional primary irrep active


(actually, it is a physically irreducible representation). It is


important to stress that the multiferroic character of these


phases can be derived directly from knowledge of the


magnetic point group of the magnetic structure compared with


that of the paramagnetic phase, without appealing to any


particular mechanism. An additional important fact to note is


that the presence of the symmetry operation {10 | 0, 0, 0, 1
2} in all


single-k incommensurate structures precludes the existence in


these phases of any linear magnetoelectric or magnetoelastic


effect within a single domain, the magnetic point-group of


these phases being grey.


6. Conclusions


As a final word of caution, we should stress that the trans-


formation to the unambiguous quantitative description used in


this database has in many cases required an exercise in the


interpretation of the tables, equations and/or figures in the


original publications, and this may have been incorrect. Often,


some clear ambiguities or inconsistencies were detected in the


data, and the transformation of the proposed structure to a


fully unambiguous description under a certain MSSG required


some additional assumptions on our part. In such cases,


comments describing the problem are included both on the


entry web page and in the magCIF file. Our interpretation of


some of the publications may therefore be defective and we


would greatly appreciate any report of such types of problem.


Finally, we stress, as we did in our previous paper (Gallego


et al., 2016), that this collection does not pretend to become a


complete and updated database of all published incommen-


surate magnetic structures. We lack the means for such an


endeavour. However, we hope that this work will stimulate


further efforts within the community in the direction of the


standardization and unambiguous communication of incom-


mensurate magnetic structures through files in magCIF


format, with the aim of making such a database possible in the


not-too-distant future. Meanwhile, authors having published


any incommensurate magnetic structure that is absent from


this collection, and who are interested in having it included,


are invited to contact us through the given email address.


APPENDIX A
Superspace symmetry relations using the
parameterization of FullProf


In the superspace description, for single-k modulations, the


spin modulation of a representative atom � in the unit cell of


the basic structure is expressed as


M� x4ð Þ ¼ M�
0 þ


P
n¼1;:::


M�
sin n sin 2�nx4ð Þ þM�


cos n cos 2�nx4ð Þ
� �


;


ð7Þ


with the value of the magnetic moment M�
L of atom � in unit


cell L being given by


M�
L ¼ M� x4 ¼ q � Lþ r�ð Þ


� �
: ð8Þ


Here k is the propagation vector and r� is the position of atom


� within the unit cell. All quantities are real, and they are


decomposed into three components along the crystallographic


directions:


M�
sin n ¼ M�


x sin n;M�
y sin n;M�


z sin n


� �
;


M�
cos n ¼ M�


x cos n;M�
y cos n;M�


z cos n


� �
:


ð9Þ


In FullProf (Basireps), this spin modulation is expressed


instead as


M�
L ¼ M�


0 þ
P


n


S�nk exp �i2�nk � Lð Þ þ S��nk exp i2�nk � Lð Þ
� �


:


ð10Þ


Note the explicit minus sign for the Fourier amplitude S�k
associated with k. Comparing the two expressions, the


following relation exists between the two types of parameter:


2S�nk exp i2�nk � r�ð Þ ¼ M�
cos n þ iM�


sin n; ð11Þ


and for a single harmonic
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2S�k exp i2�k � r�ð Þ ¼ M�
cos 1 þ iM�


sin 1: ð12Þ


If we call


S�k ¼ SðkÞ�x; SðkÞ�y; SðkÞ�z
� �


; ð13Þ


then


M�
cos 1 ¼ 2Re SðkÞ�x; SðkÞ�y; SðkÞ�z


� �
exp i2�k � r�ð Þ


� �
;


M�
sin 1 ¼ 2Im SðkÞ�x; SðkÞ�y; SðkÞ�z


� �
exp i2�k � r�ð Þ


� �
:
ð14Þ


If {R, � | t, t4} is a symmetry operation, where � is �1 or +1


depending on whether the operation includes time reversal or


not, and a second atom � is related to atom � such that


{R | t} r� = r� + L (with L some particular lattice translation),


then the Fourier amplitudes of atom � are related to those of


atom � by


M� RIx4 þ t4 þHR � r�ð Þ ¼ � det ðRÞR �M� x4ð Þ; ð15Þ


where RI (+1 or �1) and the reciprocal lattice vector HR are


defined by the relation


k � R ¼ RIkþHR: ð16Þ


Equation (15) implies that


M�
cos 1 þ iM�


sin 1 ¼ exp i2� t4 þHR � r�ð Þ
� �


� � det ðRÞR � M�
cos 1 þ RIiM


�
sin 1


� �
; ð17Þ


or, in terms of the FullProf (Basireps) parameters,


S�k ¼ � det ðRÞRS�k exp �i2�k � r� � r�
� �� �


� exp i2� t4 þHR � r�ð Þ
� �


; ð18aÞ


if RI = +1, and


S�k ¼ � det ðRÞRS��k exp �i2�k � r� þ r�
� �� �


� exp i2� t4 þHR � r�ð Þ
� �


; ð18bÞ


if RI = �1.


However, the two atomic positions are related in the form


k � r� � RIk � r� ¼ k � tþHR � r�: ð19Þ


Equations (18a) and (18b) can then be put as


S�k ¼ � det ðRÞRS�k exp �i2�k � tð Þ exp i2�t4ð Þ; ð20aÞ


if RI = +1, and


S�k ¼ � det ðRÞRS��k exp �i2�k � tð Þ exp i2�t4ð Þ; ð20bÞ


if RI = �1.


Note that these equations depend on the value of t in {R | t},


which implies a dependence on the choice made for atom �
among the set of atoms equivalent by lattice translations of the


basic structure. Equations (20a) and (20b) can be used to


introduce a certain superspace symmetry operation when


using FullProf (Basireps), but it has to be applied system-


atically, including all atoms in an orbit and all the operations of


the superspace group.


A1. Example: inversion operation


If the system has an inversion centre {�1 | 0, 0, 0, 0} and two


atoms are related by this inversion operation, so that r� = �r�,


then their Fourier amplitudes according to equations (20a)


and (20b) must be related in the form


S�k ¼ S��k : ð21Þ


However, if by convenience one is using as a representative


for atoms � the atom fulfilling r� = �r� + (1, 0, 0), then {R | t}


in equations (20a) and (20b) becomes {�1 | 1, 0, 0} and the


relation of equation (21) must be changed to


S�k ¼ S��k exp �i2�k � ð1; 0; 0Þ½ 	: ð22Þ


This dependence on the atom representative is not present


in the superspace parameterization, where for any k which


does not include commensurate components making HR 6¼ 0


the relation is


M�
cos 1 ¼M�


cos 1;


M�
sin 1 ¼ �M�


sin 1:
ð23Þ


If the inversion centre and atom � lie at the origin, such that


� = � for {�1 | 0, 0, 0, 0}, then its spin Fourier amplitude should


be real:


S�k ¼ S��k : ð24Þ


However, if atom � lies at ( 1
2, 0, 0), then the relevant MSSG


operation is {�1 | 1, 0, 0, 0} and the same phase factor as in


equation (22) appears. This phase shift only implies that, in


fact, all modulations for atoms lying on inversion centres are


in phase, considering their relative positions. Indeed, in the


superspace parameterization, the invariance of atom � for an


MSSG operation {�1 | t, 0}, whatever the value of t, implies


that M�
sin 1 = 0 (if HR = 0). The application of the MSSG


operations transforming k into �k with a given value of t4
implies a specific choice of the global phase of the modulation.


As this phase is arbitrary, the important result is that all atoms


lying on inversion centres should be in phase.
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Abstract
Superspace symmetry has been for many years the standard approach for the analysis of
non-magnetic modulated crystals because of its robust and efficient treatment of the structural
constraints present in incommensurate phases. For incommensurate magnetic phases, this
generalized symmetry formalism can play a similar role. In this context we review from a
practical viewpoint the superspace formalism particularized to magnetic incommensurate
phases. We analyse in detail the relation between the description using superspace symmetry
and the representation method. Important general rules on the symmetry of magnetic
incommensurate modulations with a single propagation vector are derived. The power and
efficiency of the method is illustrated with various examples, including some multiferroic
materials. We show that the concept of superspace symmetry provides a simple, efficient and
systematic way to characterize the symmetry and rationalize the structural and physical
properties of incommensurate magnetic materials. This is especially relevant when the
properties of incommensurate multiferroics are investigated.


(Some figures may appear in colour only in the online journal)
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1. Introduction


The use of the superspace formalism for the description of
incommensurate modulated magnetic structures was already
proposed at the early stages of its development, more than
30 years ago [1]. However, although this theory has become
the standard approach for the analysis of incommensurate
and commensurate non-magnetic modulated crystals and
quasicrystals [2–4], it has remained essentially unexplored as
a practical approach to deal with magnetic incommensurate
structures, except for some testimonial works [5]. This
contrasts with the fact that incommensurate magnetic phases
are frequently found in magnetic systems, where the lattice
geometry and the competition between different types of
interactions often lead to complex phase diagrams that
include periodic and aperiodic (incommensurate) order [6,
7]. But recently the refinement program JANA2006 has
been extended to magnetic structures [8, 9], and this code
can now determine incommensurate magnetic structures
using refinement parameters and symmetry constraints
consistent with any magnetic superspace group. As a
result, incommensurate magnetic phases have started to be
investigated with the help of the superspace formalism as an
alternative to the usual representation method [10–12].


The slower adoption of the superspace formalism in the
case of magnetic incommensurate phases is related with the
widespread use of the representation analysis developed by
Bertaut [13, 14]. This method is based on the decomposition
of the magnetic configuration space into basis modes
transforming according to different physically irreducible
representations (irreps) of the space group of the paramagnetic
phase (henceforth, paramagnetic space group), and can be
used to describe magnetic modulations independently of their
propagation vector being commensurate or incommensurate.
The codes commonly employed for the refinement of
incommensurate magnetic structures, such as FullProf [15],
use this approach. However, this versatility has a cost. The
recent upsurge of research work on multiferroic materials,
where the spin–lattice coupling plays an essential role,
has clearly shown both the limits of the representation
method and the need for a comprehensive knowledge of how
symmetry constrains the different magnetic and structural
degrees of freedom and influences the physical properties
of an incommensurate magnetic phase. This information is
provided by the magnetic superspace formalism in a very
simple and efficient manner [16, 17]. For instance, the tensor
properties of a given incommensurate phase are constrained
by the magnetic point group of the magnetic superspace
group assigned to that phase. In contrast, in the case of the
representation method, the magnetic point group of the system
is generally neither known nor controlled, and may even be


inadvertently changed during the refinement, depending on
the restrictions imposed on the basis functions.


The assignment of a superspace group symmetry to an
incommensurate magnetic phase is therefore a fundamental
step to rationalize its physical properties. As it happens
for displacive modulations in non-magnetic incommensurate
structures, a combined use of representation analysis and
superspace formalism is highly recommendable [9]. The
description of an incommensurate magnetic structure in terms
of irrep modes is somewhat incomplete if the magnetic
superspace group associated with the corresponding spin
configuration is not explicitly given.


While for non-magnetic incommensurate structures the
relationship between irrep modes and superspace formalism
has been studied in detail [18–23], for magnetic structures
it has only been recently considered for some specific
materials [16, 17]. To our knowledge a general practical
framework for the combined use of the representation method
and the superspace formalism in magnetic incommensurate
phases has never been presented. The present paper aims
to fill this gap and draw attention to the latter formalism
by giving a comprehensive view on the application of the
superspace symmetry concepts to magnetic incommensurate
structures. After a brief review of the basic concepts of the
superspace formalism, we will discuss in some detail the
relationship between superspace symmetry and representation
analysis. The power and efficiency of adopting the superspace
description will then be illustrated through the analysis
of several examples. For the sake of simplicity, and also
because it is the most common case in modulated magnetic
structures, we will restrict the discussion to systems with
one-dimensional modulations, i.e. with a single propagation
vector, for which the superspace has (3+ 1) dimensions.


2. Superspace symmetry and magnetic modulations


2.1. Review of the basic concepts


A complete and detailed introduction to the concepts of
the superspace formalism can be found in [2–4]. Here, we
summarize the main results taking care that the arguments
and the expressions explicitly include the case of magnetic
structures.


A modulated magnetic structure with a single incommen-
surate propagation vector k is described within the superspace
formalism by a normal periodic structure (the so-called basic
structure, which has a symmetry given by a conventional
magnetic space group �b), plus a set of atomic modulation
functions defining the deviations from this basic periodicity
of each atom in each unit cell. The magnetic space group �b
will be, in general, a subgroup of a paramagnetic space group.
The modulation functions may concern the atomic positions,
the magnetic moments, the thermal displacement tensor, some
occupation probability or any other relevant local physical
magnitude. The value of a property Aµ of an atom µ in the
unit cell of the basic structure varies from one cell to another
according to a modulation function Aµ(x4) of period 1, such
that its value Alµ for the atom µ at the unit cell l, with basic
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position rlµ = l + rµ (l being a lattice translation of the basic
structure) is given by the value of the function Aµ(x4) at
x4 = k · rlµ:


Alµ = Aµ(x4 = k · rlµ). (1)


These atomic modulation functions can be expressed by a
Fourier series of the type


Aµ(x4) = Aµ,0


+


∑
n=1,...


[Aµ,ns sin(2πnx4)+ Aµ,nc cos(2πnx4)]. (2)


Thus, a basic conventional periodic structure, a modulation
wavevector k and a set of periodic atomic modulations Aµ(x4)


for each atom in the basic unit cell determine the aperiodic
values of any local atomic quantity and completely describe
the aperiodic crystal. Considering the definition of x4, such
a description does not apparently differ much from the
usual approach of using basis functions (waves) transforming
according to irreps of the paramagnetic space group [15].
However, fundamental differences appear when the symmetry
properties are defined.


By definition, any operation (R, θ |t) of the magnetic
space group �b of the basic structure (with R being a
point-group operation, θ being −1 or +1 depending on
whether the operation includes time reversal or not, and t a
translation in 3d real space) transforms the incommensurately
modulated structure into a distinguishable incommensurate
modulated structure, sharing the same basic structure and
having all its modulation functions changed by a common
translation of the internal coordinate x4, such that the new
modulation functions A′µ(x4) of the (R, θ |t)-transformed
structure satisfy


A′µ(x4) = Aµ(x4 + τ). (3)


The translation τ depends on each specific operation. This
implies that the original modulated structure can be recovered
by performing an additional translation τ along the so-called
internal coordinate, i.e. the phase of the modulation functions.
In this sense, one can speak of (R, θ |t, τ ) as a symmetry
operation of the system defined in a four-dimensional
mathematical space, where the fourth dimension corresponds
to the continuous argument of the periodic modulation
functions.


The addition of the global phase translation of the
modulation as a fourth dimension allowing an additional
type of transformation of the structure is enabled by the
fact that an arbitrary phase translation of the modulation
in an incommensurate phase (corresponding to the well-
known phason excitations characteristic of incommensurate
structures) keeps the energy invariant, in the same way
that arbitrary rotations, roto-inversions, translations and
time reversal do. A symmetry group of a system is, in
general, a subgroup of the group of transformations that
keep the energy of the system invariant, and it is constituted
by the operations of this group that have the additional
property of leaving the system indistinguishable. Thus, space
groups of commensurate structures are subgroups of the
whole group of rotations, roto-inversions and translations.


Similarly, in the case of an incommensurate structure, the
symmetry group (the so-called superspace group) is defined
as a subgroup of the full group of all transformations that
keep the energy of the system invariant, including global
arbitrary phase shifts of the incommensurate modulation.
The superspace group symmetry is then formed by the
subset of (R, θ |t, τ ) operations that, in addition, keep the
system indistinguishable after the transformation. The energy
invariance for global phase translations therefore ensures
the robustness of this generalized symmetry concept for
characterizing the symmetry restrictions associated with an
incommensurate phase [24]. It implies that the generalized
symmetry, so defined, is a property that can be assigned to a
thermodynamic phase and the breaking of this symmetry can
only happen through a phase transition.


If (R, θ |t, τ ) belongs to the (3+1)-dim superspace group
of an incommensurate magnetic phase, the action of R on its
propagation vector k necessarily transforms this vector into a
vector equivalent to either k or −k. This means


k · R = RIk+HR, (4)


where RI is either +1 or −1 and HR is a reciprocal lattice
vector of the basic structure that depends on the operation
R. The vectors HR can only be different from zero if the
propagation vector k includes a commensurate component [2].


The restrictions on the form of the atomic modulation
functions that result from a superspace group operation
(R, θ |t, τ ) can be derived from the above definitions as
follows. If in the basic structure an atom ν is related to an
atom µ by the operation (R, θ |t) such that (R|t)rν = rµ + l,
then their atomic modulation functions are not independent
and are related by


Aµ(RIx4 + τo +HR · rν) = Transf(R, θ)Aν(x4), (5)


where τo = τ+k·t and Transf(R, θ) is the operator associated
with the transformation of the local quantity Aµ under the
action of the point-group operation (R, θ). Thus, equation
equation (5) introduces a relationship between the modulation
functions of the magnetic moments of the two atoms:


Mµ(RIx4 + τo +HR · rν) = θ det(R)R · Mν(x4), (6)


while the atomic modulation functions uµ(x4), uν(x4)


defining the atomic displacements in each basic cell with
respect to the basic positions rlµ and rlν are related as


uµ(RIx4 + τo +HR · rν) = R · uν(x4). (7)


These relations imply that only the modulation functions of
the set of atoms in the asymmetric unit of the basic structure
are necessary in order to define the whole structure. Notice
that equations (6) and (7) force specific restrictions on the
possible forms of the modulation functions of atoms that
occupy positions in the basic structure that are left invariant
(µ = ν) by some symmetry operations of �b.


According to the above definitions, all translations of the
basic lattice combined with conveniently chosen phase shifts,
namely the operations (1,+1|t,−k · t) (here, 1 represents
the identity matrix), belong to the superspace group of the
structure and form its (3 + 1)-dim lattice. If k = (kx, ky, kz)
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is expressed in the basis reciprocal to the chosen direct basis
of space group �b, then the four elementary translations
(1,+1|1 0 0,−kx), (1,+1|010,−ky), (1,+1|001,−kz) and
(1,+1|000, 1) generate that lattice and define a unit cell in
the (3 + 1)-dim superspace. In the basis formed by these
superspace unit cell translations, the symmetry operation
(R, θ |t, τ ) can be expressed in the standard form of a space
group operation in a 4-dim space, (Rs, θ |ts), where ts is a
four-dimensional translation and Rs a 4 × 4 integer matrix
defining the transformation of a generic point (x1, x2, x3, x4):


RS =



R11 R12 R13 0


R21 R22 R23 0


R31 R32 R33 0


HR1 HR2 HR3 RI


 (8)


Here, the Rij are the matrix coefficients of the rotational
3-dim operation R of the space group operation (R, θ |t)
belonging to �b (expressed in the basis of the basic unit
cell), (HR1,HR2,HR3) the components (in the corresponding
reciprocal basis) of the vector HR defined in (4), and RI is +1
or −1, according to equation (4). The superspace translation
ts in the 4-dim basis is given by (t1, t2, t3, τ0), where ti are the
three components of t in the basis of the basic unit cell and
τo = τ + k · t, as in equation (5). The value of τ0 does not
depend on the specific value of the irrational component(s) of
the incommensurate wavevector k, and the group composition
law is a trivial extension of the usual law for conventional
(3-dim) space groups:


(Rs1, θ1|ts1)(Rs2, θ2|ts2) = (Rs1Rs2, θ1θ2|Rs1 · ts2 + ts1). (9)


Superspace groups can therefore be defined with symmetry
cards entirely analogous to those of normal space groups (see
the example in section 2.2).


A superspace group operation (Rs, θ |ts) can be sym-
bolically expressed in a generalized Seitz-type simpler form
{R, θ |ts}, with ts = (t1, t2, t3, τ0), only indicating explicitly
the operation R (since the 4× 4 matrix Rs is fully determined
by R (see equation (8))) while keeping the translational part
expressed in the superspace unit cell basis. We will use the
keys {} to distinguish this form of expressing the superspace
symmetry operations, which obviates the ever-present −k · t
internal translation along x4. In the following, we will use
when appropriate one or the other notation; their equivalence,
(R, θ |t1t2t3, τ ) = {R, θ |t1t2t3τo} with τo = τ +k · t, should be
kept in mind. For instance, (R, θ |0 0 1


2 ,
1
2 −


1
2γ ) is the same


as {R, θ |0 0 1
2


1
2 } (with k = γ c∗). In one case we are using


the 3D translational lattice vectors of the basic structure, while
in the other case we use the usual oblique lattice basis vectors
of the superspace lattice.


Summarizing, an incommensurate magnetic structure can
be fully described by specifying: (i) its magnetic superspace
group (as in normal crystallography, this symmetry group can
be unambiguously given by listing its symmetry operations);
(ii) its periodic basic structure (usually non-magnetic), with
its symmetry given by a conventional (magnetic) space group
forced by the superspace group and (iii) a set of periodic
atomic modulation functions (period 1) that define, according


Table 1. Representative operations of the centrosymmetric
superspace group P1̄1′(αβγ )0s described by using generalized
Seitz-type symbols (left column) and symmetry cards as used in the
program JANA2006 [8].


{1|0000} x1 x2 x3 x4 +m
{1̄|0000} −x1 −x2 −x3 −x4 +m
{1′|000 1


2 } x1 x2 x3 x4 +
1
2 −m


{1̄′|000 1
2 } −x1 −x2 −x3 −x4 +


1
2 −m


to equation (1), the magnetic modulations for the atoms
of the asymmetric unit of the basic structure. If, besides
the magnetic modulations, there exist additional structural
modulations (such as, for instance, lattice distortions induced
by spin–lattice coupling), these will be described by their
corresponding modulation functions defined for the atoms
of the same asymmetric unit, and constrained by the same
superspace group. The magnetic point group of the system
is given by the set of all point-group operations present in the
operations of this superspace group.


2.2. The simplest example: a centrosymmetric
incommensurate modulation


Let us consider the simplest illustrative example: a param-
agnetic phase with space group P1̄ (magnetic group P1̄1′)
develops a magnetic modulation with an incommensurate
propagation vector (α, β, γ ) directed along an arbitrary
direction such that its superspace symmetry is given
(besides the 4-dim lattice translations) by the representative
operations: {1|0000}, {1̄|0000}, {1′|000 1


2 } and {1̄′|000 1
2 }


4.
This superspace group can be denoted as P1̄1′(αβγ )0s,
using a natural extension of the well-established labelling
rules for non-magnetic superspace groups [2, 25] and, as
shown in section 3.3, it is the symmetry of any magnetic
modulation originated by a single irreducible representation.
Table 1 lists the symmetry operations of this group in the
form of generalized symmetry cards, as used for instance in
JANA2006 [8]; these cards use a self-explanatory notation,
indicating unambiguously the linear transformations in the
four-dimensional unit cell basis.


Let us now see how these symmetry operations constrain
the resulting magnetic and structural modulations. According
to equations (6) and (7), the symmetry operation {1′|000 1


2 }


implies that the spin modulations Mµ(x4) of all magnetic
atoms must necessarily be odd functions for a x4 translation
1/2. Therefore, their expansion is restricted to odd Fourier
terms. Similarly, any induced structural modulations uµ(x4)


that may occur as secondary effects are necessarily even
for the same x4 translation and are therefore restricted to
even Fourier terms. The inversion operation further restricts
the modulations of atoms lying at special positions in the
paramagnetic structure. According to (5) and (6), the Fourier
series (see equation (2)) describing the magnetic modulations


4 Henceforth, when indicating concrete operations and not generic
operations, we drop the index θ and indicate the inclusion of time reversal by
adopting the usual convention of adding a prime to the point-group operation
symbol (1′,m′x, 2′y, . . .).
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Figure 1. Examples of magnetic structures keeping (a) and breaking (b) centrosymmetry. In both cases, it is a triclinic P1̄ structure with
different magnetic atoms at sites (000) and (1/2 1/2 1/2) and propagation vector (0 0 ∼0.32). They show that collinearity of all spin waves
is not necessary for keeping the inversion centre. In case (a), the spin modulations in both independent atoms are in phase and the superspace
group maintains the space inversion operation. In case (b), despite being collinear, the magnetic modulations of both atoms are phase-shifted
and the inversion symmetry is broken. The labels of the superspace symmetries corresponding to each case are indicated below.


for atomic sites with inversion symmetry (Wyckoff positions
1a, 1b,. . ., 1h) can only have cosine terms, while the Fourier
series of the induced structural modulations are restricted to
sine terms. In addition, the modulation functions for an atom
in a general position (x, y, z), say atom 1, determines the
modulation of its symmetry related (-x,−y,−z) pair, say atom
2, according to the relations


M2(−x4) = M1(x4) (10)


u2(−x4) = −u1(x4). (11)


These equations imply that the corresponding Fourier
components must fulfil the conditions M2,ns = −M1,ns,
M2,nc = M1,nc (n-odd) and u2,ns = u1,ns, u2,cs = −u1,nc


(n-even), with the sub-indexes s and c indicating the sine and
cosine Fourier amplitudes, respectively (see equation (2)).


As the phase of the total modulation in an incommen-
surate phase is arbitrary, the above discussion restricting the
modulations of atoms at centrosymmetric sites to cosine or
sine terms can be misleading. In fact, the inversion operation
for an arbitrary choice of this global phase of the modulation
would be of the form {1̄|000τ } with τ 6= 0, but we have
made a specific choice of this phase, equivalent to a choice
of the origin in internal space, such that τ = 0. Therefore,
the important property, independent of the choice of origin, is
that the modulation functions for all atoms at special positions
must necessarily be in phase (see figure 1) and that the
possible induced structural modulations (which include only
even Fourier terms) are necessarily shifted by π


2 or −π2 with
respect to the magnetic modulation.


The breaking of space inversion symmetry by an in-
commensurate modulation is sometimes difficult to visualize
(see figure 1). If, for example, the system has several
independent magnetic atomic sites in the paramagnetic phase,
the restrictions that keep the inversion symmetry do not
necessarily imply a collinear magnetic ordering. But the
superspace formalism describes in a simple and general form
both the structural and magnetic constraints associated with
the presence of an inversion centre (see section 4 for more on
this example).


3. Magnetic superspace groups and irreducible
representations


In accordance with Landau theory, magnetic ordering
is a symmetry-breaking process that can be described
by an appropriate order parameter. In many cases, the
transformation properties of this order parameter correspond
to those of a single irreducible representation (irrep) of the
magnetic grey space group associated with the paramagnetic
phase. The frequent limitation of the magnetic modulation to
a single propagation vector is often a consequence of this
restriction to a unique irreducible order parameter, that is,
an order parameter that is transformed according to a single
irrep. In more general cases, magnetic configurations with
a single propagation vector can be decomposed into several
magnetic modes transforming according to different irreps
sharing the same propagation vector. This is the basis for the
representation analysis method developed by Bertaut [13, 14],
where the possible magnetic orderings are parametrized by
complete sets of basis modes transforming according to the
irreps of the paramagnetic space group associated with the
observed propagation vector. The magnetic configuration is
described with the help of basis modes corresponding to a
single irrep or, if necessary, to a set of irreps as small as
possible. It should be stressed that the irreps in this method are
ordinary representations (but odd for time reversal) and these
irreps define not only the transformation properties of the
magnetic configuration for the operations keeping invariant
the propagation vector k, but also for those transforming k
into −k. The introduction of corepresentations is therefore
not necessary for dealing with these latter transformations (see
also section 4.1.2).


It is important to establish in detail the relationship
between the symmetry constraints imposed by the assignment
of a certain irrep to the magnetic order parameter and those
resulting from ascribing a magnetic superspace group to the
magnetic phase. As we will see below, these two sets of
constraints are closely related, but superspace symmetry is, in
general, more restrictive and more comprehensive, as it affects
all the degrees of freedom of the system.
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3.1. The parent symmetry for a magnetic modulated phase


The parent symmetry to be considered for a magnetic phase is
the magnetic grey space group of the paramagnetic phase. For
each space group operation (R|t), we have to consider two
distinct operations (R,−1|t) and (R,+1|t), distinguishing
if the operation (R|t) is complemented by a time reversal
transformation or not. The symmetry operations of the
paramagnetic crystal are thus trivially doubled, implying that
the magnetic space group �p can be expressed as the coset
expansion:


�p = Gp + (1′|0 0 0)Gp, (12)


where Gp is the ordinary space group formed by operations
of type (R,+1|t). The coset (1′|0 0 0)Gp includes an equal
number of operations (R,−1|t). Notice that the antiunitary
properties of the operations that integrate this second
coset [26] are irrelevant when working with real quantities.
Therefore, we do not need to use the corepresentations of
the grey group �p in order to describe the transformation
properties of a given arrangement of magnetic moments or
atomic displacements. The irreps of �p are trivially related
to those of Gp: for each irrep of Gp two irreps of �p
exist, one associating the identity matrix 1 to time reversal
and the other the matrix −1. In the following, we shall
call them non-magnetic and magnetic irreps, with explicit
generic labels T and mT , following the notation employed
in ISODISTORT [27]. As time reversal changes the sign of
all magnetic moments, magnetic modes obviously transform
according to magnetic irreps, while phonon modes, for
instance, transform according to non-magnetic irreps. The
odd character for time reversal of the irreps of the magnetic
modes is usually not explicitly indicated in conventional
representation analyses of magnetic structures, but it is very
important to make clear this distinction in a general context
where lattice degrees of freedom are also classified according
to irreps.


3.2. The order parameter and the general invariance
equation


The components of the irreducible order parameter can be
considered as amplitudes of a set of static spin waves with
propagation vectors {k1, . . . , kn} (the so-called wavevector
star of the irrep) that transform into each other under the action
of the symmetry group of the paramagnetic phase. If N is the
number of independent spin waves for the propagation vector
k1 (i.e. the dimension of the so-called small representation),
then there exist an equal number for all other wavevectors
in the irrep star, and the dimension of the irrep is n ×
N. In general, an incommensurate magnetic ordering with
a single propagation vector and transforming according to
a single irrep mT can give rise to different superspace
group symmetries depending on the direction taken by the
irrep order parameter in this n × N space. Notice that the
term irreducible representation (irrep) is used here in the
sense of physically irreducible representation, because we are
concerned with the transformation properties of real physical


magnitudes, such as magnetic moments or lattice distortions.
Therefore, in some cases, these irreps are actually the direct
sum of two complex conjugate irreducible representations.
This implies that the irrep star is always formed by pairs of
wavevectors ki and −ki.


Independently of the number of arms of the irrep star,
the possible directions for the order parameter that yield
a magnetic ordering with a single propagation vector (and
therefore a symmetry described by a (3 + 1)-dim superspace
group) are necessarily limited to those where only a single
wavevector k (and its opposite, −k) of the irrep star is
involved. We can then constrain the order parameter to a
2N-dim subspace within the irrep space, and express the
magnetic moment M(µ, l) of any atom (µ, l) in the structure
as


M(µ, l) =
∑


i=1,...,N


Si(k)mi(µ)e−i2πk·(l+rµ)


+ Si(−k)m∗i (µ)e
i2πk·(l+rµ) (13)


Here, Si(k) and Si(−k) are global complex components of
the order parameter (with Si(−k) = S∗i (k), i = 1, . . . ,N),
µ labels the magnetic atoms in the reference unit cell and
mi(µ) denotes a normalized polarization vector that defines
the internal structure (i.e. the correlation between the atomic
magnetic moments in a unit cell) of each of the N spin
waves. Notice that the choice for the sign of the exponents
in equation (13) complies with the convention of a positive
phase shift ei2πk·t for the action of a translation (1|t) on the
spin wave amplitudes Si(k) (see also equation (15) below).
Notice also that we are defining a single global magnetic
mode {mi(µ)} for each component of the order parameter. The
magnetic moments mi(µ) of this mode will have correlations
among symmetry related atoms according to the requirements
of the transformation properties of the relevant irrep, along
with specific physical correlations, as it is in general given
by some system-dependent linear combination of basis modes
with the same transformation properties.


By definition, an operation (R, θ |t) of the paramagnetic
symmetry group, such that k · R is equivalent either to k
or to −k, transforms any magnetic ordered configuration
described by equation (13) with a set of amplitudes
{Si(k), Si(−k)} into a new one, described by the same
equation and polarization vectors mi(µ) but with new
transformed amplitudes {S′i(k), S′i(−k)} given by


S′1(k)


· · ·


S′N(k)


S′1(−k)


· · ·


S′N(−k)



= mT(R, θ |t)





S1(k)


· · ·


SN(k)


S1(−k)


· · ·


SN(−k)



. (14)


Here, mT(R, θ |t) denotes a 2N× 2N matrix that describes the
operation (R, θ |t)within the {k,−k} subspace of the irrep mT .
For instance, in the simple case of a lattice translation (1|t),
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the matrix mT will be of the form


mT(1|t) =


(
1 · ei2πk·t 0


0 1 · e−i2πk·t


)
(15)


with 1 and 0 representing the N-dimensional identity and
null matrices, respectively. According to the definition
of superspace symmetry introduced in section 2 (see
equation (5)), only the operations that keep the order
parameter within this limited subspace of two opposite vectors
(k and −k) may be part of the superspace group. They form,
in general, a subgroup of the paramagnetic grey space group
that we shall call the extended little group of k and denoted by
�p,k,−k. If the paramagnetic grey space group is non-polar,
the extended little group �p,k,−k can always be decomposed
into two cosets:


�p,k,−k = �p,k + g−k�p,k, (16)


with �p,k being the so-called little group that includes all
operations keeping k invariant (up to a reciprocal lattice
translation), while the coset g−k�p,k includes an equal
number of operations transforming k into −k. If the grey
group is a polar group, the second coset may not exist, in
which case the extended little group coincides with the little
group �p,k.


A phase shift α of the spin wave (see section 2) simply
adds a phase factor to the amplitudes of the order parameter,
transforming {Si(k), Si(−k)} into {eiαSi(k), e−iαSi(−k)}.
Therefore, a superspace operation (R, θ |t, τ ) exists for a spin
configuration {Si(k), Si(−k)} described by equation (13), if
there is a real value τ such that(


S(k)


S(−k)


)
=


(
1 · ei2πτ 0


0 1 · e−i2πτ


)
·mT(R, θ |t)·


(
S(k)


S(−k)


)
.


(17)


Here, S(k) and S(−k) represent the ordered set of complex
amplitudes {S1(k), . . . , SN(k)} and their complex conjugate
{S1(−k), . . . , SN(−k)}. Equation (17) expresses the fact that
the transformation of the spin configuration by the operation
(R, θ |t) can be compensated by a phase shift τ such that the
spin configuration is kept invariant.


The invariance equation (17) can be used to derive
all possible different superspace symmetries resulting from
the condensation of all possible types of single-k magnetic
orderings described by a single magnetic irrep. For the case of
non-magnetic distortions this problem has been systematically
analysed [18–21] and the set of all possible (3 + 1)-dim
superspace groups resulting from a single active irrep were
calculated and listed in [21]. These superspace groups are
obtained as isotropy subgroups of the continuous symmetry
group associated with the parent structure by adding to the
conventional space group operations the continuous set of
global phase shifts of the modulation. A complete list of these
non-magnetic isotropy superspace groups can also be found
on the ISOTROPY webpage [28]. We will see in section 3.4
how the possible (3 + 1)-dim magnetic superspace groups


resulting from a magnetic ordering with symmetry properties
given by a single irrep can be easily obtained from these lists
of non-magnetic superspace groups.


3.3. Superspace symmetry and irreducible representations


For a magnetic irrep mT , and for an ordered basis
of the irrep subspace spanned by the vectors k and
−k, such that its amplitudes are ordered in the form
{S1(k), . . . , SN(k), S1(−k), . . . , SN(−k)} (hereafter referred
to as a conjugate ordered basis), the matrix mT(R, θ |t)
associated in equation (17) to an operation (R, θ |t) belonging
to �p,k can be expressed as(


θDT(R)ei2πk·t 0


0 θD∗T(R)exp−i2πk·t


)
(18)


where DT(R) denotes a N × N matrix associated with
R and 0 is the null N × N matrix. The operation R
belongs to the so-called little co-group, a point group
formed by all point-group operations present in the elements
of the little group �p,k. The matrices DT(R) form, in
general, a projective irreducible representation of the little
co-group [29], which fully determines both irreps T and mT .
The N × N matrices θDT(R)ei2πk·t form an irrep of the little
group �p,k (small irrep), which is sufficient to generate the
irrep mT of the extended little group �p,k,−k. Except for
incommensurate wavevectors at the border of the Brillouin
zone in non-symmorphic space groups, the representation
DT(R) is an ordinary irreducible representation of the little
co-group [29]. The magnetic character of the irrep mT is taken
into account by the factor θ multiplying the matrix DT(R) in
(18), so that the matrices of the operations that include time
reversal are just the opposite of the corresponding operation
without time reversal. The first diagonal matrix block in (18)
acts on the amplitudes {Si(k)}, while the second matrix block
acts on their complex conjugates {Si(−k)}. The two blocks
are, by definition, related by complex conjugation.


In the case of the operations (R, θ |t) that belong to the
coset g−k�p,k, and for a conjugate ordered basis, as defined
above, the irrep matrices mT(R, θ |t) have the form(


0 A


A∗ 0


)
(19)


with A being a N × N matrix dependent on the particular
operation. It is sufficient to know this matrix for the chosen
coset representative g−k to derive the matrices for the rest of
the elements of the coset, by multiplying with the matrices of
type (18) corresponding to the elements of �p,k.


For multidimensional small irreps (N > 1), the solution of
(17) depends in general on the specific direction taken by the
N-dimensional vector {S1(k), . . . , SN(k)}. Therefore, several
different superspace symmetry groups are, in principle,
possible for the same irrep. Each complex component of the
vector {S1(k), . . . , SN(k)} has its own phase, while there is
only a single global shift τ in (17) to play with. In general,
not all operations of the extended little group �p,k,−k are
maintained in the superspace group and each case has to be
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considered separately. Therefore, the assignment of a given
irrep is clearly insufficient to specify the symmetry of the
incommensurate phase and the limitations of a representation
analysis without additional symmetry considerations become
evident.


On the other hand, for irreps with one-dimensional
small irreps (N = 1), there is a one-to-one relationship
between a given irrep of the paramagnetic space group and
a superspace group. For N = 1, the matrices (18) and (19) are
two-dimensional and the spin wave amplitudes reduce to two
complex conjugated components {S(k), S(−k)}. In this case
the values of DT(R) in (18) are either +1 or −1 (for polar
axial groups they can also be complex factors, but similar
conclusions are obtained with phase shifts of type 1/3, 1/4
or 1/6, instead of 1/2), and therefore (17) is fulfilled for all
operations (R, θ |t) of �p,k, with a phase shift τ = −k · t if
θ ·DT(R) = +1 or τ = −k ·t+1/2 if θ ·DT(R) = −1. Hence,
considering that τ0 = τ + k · t, all the operations (R, θ |t) of
�p,k will become part of the superspace group of the system,
either as operations {R, θ |t 0} or {R, θ |t 1


2 }. Similarly, the
operations that transform k into −k (the coset g−k�p,k) will
also satisfy equation (17). This can be shown by considering
the coset representative g−k = (R−k,+1|t). If the small irrep
is one-dimensional, the form of A in equation (19) can only be
either+ei2πk·t or−ei2πk·t. It is then obvious that equation (17)
is satisfied either with τ = −k · t+ 2φ or τ = −k · t+ 2φ+ 1


2 ,
with φ being the phase of the complex amplitude S(k). Hence,
either {R−k,+1|t 2φ} or {R−k,+1|t 1


2 + 2φ} is a superspace
group symmetry operation of the system (the shift along the
internal space of the operation depends on the choice of
origin along the internal space and can be made zero). The
group structure and decomposition (16) then guarantees that
all elements of g−k�p,k will be maintained as elements of the
superspace group.


Summarizing, single-k incommensurate magnetic order-
ings according to one single irrep with a one-dimensional
small irrep always maintain in its superspace symmetry all
operations of the extended little group �p,k,−k. A translation
(0001/2) along the internal space is added for operations
whose point-group part has character -1 in the small irrep,
and no internal translation is added for those with character
+1. The internal translations to be added to the operations of
the coset g−k�p,k are directly derived considering the internal
product of the group, and the fact that no internal translation
is necessary for the coset representative g−k. This result
is very important when considering possible multiferroic
properties. It implies that such type of incommensurate
magnetic orderings will never break the magnetic point group
associated with the extended little group of k, �p,k,−k. If
the paramagnetic space group contains space inversion, this
symmetry operation will necessarily be maintained. More
generally, if the paramagnetic phase is non-polar, one can
generally say that a magnetic ordering according to an
irrep with a 1-dim small representation can never break the
symmetry into a polar one, and therefore can never induce
ferroelectricity.


3.4. Time reversal plus phase shift of the modulation as
symmetry operation


Let us consider more closely the consequences of the
presence of time reversal as a symmetry operation of the
paramagnetic group. As any irrep corresponding to a magnetic
order parameter associates the inversion matrix −1 to the
time reversal operation (1′|0 0 0), it is obvious from (17)
that the operation (1′|000, 1


2 ) will necessarily belong to the
superspace group. In fact, this is a general property of
any single-k incommensurate magnetic modulation, as it is
the consequence of the harmonic character of any primary
magnetic arrangement. It is clear that, for a harmonic wave,
a phase shift of π changes the sign of all local magnetic
moments. Therefore, the combined action of this phase shift
with time reversal necessarily keeps the system invariant.


This simple general symmetry property has important
consequences. It implies that any possible superspace group
�s describing the symmetry of a single k magnetic
incommensurate modulation can be expressed as


�s
= Gs


+ (1′|000, 1
2 )G


s, (20)


where Gs is a superspace group formed by all the operations
(R,+1|t, τ ) that satisfy the invariance equation (17).
Therefore,Gs is necessarily one of the superspace groups
calculated in [21] and listed in [28], and all possible magnetic
superspace groups �s can be trivially derived from these
non-magnetic counterparts through equation (20).


A second important consequence has already been
mentioned in section 2.2. According to equations (5) and (6),
the operation (1′|000, 1


2 ) implies that the spin modulations
in single-k incommensurate magnetic phases are constrained
to odd order Fourier terms, while structural modulations
are limited to terms of even order. This means that, if
the magnetic modulation becomes anharmonic within the
same phase, only odd magnetic harmonics are allowed
(otherwise the symmetry would be further broken), while
the coupling with the lattice can only produce structural
modulations with even terms, i.e. with 2k as the primary
modulation wavevector. This property is known to happen
in many magnetic incommensurate phases (see the example
of chromium below), but its origin and validity can only be
fully grasped when perceived as a result of a fundamental
superspace symmetry operation.


The symmetry operation (1′|000, 1
2 ) also implies that the


magnetic point group of the phase includes time reversal.
Therefore, single-k incommensurate phases cannot be neither
ferromagnetic nor ferrotoroidic, i.e. no magnetization or
ferrotoroidal moment can appear as an induced secondary
weak effect. This result, which can be considered part of the
above-mentioned restriction of the magnetic configuration to
odd harmonics, illustrates a fundamental advantage of using
superspace symmetry concepts, namely the introduction of all
the constraints for any degree of freedom of the system, apart
from the primary magnetic modulation.


There has been in the previous literature on magnetic
superspace groups [1, 5, 10] some confusion about the
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significance of the operation (1′|000, 1
2 ). In many systems


the observed magnetic modulation is often limited to a single
harmonic, and its coupling with the lattice is negligible.
In such a case, one can reduce the description of the
magnetic arrangement to a harmonic magnetic spin wave,
which trivially complies with the constraints imposed by
the operation (1′|000, 1


2 ). Therefore, when the model is a
priori limited to the first harmonic, one can be tempted
to consider that the transformation (1′|000, 0) is equivalent
to the transformation (1|000, 1


2 ). Under this viewpoint, the
superspace groups Pn′21m′(0β0) and Pn21m(0β0)s0s were
considered in [5] as equally valid to describe the symmetry
of a particular incommensurate magnetic phase with a
sinusoidal modulation, because operations such as (m′z|000, 0)
and (mz|000, 1


2 ) were considered indistinguishable. However,
these two symmetries are not equivalent when taken as
comprehensive symmetry elements of the system, as they
imply quite different constraints upon other degrees of
freedom. For instance, crystal tensor properties related to
magnetism would be quite different. In the first case, with
the magnetic point group m′2m′, a ferromagnetic component
along y would be allowed, while it would be forbidden for
the second symmetry (with the point group m2m). The correct
approach is therefore to consider the two operations as distinct
members of the superspace group of the system. The correct
superspace group for the system discussed in [5] is therefore
Pn21m1′(0β0)s0ss which, in terms of a coset expansion, can
be expressed as


Pn21m1′(0, β, 0)s0ss = Pn21m(0, β, 0)s0s


+ (1′|000, 1
2 )Pn21m(0, β, 0)s0s, (21)


in agreement with the general expression (20). The magnetic
point group of the system is therefore m2m1′, i.e. a symmetry
that forbids ferromagnetism.


4. Incommensurate magnetic structures with one
irreducible order parameter


The identification of the magnetic superspace group of a given
incommensurate modulation is an efficient and compact way
to indicate all the symmetry-forced constraints on the degrees
of freedom and on the physical properties of the system.
As seen above, the possible crystal tensor properties can be
immediately derived from the point-group symmetry of the
superspace group. But, in addition, superspace symmetry also
imposes precise restrictions upon the magnetic and structural
distortions that are allowed in that phase. This very important
advantage of the superspace formalism will be analysed in
some detail in this section, with the help of several illustrative
examples of magnetic modulations driven by an irreducible
order parameter.


It has been argued that the assignment of an irrep to
the magnetic distortion is more restrictive or informative
than the assumption of a specific magnetic symmetry [30].
This is certainly not true for incommensurate structures if
superspace symmetry is used. As will be shown below, even
in the simplest case of a one-dimensional small irrep, the


superspace symmetry introduces either stricter or equivalent
restrictions, and in the case of multidimensional small irreps,
the assignment of a superspace group implies the choice of
a particular subspace within the space of magnetic basis irrep
modes, something that is beyond the method of representation
analysis as is usually applied.


4.1. The case of one-dimensional small irreps


4.1.1. The transition sequence in FeVO4. Let us
consider again the example given in section 2.2, where
the paramagnetic phase has the symmetry P1̄1′ and the
little group �p,k of the propagation vector (α, β, γ ) is
limited to P11′. In this case, only a single one-dimensional
magnetic small irrep exists, with character +1 and −1 for the
identity and time reversal, respectively. Therefore, according
to the general rules previously discussed, the magnetic
ordering originated by a single irrep mode necessarily
keeps inversion symmetry {1̄|0000} and the time reversal
operation {1′|000 1


2 }. This corresponds to the superspace
symmetry group P1̄1′(αβγ )0s, which has been described
in detail in section 2.2, including the resulting symmetry
restrictions on the magnetic and structural modulations. It
is illustrative to compare the superspace description for this
simple case with that derived from a representation analysis
through computer tools such as FullProf (BasiReps) [15], or
similar programs [31, 32]. In contrast with the superspace
symmetry constraints, these codes introduce no conditions
on the possible magnetic sinusoidal modulations of atoms at
special positions, and allow independent modulations (basis
functions) for the two atoms of any pair related by inversion.
This is due to the fact that the basis of modes provided
by these programs are only symmetry adapted to the little
group of k, �p,k and not to the operations that interchange
k and −k, which in this case are the only ones that restrict
the form of an irrep mode. Therefore, if the user does not
introduce additional restrictions, the basis functions provided
by the usual programs describe an arbitrary spin harmonic
modulation and the inversion symmetry is in general broken.
These general unrestricted spin modulations involve at least
two irrep modes with the same irrep (there is only one
possible irrep!) with some relative phase shift, which breaks
the symmetry associated with a single irrep mode.


This simple case is apparently realized in the compound
FeVO4, [33]. This material has a paramagnetic phase with
space group P1̄ and exhibits at low temperatures two
incommensurate magnetic phases with a propagation vector
along an arbitrary direction. The first phase is non-polar, while
the second one exhibits a spontaneous electric polarization.
These transitions seem therefore to correspond to the phase
sequence


P1̄1′→ P1̄1′(α, β, γ )0s→ P11′(α, β, γ )0s


where inversion is lost and ferroelectricity arises only at the
second transition, triggered by the condensation of a second
magnetic order parameter of the same symmetry. In [33],
the intermediate phase was reported as non-centrosymmetric
(despite the absence of a spontaneous polarization), but the
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Table 2. Irreps of the little co-group m2m1′ of the 1-line in the Brillouin zone, which define the four possible magnetic irreps of the
magnetic space group Pnma1′. In the last two columns the resulting superspace group is indicated by its label and the set of generators. The
additional generators {1′|000 1


2 } and {1̄|0000} are common to the four groups and are not listed. For simplicity, as usual, we use a single
label for the irrep of the little co-group and for the corresponding small irrep, full irrep, etc.


irrep 1 mx 2y mz 1′ Superspace group Generators


m11 1 1 1 1 −1 Pnma1′(0β0)000s {mx|
1
2


1
2


1
2 0}, {mz|


1
2 0 1


2 0}
m12 1 −1 1 −1 −1 Pnma1′(0β0)s0ss {mx|


1
2


1
2


1
2


1
2 }, {mz|


1
2 0 1


2
1
2 }


m13 1 −1 −1 1 −1 Pnma1′(0β0)s00s {mx|
1
2


1
2


1
2


1
2 }, {mz|


1
2 0 1


2 0}
m14 1 1 −1 −1 −1 Pnma1′(0β0)00ss {mx|


1
2


1
2


1
2 0}, {mz|


1
2 0 1


2
1
2 }


Table 3. Representative operations of superspace group Pnma1′(0β0)000s described using generalized Seitz-type symbols (left column)
and symmetry cards as used in the program JANA2006 [8]. The operations with time reversal are obtained by multiplying the first eight
operations by {1′|000 1


2 }, as indicated symbolically in the last row.


{1|0000} x1 x2 x3 x4 +m
{2x|


1
2


1
2


1
2 0} x1 + 1/2 −x2 + 1/2 −x3 + 1/2 −x4 +m


{2y|0 1
2 00} −x1 x2 + 1/2 −x3 x4 +m


{2z|
1
2 0 1


2 0} −x1 + 1/2 −x2 x3 + 1/2 −x4 +m


{1̄|0000} −x1 −x2 −x3 −x4 +m


{mx|
1
2


1
2


1
2 0} −x1 + 1/2 x2 + 1/2 x3 + 1/2 x4 +m


{my|0 1
2 00} x1 −x2 + 1/2 x3 −x4 +m


{mz|
1
2 0 1


2 0} x1 + 1/2 x2 −x3 + 1/2 x4 +m


{1′|000 1
2 } x1 x2 x3 x4 + 1/2 −m


· · · × {1′|000 1
2 }


appropriate phase constraints between the inversion-related Fe
atoms to check for the existence of inversion symmetry were
not considered [34]. Therefore the most reasonable scenario
remains the symmetry sequence depicted above.


4.1.2. The incommensurate phase of CaFe4As3. This
metallic compound is orthorhombic and has, at room
temperature, the symmetry Pnma [35], with four independent
Fe atoms at Wyckoff positions 4c (x 1/4 z). At lower
temperatures, two magnetic modulated phases have been
reported [35]. The first one is stable in the temperature range
90 K < T < 26 K and is incommensurate, with k = (0β0)
(line1 of the Brillouin zone) and 0.375< β < 0.39. The little
magnetic co-group of k is the grey point group m2m1′, formed
by the symmetry operations {E,mx, 2y,mz, 1′,m′x, 2′y,m′z},
and the star has two arms (k and −k). The magnetic irreps
are classified according to the irreps of the little co-group
(see table 2) and there is a one-to-one relationship between
each irrep and a magnetic superspace group. These groups,
obtained by applying the rules previously discussed, are
listed in table 2. It is experimentally observed that the active
irrep for the first phase transition of CaFe4As3 is m11 [36].
According to table 2, this irrep implies a superspace symmetry
Pnma1′(0β0)000s for this modulated phase. The symmetry
cards for this superspace group are depicted in table 3.


The constraints imposed by the symmetry on the
magnetic modulation can be derived from equation (6) by
taking into account the invariance of the positions of the Fe
atoms under the operation (my|0 1


2 0). These constraints force


the magnetic modulation of the Fe atoms to satisfy


Mx(−x4) = −Mx(x4), My(−x4) = My(x4),


Mz(−x4) = −Mz(x4).
(22)


Equation (22) implies that the x and z components of
the modulation can have only sine terms in their Fourier
series, while only cosine terms are allowed for the y
component. According to the experiments, the magnetic
modes are aligned along the y axis. Consequently, for a
single irreducible magnetic spin wave of symmetry m11,
the modulation functions (Mx(x4), My(x4), Mz(x4)) must
have the form (0,Mi


y,1c cos(2πx4), 0), with i = 1–4 labelling
the four independent Fe atoms in the reference unit cell.
Only four parameters are needed to describe the magnetic
structure. Once again, as in the first example, the fundamental
symmetry constraint here is not the limitation to cosine
functions of the spin modulation (which is due to a convenient
choice of the global phase of the magnetic modulation),
but the fact that the modulation functions of the four
independent Fe atoms must be in phase. This symmetry
constraint is counterintuitive as it involves atoms that are
symmetry-independent in the paramagnetic phase, but it is
absolutely necessary in order to restrict the modulation to
a mode having the transformation properties of a single
irrep. Arbitrary phase shifts between the modulations of the
independent Fe atoms imply the superposition of at least
two m11 modes with arbitrary complex amplitudes, and
this necessarily breaks the transformation properties that a
magnetic configuration driven by a single m11 mode should
have.
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Table 4. Relation among the modulation functions My(x4) of the magnetic moments along the y direction for the atoms of a Wyckoff orbit
4c within the superspace group Pnma1′(0β0)000s. In the fourth column, the modulation functions considered in [36] are shown for
comparison. β is the y component of the incommensurate propagation vector k = (0β0) and l stands for a lattice vector of the basic
structure labelling a particular unit cell.


Superspace operation Position in the basic structure My(x4) My(k · l)


{1|0000} atom 1: x, 1/4, z Mi
y,1c cos(2πx4) Mi cos[2π(k · l +8i)]


{2y|0 1
2 00} atom 2: −x, 3/4,−z Mi


y,1c cos(2πx4) Mi cos[2π(k · l +8i +
β


2 )]


{mz|
1
2 0 1


2 0} atom 3: x+ 1/2, 1/4,−z+ 1/2 −Mi
y,1c cos(2πx4) −Mi cos[2π(k · l +8i)]


{mx|
1
2


1
2


1
2 0} atom 4: −x+ 1/2, 3/4, z+ 1/2 −Mi


y,1c cos(2πx4) −Mi cos[2π(k · l +8i +
β


2 )]


As summarized in table 4, the modulation functions of
symmetry related atoms can also be determined from (6)
for each of the four Wyckoff orbits. The last column in
table 4 indicates the restrictions on the spin modulations of
any of the four independent Wyckoff orbits of Fe atoms, as
obtained in [36] from a conventional representation analysis.
The appearance in this mode description of the phase
shift of β


2 for atoms with different positions along the y
direction is only a minor nuisance caused by the different
parametrization of the modulations (which uses the argument
k · l instead of the argument k · (l+ rµ) adopted in superspace
formalism). If this latter is used, this phase shift disappears
and, more importantly, the definition of the modulation
functions becomes independent of the choice of the ‘zero’
cell. However, the real important difference between the two
descriptions stands in the free relative phases 8i between
the modulations of the four independent Fe atoms that are
included in this standard representation mode description.
This implies the need of seven parameters for describing
the structure: four real amplitudes for the four independent
Fe sites, plus three phases, since one phase can always
be arbitrarily chosen to be zero. In contrast, as shown in
table 4, the superspace analysis shows that there are only four
free parameters, corresponding to the amplitudes of the four
independent modulation functions, since the four modulations
of the four Wyckoff orbits are constrained to be in phase.
The model refined in [36] does not include this symmetry
restriction. This means that the magnetic point group of the
reported model is, in fact, m2m1′, i.e. a symmetry polar along
y, rather than the mmm1′ point-group symmetry assumed in
the paper.


Therefore, inadvertently, the magnetic structural model
proposed in [36] for the incommensurate phase of CaFe4As3
is a non-centrosymmetric one. It is interesting to see how large
are the deviations of this refined model with respect to the
actual symmetry constraints for a single m11 mode structure
or, equivalently, for the correct centrosymmetric superspace
group symmetry Pnma1′(0β0)000s. The reported refined
phases (see table 4) are 82 = 0.14(3), 83 = 0.45(3), 84 =


0.01(4), with the choice 81 = 0. Therefore, the deviations
from the ‘symmetric’ values 0 or 1/2 are very small in all
cases, close to their standard deviations, except for phase 82.


Again in this example, the differences with the
superspace approach originate in the fact that the employed
basis functions are not symmetry adapted for the operations
interchanging k and −k. These symmetry operations are
usually disregarded in the representation method applied to


incommensurate structures. Atoms belonging to the same
Wyckoff orbit in the paraelectric phase, but related by
operations that transform k into −k, are usually considered
to be split into independent orbits. This assumption is, in
general, not correct and a fully consistent description in
terms of irrep basis modes requires to account for relations
among these ‘split’ atoms that originate in the operations
of the coset g−k�p,k. In addition, usually the constraints
on the basis modes of incommensurate irreps coming from
the need to build a single irrep mode are not considered.
As we have seen in this example this additional restriction
can imply fixed phase relations between the modulations
pertaining to atoms that are independent in the paramagnetic
phase. The need to extend the usual representation analysis
and to consider the symmetry relations associated with a given
irrep for operations transforming k into −k has been pointed
out and worked out in some recent publications [37–40] by
different methods, including a so-called non-conventional use
of corepresentations [37]. These works were mainly motivated
by the need to rationalize the symmetry properties of
multiferroic materials, but the extension of the representation
method to include these operations is necessary for all
incommensurate magnetic structures. In order to do that the
use of corepresentations is, however, not necessary because
ordinary irreps define unambiguously the transformation
properties of the corresponding magnetic modulation for
operations transforming k into −k (even if described with
complex amplitudes). Furthermore, as shown in the simple
examples above, once the superspace symmetry associated
with a given active irrep is identified, this latter is not further
required and the superspace group provides automatically
all relevant symmetry constraints, including those coming
from the operations transforming k into −k, on the magnetic
modulation and any other degree of freedom.


4.1.3. Phase II of chromium. Chromium has a bcc structure
with a space group Im3̄m in its paramagnetic phase, and
exhibits two distinct incommensurate modulated magnetic
phases (see [41, 42] and references therein). In one of these
two phases (hereafter referred to as phase II) the magnetic
moments are ordered according to a longitudinal modulation
with a propagation vector (00γ ) (line1 or DT in the Brillouin
zone), with γ ≈ 0.95. The little group of this vector is I4mm1′.
The active irrep is mDT4 and the corresponding small irrep is
one-dimensional (see table 5). This irrep has a star with six
arms. However, as we are interested in single-k modulations,
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Table 5. Irreducible representations of the little co-group 4mm1′ that define the two irreps of the magnetic space group Im3̄m1′ with
wavevector (00γ ), which can be active in chromium. The corresponding irrep matrices for the extended little group 4/mmm1′ in a conjugate
ordered basis are obtained by applying equation (18), and knowing that the matrix A in equation (19) associated with the inversion operation
(1̄|000) is [1] (1-dim) and [0,1; 1,0] (2-dim), for mDT4 and mDT5, respectively.


E 2z 4z 4−1
z mx my mxy m−xy 1′


mDT4 1 1 1 1 −1 −1 −1 −1 −1


mDT5
(


1 0
0 1


) (
−1 0
0 −1


) (
−i 0
0 i


) (
i 0
0 −i


) (
0 −1
−1 0


) (
0 1
1 0


) (
0 i
−i 0


) (
0 −i
i 0


) (
−1 0
0 −1


)


we will limit our analysis to the subspace formed by the pair
of vectors k and −k, and work with the extended little group
�p,k,−k, which is I4/mmm1′ = I4mm1′+(1̄|000)I4mm1′ [43].


With the rules discussed in section 3.3, the determination
of the symmetry of this modulated phase is straightforward.
One has just to add a shift 1/2 along the internal space
to the operations in the little co-group having character
−1 for the irrep mDT4 (see table 5) and no shift
to the coset representative g−k = (1̄|000). This yields
the superspace group I4/mmm1′(00γ )00sss, which has as
generators: {4z|0000}, {mx|000 1


2 }, {1̄|0000} and {1′|000 1
2 }.


Notice that the extended little group does not coincide in
this case with the full group and, as a result, the superspace
group does not contain all the operations present in the
paramagnetic phase. This symmetry corrects the superspace
group previously assigned in [1] to phase II of chromium,
which, as already mentioned, overlooked the effect of the
symmetry operation {1′|000 1


2 }.
The restrictions on the magnetic and positional struc-


ture of the compound that result from the symmetry
I4/mmm1′(00γ )00sss can be easily derived. In the para-
magnetic phase, the single Cr atom per primitive cell is
located at the origin and is invariant for all operations of the
paramagnetic group. Hence, according to equation (5), the
modulation of the corresponding magnetic moment M(x4) =


(Mx(x4),My(x4),Mz(x4)) must satisfy the relations


(Mx(x4),My(x4),Mz(x4)) = (−Mx(x4),My(x4),Mz(x4))


(Mx(x4 + 1/2),My(x4 + 1/2),Mz(x4 + 1/2))


= (Mx(x4),−My(x4),−Mz(x4))


(Mx(−x4),My(−x4),Mz(−x4))


= (Mx(x4),My(x4),Mz(x4))


(Mx(x4 + 1/2),My(x4 + 1/2),Mz(x4 + 1/2))


= (−Mx(x4),−My(x4),−Mz(x4)).


(23)


These relations originate in the action of the four generators of
the group on the modulation functions. Together, they imply
that the x and y components of the magnetic moments must
vanish by symmetry, while the Fourier decomposition of the z
component must only include cosine odd terms:


Mz(x4) =
∑


n=odd


Mzn cos(2πnx4). (24)


Similar conclusions can be obtained for the possible
structural modulations induced through spin–lattice coupling.
For instance, a displacement modulation u(x4) of the atomic
positions or a charge ordering modulation ρ(x4) are subject


to equations analogous to (23) but with local transformations
complying with those of a polar vector or a scalar field,
respectively. This implies that any displacive modulation must
correspond to displacements along z and can have only even
sine Fourier terms, while an induced charge ordering wave can
only have cosine even Fourier terms:


uz(x4) =
∑


n=even
uz


n sin(2πnx4) (25)


ρ(x4) =
∑


n=even
ρn cos(2πnx4) (26)


Hence, as in the conventional representation analysis,
the superspace group of phase II of chromium permits only
a longitudinal magnetic modulation for this irrep. However
through the assignment of the superspace symmetry one
obtains the additional information that higher odd harmonics,
with propagation vectors nk (n odd), are allowed as secondary
induced spin waves, as long as they are in phase with the
primary longitudinal spin wave. Indeed third-order magnetic
diffraction satellites have been observed [41, 42, 44],
indicating the existence of a significant third-order harmonic
in the spin modulation. Similarly, equation (25) imposes that
any possible lattice modulation resulting from the spin–lattice
coupling must maintain the average position of the Cr
atoms and may only develop even-order harmonics. These
conclusions are also in agreement with the experimental data,
which reveal second- and fourth-order diffraction satellites
that have been ascribed to a strain modulation produced
by longitudinal atomic displacements [41, 42, 44]. Given
that the global phase of the incommensurate modulation is
arbitrary, the restriction of the Fourier series (25) to sine
functions, together with (24), express that the relative phase
shift between displacive and magnetic modulations, must be
±
π
2 .


The assignment of a superspace symmetry to phase
II of chromium automatically encompasses all the allowed
secondary distortions and their constraints. These latter
are obtained as symmetry properties, but it is important
to realize that they are caused by the restrictions on the
possible physical coupling mechanisms that can induce these
secondary modulations. For instance, the higher harmonics of
the magnetic modulation are the result of coupling terms of
the type


Sn(k)S(−nk)+ Sn(−k)S(nk), (27)


which necessarily induces at equilibrium a non-zero
amplitude of the nth harmonic, S(nk), proportional to the nth
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power of the primary order parameter:


S(nk) ∝ Sn(k). (28)


But coupling terms of the type (27) are only allowed for n odd,
because they must be invariant for time reversal. Furthermore,
equation (28) also implies that the secondary anharmonic
modulations must be in phase with the primary harmonic,
as in equation (24). Similarly, the restrictions on the induced
structural modulation originated in the spin–lattice coupling
can be obtained through the analysis of the symmetry allowed
couplings. A modulation of atomic displacements along z with
a wavevector nk (n even) has the form


un(l) = Q(nk)eze−i2πnk·l
+ Q(−nk)ezei2πnk·l (n even), (29)


with un(l) denoting the displacement of the Cr atom at
the lth unit cell, ez a normalized displacement vector
along z and Q(−nk) = Q(nk)∗. The complex amplitudes
(Q(nk),Q(−nk)) transform according to irrep DT1 (identity
small irrep). Irrep DT1 also describes the transformation
properties of (Sn(k), Sn(−k)) with n even (although in a
different basis). As a consequence, the following coupling
term is allowed by symmetry:


i(Sn(k)Q(−nk)− Sn(−k)Q(nk)) (n even), (30)


and implies a non-zero equilibrium value of (Q(nk),Q(−nk))
in the form


Q(nk) ∝ iSn(k) (n even). (31)


Although (31) is an approximation, the predicted relative
phase shift of π


2 it imposes between the magnetic and the
displacive waves is symmetry forced and has a general
validity. Notice that the spin–lattice coupling terms of the
type (30) are restricted to n even due to the requirement
of time reversal invariance. Also, the absence of transversal
displacive modulations in phase II of chromium can be
verified by the impossibility of forming coupling terms
similar to (30) involving these displacements and the primary
magnetic modulation. Finally, the assignment of a superspace
group to phase II of Cr implies establishing symmetry
constraints to its crystal tensor properties, either magnetic or
non-magnetic. As the point-group symmetry is given by the
centrosymmetric grey group 4/mmm1′, ferromagnetism and
linear magnetoelasticity are necessarily forbidden.


4.2. The case of multidimensional small irreps


In section 4.1 we have seen that, in the case of single-k
magnetic orderings with a 1-dim small irrep, there is
a one-to-one correspondence between each irrep and a
superspace group. Thus, the restrictions on the first harmonic
of the magnetic modulation originated in the superspace
symmetry are equivalent to the restrictions imposed by
the adapted symmetry mode analysis, if the effect of
the symmetry operations that transform k into −k were
taken into account. For multidimensional small irreps,
the two approaches have more fundamental differences,
since the one-to-one correspondence between irreps and
superspace groups disappears. For multidimensional small


irreps (N > 1), the solution of (17) depends in general on
the specific direction taken by the N-dimensional vector
{S1(k), . . . , SN(k)}. Therefore, several different superspace
symmetry groups are, in principle, possible for the same irrep.


The different possible superspace groups that can
result from a given active irrep with N > 1 can be
determined by applying (17) without the need to assign
any specific microscopic meaning to the components of the
order parameter S(k). Programs like ISODISTORT [27] or
JANA2006 [8] do this calculation for any irrep. Once the
possible superspace groups for a given active irrep are derived
and one of them is assigned to a magnetic phase, the symmetry
restrictions on the magnetic modulation and all other degrees
of freedom can be directly obtained, as in the previous cases.
Let us consider one concrete example.


4.2.1. Phase I of chromium. Phase I of chromium
corresponds to a transversal spin modulation with propagation
vector (0 0 γ ) that transforms according to the irrep
mDT5 of Im3̄m (see table 5). This irrep is four-
dimensional and the order parameter is fully defined by two
complex amplitudes (S1(k), S2(k)) = (S1ei2πφ1 , S2ei2πφ2).
The possible superspace groups can be obtained from the
analysis of how these amplitudes are transformed under
the extended little group 4/mmm1′ of the vector k and
by applying the invariance equation (17). Let us consider
some examples for operations without time reversal since,
as seen in section 3, the extension to the operations with
time reversal is straightforward. According to table 5,
the operation (2z|000) transforms (S1ei2πφ1 , S2ei2πφ2) into
(−S1ei2πφ1 ,−S2ei2πφ2). This means that the superspace
operation {2z|000 1


2 } will always be present for any value
of the amplitudes of the order parameter. The operation
(4z|000) yields (−iS1ei2πφ1 , iS2ei2πφ2), meaning that the
superspace symmetry operation {4z|000 1


4 } will be present
for configurations of type (S1ei2πφ1 , 0) (or similarly
operation {4z|000 3


4 } for (0, S2ei2πφ2)). The inversion (1̄|000),
transforms the order parameter into (S2e−i2πφ2 , S1e−i2πφ1).
Hence, according to equation (17) a superspace symmetry
operation {1̄|000φ1 + φ2} exists for configurations of the
type (Sei2πφ1 , Sei2πφ2). In this way, all special directions in
the order parameter space can be explored and their isotropy
superspace groups derived. Table 6 lists the seven possible
magnetic symmetries. The groups I4221′(00γ )q00s and
I4221′(00γ )q̄00s are associated with physically equivalent
enantiomorphic spin configurations5.


As in the case of phase II, the restrictions on the Cr
modulations for all the possible alternative symmetries in
table 5 can be derived by using the equations discussed
in section 2. These restrictions are summarized in table 7
and figure 2 depicts schematically the form of the magnetic
configurations for some of the symmetries. It is illustrative to
see the origin of some of these restrictions. For instance, the
tetragonal superspace groups force the spin wave to adopt a


5 The two groups are mathematically equivalent by interchanging k and
−k [25, 28], but we prefer to distinguish the symmetry of the two solutions
keeping unchanged the choice of the propagation vector.
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Table 6. Possible superspace symmetries of an incommensurate magnetic modulation in a Im3̄m structure with propagation vector
k = (00γ ) and irrep mDT5. The restrictions on the form of the order parameter required for each specific symmetry are indicated in the first
column. In general, only one direction of the order parameter is shown from the set of equivalent ones, except in the case that the symmetry
of different equivalent domains corresponds to enantiomorphic groups. The choice made of the arbitrary global phase of the spin
modulation is shown in the third column.


Order parameter Superspace group Phase Generators (besides {1′|000 1
2 })


(Sei2πφ, 0) I4221′(00γ )q00s φ = 0 {4z|000 1
4 }{2y|0000}


(0, Sei2πφ) I4221′(00γ )q̄00s φ = 0 {4z|000 3
4 }{2y|0000}


(Sei2πφ, Sei2πφ) Immm1′(00γ )s00s φ = 0 {2z|000 1
2 }{1̄|0000}{mx|000 1


2 }


(Sei2πφ, Sei2π(φ+ 1
2 )) Fmmm1′(00γ )s00s φ = − 1


4 {2z|000 1
2 }{1̄|0000}{mxy|000 1


2 }


(Sei2πφ1 , Sei2πφ2) I112/m1′(00γ )00s0s φ1 = −φ2 {2z|000 1
2 }{1̄|0000}


(S1ei2πφ, S2ei2πφ) I2221′(00γ )00ss φ = 0 {2z|000 1
2 }{2y|0000}


(S1ei2πφ, S2ei2π(φ−1/2)) F2221′(00γ )00ss φ = 1
8 {2z|000 1


2 }{2xy|0000}


(S1ei2πφ1 , S2ei2πφ2) I1121′(00γ )00ss — {2z|000 1
2 }


Table 7. Symmetry restrictions on the Fourier series describing the modulations of one atom at the origin for each of the possible magnetic
superspace groups listed in table 5. Components not explicitly listed are zero. The cross-relations between the amplitudes of sine and cosine
terms are indicated symbolically. If the modulations are restricted to sine or cosine terms, a parenthesis with the word is added. If necessary,
the restriction in the order-type of the harmonics is also indicated. The general restriction caused by the symmetry operation {1′|000 1


2 } is
given in the second row.


Magnetic M(x4) Displacive uz(x4) Charge/occupation ρ(x4)


Superspace group
M(x4 +


1
2 ) = −M(x4)


odd harmonics
u(x4 +


1
2 ) = u(x4)


even harmonics
ρ(x4 +


1
2 ) = ρ(x4)


even harmonics


I4221′(00γ )q00s Mx(sin /4n+ 1) = −My(cos /4n+ 1)
Mx(sin /4n+ 3) = My(cos /4n+ 3)


uz(sin /4n) ρ(sin /4n)


I4221′(00γ )q̄00s Mx(sin /4n+ 1) = My(cos /4n+ 1)
Mx(sin /4n+ 3) = −My(cos /4n+ 3)


uz(sin /4n) ρ(sin /4n)


Immm1′(00γ )s00s Mx = 0
My(cos)


uz(sin) ρ(cos)


Fmmm1′(00γ )s00s Mx(cos) = My(cos) uz(sin) ρ(cos)


I112 / m1′(00γ )s0s Mx(cos)
My(cos)


uz(sin) ρ(cos)


I2221′(00γ )00ss Mx(sin)
My(cos)


uz(sin) ρ(cos)


F2221′(00γ )00ss Mx(sin) = −My(sin)
Mx(cos) = My(cos)


uz(sin) ρ(cos)


I1121′(00γ )ss Mx(x4),My(x4) uz(x4) ρ, no condition


helical configuration. This is due to the fact that operations
such as {4z|000 1


4 } force the modulation of an atom at the
origin of the basic unit cell to verify the condition


M(x4 +
1
4 ) = 4+z · M(x4). (32)


This condition implies that the x and y components of the spin
modulation must be in right-handed quadrature. Furthermore,
equation (32), combined with the relation M(x4 +


1
2 ) =


−M(x4) forced by the operation {1′|000 1
2 }, implies that the


z component of the magnetic modulation must be zero. This
means that the symmetry only allows transversal modulations.
In addition, the operation {2y|0000} requires that


M(−x4) = 2y · M(x4). (33)


Together with equation (32) this implies that the first harmonic
of M(x4) must be of the form


(M1
x (x4),M1


y (x4)) = (M1 sin(2πx4),−M1 cos(2πx4)) (34)


with only a free parameter, M1. Similarly, if a third harmonic
exists, it must be of the form


(M3
x (x4),M3


y (x4)) = (M3 sin(2πx4),M3 cos(2πx4)), (35)


with opposite sign correlation of the two components. These
relations are then repeated for higher harmonics depending
on their parity. The first harmonic is therefore a helical
arrangement along the z axis, with the spins rotating in the
xy plane (see figure 2).


There are group–subgroup relations among some of the
possible symmetries listed in table 7, implying that some of
the constraints are common to some sets of symmetries, while
others disappear as the symmetry is lowered. The operation
{2z|000 1


2 } is common to all of the groups and implies that
the magnetic modulation function of an atom at the origin
must satisfy the condition M(x4 +


1
2 ) = 2z · M(x4). This


requirement, together with the condition M(x4+
1
2 )=−M(x4)


imposed by the operation {1′|000 1
2 }, restricts the modulations
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Figure 2. Scheme of possible magnetic modes of different superspace symmetry for a bcc structure, with a propagation wavevector
(0 0 ∼0.96) and irrep mDT5. The superspace group corresponding to each case is indicated (see table 6). The figures depict about half the
wavelength of the incommensurate spin wave. The mode observed in phase I of chromium is the one with superspace group
Immm1′(00γ )s00s.


to be transversal even if higher-order harmonics are present.
The non-centrosymmetric orthorhombic symmetries produce
elliptical rotations of the magnetic moments around the
propagation direction, with the axes of the elliptical orbit
fixed along the x and y directions (for the I2221′(00γ )00ss
symmetry) or the oblique directions (1 1 0) and (−1 1 0) (for
the case of F2221′(00γ )00ss). It is remarkable that only in
the case of a fully arbitrary modulation in the xy plane does
the mDT5 mode produce a polar symmetry.


According to table 7, the possible induced displacive
structural modulations of an atom at the origin must be
longitudinal for all possible symmetries. This is forced
by the mutually incompatible constraints imposed by the
operations {1′|000 1


2 } and {2z|000 1
2 } for transversal displacive


modulations. In the case of all higher symmetry groups,
the additional symmetry operations constrains further the
modulation to sine Fourier terms, while in the case of the
tetragonal groups, the displacive modulation is restricted to
4n harmonics due to the relation u(x4 +


1
4 ) = u(x4) forced


by the operation {4z|000 1
4 } (or the equivalent relations with


translation 3/4).
Similar to the previous example, the symmetry restric-


tions on the direction, phase and possible harmonics of the
structural modulations can be traced back to the symmetry
constraints on the spin–lattice couplings. If we denote by
Q(2k) the complex amplitude of a longitudinal displacive
modulation with wavevector 2k (see equation (29)), then the
lowest-order coupling with the order parameter (S1(k), S2(k))
is given by the symmetry invariant


i(S1(k)S2(k)Q(−2k)− S1(−k)S2(−k)Q(2k)). (36)


This coupling is similar to that found in phase II for an
order parameter of symmetry mDT4 (see equation (30)). The
difference here is that it is inactive for the special directions of
the order parameter corresponding to helical configurations,
where either S1(k) or S2(k) are zero. According to
equation (36), the amplitude of the induced second harmonic
longitudinal modulation is given to first approximation
by Q(2k) ∝ iS1(k)S2(k) and therefore this modulation
will be zero in an helical phase, in agreement with the
conclusion derived directly from the superspace symmetry.
This incompatibility of the helical arrangement with a
2k-induced structural modulation has been occasionally
pointed out under particular physical models of Cr [45, 46].
A comparison of the derivation of this incompatibility in [45]
with the one given above is a vivid illustration of the power
and simplicity of superspace formalism.


According to the experimental results, the magnetic
moments in phase I of Cr are aligned along either the x
or y directions, with the coexistence of both orientations as
domains [41]. According to tables 6 and 7, the symmetry
of this configuration is given by the orthorhombic group
Immm1′(00γ )s00s. A tetragonal helical arrangement was
also proposed in some early works [47], but was later
discarded. The experimental distinction between a collinear
modulation with equilibrated domain populations and a
helical arrangement can sometimes be difficult, and the
possibility of a helical ordering in phase I of Cr has persisted
in the literature [46, 48]. This contrasts with the symmetry
analysis presented above, which shows that a circular helical
arrangement can be directly discarded, since its superspace
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symmetry is incompatible with the structural modulation with
wavevector 2k that has been detected in several diffraction
studies [41, 42, 44].


4.2.2. Superspace symmetry versus representation analysis
for N > 1. In the previous example, the assignment of
the irrep mDT5 to the magnetic ordering only constrains the
modulation of the Cr atoms to be a transversal harmonic
spin wave of any type. In contrast, each of the possible
superspace group symmetries for this irrep restricts the
form of the modulation further. Obviously an extended
representation method, that would specialize the symmetry
adapted functions to the special directions in representation
space required for each of the superspace groups, would
be equivalent to the superspace approach in what concerns
the symmetry conditions on the first harmonic modulation.
But this complete representation methodology would be
unnecessarily complicated, as the most general form of the
modulation, including magnetic and structural waves, and
any harmonic, can be directly obtained for each special irrep
direction from its associated superspace group.


The power of the superspace formalism is that, once a
magnetic superspace symmetry is assigned (either derived as
a possible one for a certain active irrep, or from inspection
of the properties of the experimental data), representation
analysis and group theory are no longer needed to describe
the structure or its properties. There is no need for building up
basis modes, as done in the standard representation method,
or to appeal either to the underlying irrep properties of
the magnetic ordering. Superspace symmetry operations are
defined in an unambiguous form, analogous to space group
operations, and the resulting symmetry restrictions on the
magnetic modulations and on any other degree of freedom can
be directly derived. Then, both the magnetic and the atomic
structure can be described (and refined) in a generalized
crystallographic manner, considering an asymmetric unit
for both the atomic positions and the modulations, with
specific constraints on the modulations of the atoms at special
positions.


The very particular features of helical structures and other
highly regular spin arrangements are usually being introduced
by ad hoc restrictions on the basis irrep modes, when trying
to fit their diffraction data [48]. The example above shows
that some of the regular features of these arrangements can
be assigned to the superspace symmetry of the phase. These
features are therefore robust and exact in the sense that their
breaking, as it is a symmetry break, requires a thermodynamic
phase transition.


5. Incommensurate magnetic phases with two active
irreducible representations


5.1. General concepts


In the previous examples, we have essentially considered
possible superspace symmetries of single-k magnetic phases


with a unique primary irrep magnetic mode6. This implies
that the symmetry associated with secondary modes must be,
by definition, fully compatible with the symmetry dictated by
this primary mode. In the cases discussed above, for example,
higher harmonics of the magnetic modulation transforming
according to different irreps may occur, but they do not
break further the symmetry of the phase, which is solely
dictated by the primary mode. However, magnetic phases
may also result from the condensation of several primary
irrep modes. The symmetry of these more general single-k
magnetic configurations can be straightforwardly derived by
considering the intersection of the superspace groups that
would result from each of the primary irrep modes, taken
separately. For an experimental example where this type of
symmetry analysis has been done, see [12].


Let us then consider a phase that results from the
superposition of two irrep primary modes. We will assume
that these two modes share a common propagation vector,
so that the resulting phase is a single-k magnetic phase
describable by a (3 + 1)-dim superspace group. The
superspace groups that may arise from these two modes,
taken separately, are not group–subgroup-related, and their
intersection depends, in general, on the relative phases of
the corresponding modulations. As seen in section 3, in the
case of the symmetry operations transforming k into −k,
the translational part along the coordinate x4 depends on the
choice of the origin in the internal space, i.e. it depends on the
global phase associated with the modulation. In order to derive
the symmetry of the superposition of two active irrep modes,
one must then explicitly consider this dependence. When there
is an incommensurate modulation with a single irrep, one is
always allowed to choose this phase as zero. However, if two
primary irrep modulations are superposed, only one of the
phases is arbitrary, and the superspace symmetry depends in
general on the relative phase shift of the two irrep magnetic
modulations.


A shift of the global phase of a modulation by a
quantity φ (in 2π units) is equivalent to a translation of
the origin of the internal coordinate x4 by −φ. Under
this origin shift, a symmetry operation {R, θ |t τo} becomes
{R, θ |t τo − RIφ + φ}, where RI is defined in equation (4).
This means that the operations that keep k invariant do not
change, while those transforming k into −k transform into
{R, θ |t τo + 2φ}. The intersection of the symmetry groups of
the different primary irrep modulations will then depend on
their relative phases through their presence in their respective
symmetry operations. Let us consider, for instance, the case
of two irrep modes that keep inversion {1̄|0000} in their
respective isotropy superspace groups. The translation along
the internal space is zero in the two groups, because the
global phase of each irrep magnetic mode has been chosen
conveniently. However, if the global phases (in 2π units) of
the two modes are φ1 and φ2 (with respect to the position
of the inversion centre along the internal space), then their
inversion symmetry operations are respectively {1̄|0002φ1}


6 The term primary is used here in the sense that the presence of other
(secondary) modes within the same phase is explained just as induced or
secondary effects.
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Table 8. Irreps of the little co-group m2m1′ of the 1 line in the Brillouin zone, which define the four possible magnetic irreps of the
magnetic space group Pbnm1′. In the last two columns the resulting superspace group is indicated by its label and the set of generators. The
generators: {1′|000 1


2 } and {1̄|0000}, common to the four groups, are not listed.


irrep 1 mx 2y mz 1′ Superspace group Generators


m11 1 1 1 1 −1 Pbnm1′(0β0)000s {mx|
1
2 0 1


2 0}, {mz|00 1
2 0}


m12 1 −1 1 −1 −1 Pbnm1′(0β0)s0ss {mx|
1
2 0 1


2
1
2 }, {mz|00 1


2
1
2 }


m13 1 −1 −1 1 −1 Pbnm1′(0β0)s00s {mx|
1
2 0 1


2
1
2 }, {mz|00 1


2 0}
m14 1 1 −1 −1 −1 Pbnm1′(0β0)00ss {mx|


1
2 0 1


2 0}, {mz|00 1
2


1
2 }


Table 9. Magnetic superspace groups resulting from the superposition of two primary magnetic irreps with a relative phase shift 18 for a
paramagnetic space group Pbnm1′ and a common propagation wavevector k = (0β0) (see table 2 of [37] for comparison).


m11 m12 m13 m14


18 = 1
4 +


n
2 (mod. 1) m11 Pb21m1′(0β0)000s


m12 P2121211′(0β0)000s Pb21m1′(0β0)s0ss
m13 P21nm1′(0β0)000s Pbn211′(0β0)s00s Pb21m1′(0β0)ss0s
m14 Pbn211′(0β0)000s P21nm1′(0β0)00ss P2121211′(0β0)0s0s Pb21m1′(0β0)0sss


18 = n
2 (mod.1) m11 Pbnm1′(0β0)000s


m12 P21/n1′(0β0)00s Pbnm1′(0β0)s0ss
m13 P21/m1′(0β0)00s P21/b1′(0β0)0ss Pbnm1′(0β0)s00s
m14 P21/b1′(0β0)00s P21/m1′(0β0)0ss P21/n1′(0β0)s0s Pbnm1′(0β0)00ss


18 (arbitrary) m11 Pb21m1′(0β0)000s
m12 P12111′(0β0)0s Pb21m1′(0β0)s0ss
m13 P11m1′(0β0)0s Pb111′(0β0)ss Pb21m1′(0β0)ss0s
m14 Pb111′(0β0)0s P11m1′(0β0)ss P12111′(0β0)ss Pb21m1′(0β0)0sss


and {1̄|0002φ2}. Hence, a superposition of the two modes will
maintain inversion only if φ2 − φ1 = n/2. Similarly, if two
irrep modes with a common k = (0β0) are superposed, a first
one having a symmetry {2z|00 1


2 0} (that is, {2z|00 1
2 2φ1} for


an arbitrary origin in the internal space) and a second one the
symmetry {2z|00 1


2
1
2 } ({2z|00 1


2
1
2 + 2φ2}, for the same generic


origin), then their combined effect will maintain the common
twofold axis only if φ2 − φ1 =


1
4 +


n
2 . We have then the


necessary ingredients to derive in a straightforward form the
possible superspace symmetries produced by the action of two
irrep modes with the same propagation vector.


Sometimes ferroelectricity or special magnetoelectric
effects originate in complex magnetic orders that involve
several primary irreps. We have seen, for instance in section 3,
that a single incommensurate irrep magnetic mode with a
1-dim small irrep cannot induce improper ferroelectricity.
However, the action of two 2-dim magnetic irrep modes can
break the centrosymmetry of a paramagnetic phase and induce
a secondary spontaneous polarization, with ferroelectric
properties. Therefore the knowledge of the symmetry that
results from the presence of several active irreps is especially
important for the analysis of possible multiferroic orderings.


5.2. Multiferroic phases in orthorhombic RMnO3 compounds


Let us consider the possible irrep magnetic orderings
with propagation vector k = βb∗ in a paramagnetic
phase of symmetry Pbnm1′ (standard setting Pnma1′).
This corresponds to the case of the orthorhombic rare-
earth manganites of type RMnO3 (R being a rare-earth
element) [49], which exhibit at low temperatures several


modulated magnetic structures with different types of
polar behaviour, some of them with two primary irrep
modes [50–53].


Table 8 lists the four different possible magnetic irreps
of Pbnm1′ for a propagation vector (0 β 0) and their
corresponding superspace groups, according to the general
rules explained in section 4. One can then calculate the
possible intersections corresponding to the superposition
with different relative phase shifts of two primary modes
(i.e. configurations of type m1i + m1j). These possible
superspace symmetries are listed in table 9 and can be
compared with table 2 in [37], where the non-magnetic
point groups of the nuclear structure were listed for the case
of two magnetic irreps combined in quadrature. Once the
different settings are taken into account, the point groups
listed there agree with those extracted from table 9. The
list in [37] was derived using a so-called ‘non-conventional
application of corepresentation analysis’. This reference
indeed considered a non-standard interpretation of the
concept of corepresentations. Here, we show that these point
groups can be straightforwardly obtained by using ordinary
irreducible representations of the paramagnetic grey group
and their associated superspace symmetries. Moreover, by
following the superspace formalism, one obtains not only the
point groups to be assigned to the structures, but also the
full magnetic symmetry that dictates the restrictions imposed
upon any degree of freedom and any tensor property.


The possible ferroic properties of an incommensurate
magnetic phase, in particular, are unambiguously defined by
the knowledge of its superspace group. From tables 8 and 9,
which apply to the RMnO3 compounds, several conclusions
can be directly extracted. Firstly, the symmetry operation
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{1′|000 1
2 } is always maintained for phases with two primary


irreps.
Therefore, ferromagnetism, ferrotoroidicity and linear


magnetoelastic or magnetoelectric effects are symmetry
forbidden in this type of phase. A second general conclusion
is that the superposition of two primary irrep modes that are
either in phase or in anti-phase can never induce improper
ferroelectricity, because all possible point groups include
space inversion. In contrast, space inversion is always broken
if the two modes are in quadrature (18= 1


4+
n
2 ), but that does


not guarantee the onset of ferroelectricity. As seen in table 9,
the combinations in quadrature m11+m12 and7 m13+m14
give rise to the non-polar and non-centrosymmetric point
group 222. For the remaining combinations in quadrature
of pairs of modes, the resulting point groups are polar,
and therefore an induced ferroelectric polarization is to
be expected. The direction of this spontaneous electric
polarization depends on the specific pair of irreps. For the
combination of distinct irreps, the electric polarization is
necessarily oriented along one of the two crystallographic
directions perpendicular to the wavevector. This corresponds
to the case of the cycloidal spin arrangements observed in
the RMnO3 compounds [52, 53]. But a polarization parallel
to the wavevector is expected for two irrep modes with the
same irrep and different global phases. Notice that, according
to table 9, only when the two superposed irreps have an
arbitrary relative phase shift is it possible to have an induced
polarization along an arbitrary direction in a crystallographic
plane. But, even in this case, where the polarization may
rotate in the plane as a function of temperature or the
external magnetic field, a linear magnetoelectric response
remains forbidden, due to the presence of the symmetry
operation{1′|000 1


2 }.
It is interesting to consider, within the framework of


tables 8 and 9, the properties of the different phases reported
for TbMnO3, a most studied representative member of the
RMnO3 family. This compound displays a first magnetic
phase transition at TN ≈ 41 K, driven by an active irrep of
symmetry m13. At lower temperatures, TC ≈ 28 K, a second
transition leads to a magnetic phase with a superposition in
quadrature m13 + m12 [53]. According to tables 8 and 9,
these two consecutive transitions correspond to the symmetry
breaking sequence:


Pbnm1′
(TN)
→ Pbnm1′(0β0)s00s


(TC)
→ Pbn211′(0β0)s00s.


The point group of the first magnetic phase is therefore
mmm1′, and all possible induced structural distortions
(restricted to even harmonics) keep space inversion. In the
second transition the point group is reduced to mm21′ and one
should expect an induced secondary polar structural distortion
with an electric polarization oriented along z.


The assigned superspace symmetries not only rationalize
the crystal tensor properties of these two phases but, when
applied on the possible form of the magnetic modulation, also


7 The symbol τ1 + iτ2 has been sometimes used to indicate the combination
in quadrature of two modes with irreps τ1 and τ2. This expression can be
misleading and is certainly outside the usual notation of group theory.


introduce simple relations between the amplitudes and phases
of the spin waves of the symmetry related magnetic atoms.
As some of the Tb atoms are only related by operations that
exchange k and −k, the symmetry relation between their spin
waves is not taken into account by the usual representation
analysis. It is remarkable that sometimes these relations have
been added, at least partially, with ad hoc arguments. For
instance, the amplitudes of the two split Tb orbits were forced
to be identical in [53], but their relative phase was refined,
when in fact this phase is also symmetry forced.


In the lower temperature magnetic phase of TbMnO3,
the magnetic modulation must comply with the superspace
group Pbn211′(0β0)s00s; if the magnetic modulation is
further restricted to be compatible with A-type local spin
arrangements [52], then the reported dominant cycloidal form
of the spin modulation [53] is directly obtained from the
symmetry conditions of the mentioned superspace group.
However, this superspace group also allows the presence
of magnetic modulations of types C, F and G. These
other types of modulations can introduce in the magnetic
modulation complex features beyond the simple cycloidal
model and they have indeed been observed, although with
weak amplitudes [52, 54].


Under the application of a magnetic field in the yz
plane, TbMnO3 undergoes a phase transition in which the
polarization rotates from the z to the x axis. According
to [55], this transition corresponds to a rotation of the plane
of the dominant A-type cycloid. In terms of active irreps, this
rotation of 90◦ of the cycloid plane implies a change of the
primary magnetic ordering to a superposition in quadrature
of type m13 + m11, which according to table 9, yields
the symmetry P21nm1′(0β0)000s, i.e. a phase polar along
x, with magnetic point group 2mm1′, explaining the flip of
the induced polarization. The above discussion shows that
the presence of a spontaneous electric polarization and its
orientation can directly be predicted by symmetry arguments,
independently of the microscopic mechanism at work.


6. Conclusion


The superspace formalism allows a systematic description
and application of the symmetry present in incommensurate
magnetic phases. Its relation with the usual representation
analysis method has been analysed showing the advantages
of a combined use of both approaches. The superspace group
defines not only the symmetry restrictions present in the
first harmonic of the modulation, corresponding to one or
more specific irreps, but it also automatically includes all
symmetry restrictions that are present in any other possible
induced secondary distortions, such as higher harmonics
in the modulated distortion. Magnetic modulated structures
are often purely sinusoidal within experimental resolution,
and can have a negligible coupling with the lattice, but
in the important cases where this coupling is significant
(as in multiferroics) and/or the cases where the magnetic
modulation becomes anharmonic, the use of the superspace
symmetry allows us to consider in a systematic way all
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possible degrees of freedom that, due to the symmetry break,
become unclenched.


The magnetic ordering and possible induced structural
distortions in an incommensurate magnetic phase are
restricted by its superspace symmetry group, and this property
is in general more restrictive than the mere description of
the magnetic modulation in terms of basis functions for one
or several irreps. A consistent comprehensive account of the
symmetry properties of single-k magnetic modulations must
include its transformation properties for operations changing
k into −k, and this is done automatically by the superspace
symmetry.


We have shown that single-k incommensurate magnetic
modulations have the symmetry operation, combining time
reversal and a semi-period phase shift of the modulation.
This ubiquitous simple symmetry operation implies important
general properties of these systems, as the grey character
of their magnetic point groups or the restriction to odd and
even harmonics of the magnetic and structural modulations,
respectively. To our knowledge, these general symmetry-
forced features of single-k magnetic phases, although rather
familiar for many experimentalists, seem to have never been
formulated in a general context, and their general validity
seems to be ignored (see, for instance, [56]).


An efficient approach to the determination and descrip-
tion of an incommensurate magnetic structure and to the
classification of its properties can be achieved by system-
atically exploring the possible superspace groups associated
with one or more irreps, cross-checking successively their
adequacy to the experimental data. Recent developments in
the programs JANA2006 [8] and ISODISTORT [27] provide
tools for the automatic calculation of the possible magnetic
superspace symmetries for any paramagnetic space group, any
propagation wavevector and any irrep. This should allow a
rapid and systematic exploration in experimental studies of
all possible spin configurations, from the highest to the lowest
possible symmetries.


The symmetry of commensurate magnetic modulations
corresponding to the lock-in of the propagation vector into
simple rational values (described by conventional Shubnikov
space groups) can be directly related to the superspace
symmetry of virtual or real neighbouring incommensurate
phases with irrational propagation vectors. The extreme
utility of this close relation between commensurate and
incommensurate symmetries is well known in the study of
non-magnetic structural modulations. We have not treated
here this topic because of a lack of space, but some specific
examples of its application in magnetic structures can be
found in [16]. There, it can be seen that, similar to the
case of a structural modulation, the magnetic symmetry of a
commensurate lock-in magnetic phase depends on the parity
of the numerator and denominator of the fraction describing
the commensurate wavevector, and well-defined parity rules
exist concerning, for instance, the presence of improper
(induced) ferroelectricity. The application of these rules is
especially useful to evaluate complex phase diagrams with
multiple commensurate and incommensurate phases.
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