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Abstract

Superspace symmetry has been for many years the standard approach for the analysis of
non-magnetic modulated crystals because of its robust and efficient treatment of the structural
constraints present in incommensurate phases. For incommensurate magnetic phases, this
generalized symmetry formalism can play a similar role. In this coniext we review from a
practical viewpoint the superspace formalism particularized to magnetic incommensurate
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MAGNDATA: towards a database of magnetic
structures. Il. The incommensurate case

Samuel V. Gallego,® ). Manuel Perez-Mato,** Luis Elcoro,® Emre S. Tasci,”

Robert M. Hanson,” Mois I. Aroyo® and Gotzon Madariaga®
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Turkey, and “Department of Chemistry, 5t Olaf College, Morthfield, MM 55057, USA. *Comespondence e-mail:

jm . perez-mato@@ehu.es

A free web page under the name MAGNDATA, which provides detailed
quantitative information on more than 400 published magnetic structures, has
been made available at the Bilbao Crystallographic Server (http:/www.cryst.
chu.es). It includes both commensurate and incommensurate structures In the
first article in this series, the information available on commensurate magnetic
structures was presented [Gallego, Perez-Mato, Elcoro, Tasci, Hanson, Momma,
Aroyo & Madariaga (2016). J. Appl Cryst 49, 1750-1776]. In this second article,
the subset of the database devoted to incommensurate magnetic structures is
discussed. These structures are described using magnetic superspace groups, ie.
a direct extension of the non-magnetic superspace groups, which is the standard
approach in the description of aperiodic crystals. The use of magnetic
superspace symmetry ensures a robust and unambiguous description of both
atomic positions and magnetic moments within a common unique formalism.

J. Appl. Cryst. (2016) 49, 1941-1956



Incommensurate modulated structures

%{*ﬁ ¢*J*

[: lattice translation of reference/basic/average structure

Harmonic Modulation with propagation vector k of “quantity” A of atom p:

A(Lp)= A, ek FaepA*  giznk ()

/

if k is incommensurate k.l (mod. 1) takes ANY VALUE at some lattice vector /




How do we describe a modulated structure without periodicity?

Simplest case: single-k modulated structures

(One incommensurate propagation vector k (and its opposite -k!) :

Basic (periodic) structure
Incommensurate | __ .
Structure set of atomic modulation functions A, (x,)
general anharmonic case u=1,...,n atoms in unit cell of basic structure

A(l,u)kn Au,n e-i2nnk.(l+ru)+A*u,nei2nnk_(1+m)

A(x,) =A(x,+1)

Au(X4)= Zn Au,n ei2mnx4 4 A*u,ne-iZRnX4

A(LL)= A (x4=K.(I+ry)) |

A (x,) = A+ DA, sin2mnx,)+ A, cos2mnx,)

n=l,...



Description of an incommensurate modulated structure

1) Basic structure: r’H=I+ Iy I: basic lattice /periodicity

u=1,...,n atoms in unit cell of basic structure

2) Modulations (magnetic moments, atomic displacements,..):

modulation functions:

A (x,) = Ap+ D, A, sinmnx,)+ A, cos2mnx,)

n=l,...

Value of A for atom (,,n): A(Lu) =A, (x,=K r,u) ‘ k = [;ngt:grgﬁgiuvr:::?or

example: 1.1.9

fourth coordinate in superspace

A global shift of the modulation functions along x, keeps the energy invariant



The superspace:

We can use the additional coordinate x4 of the modulations functions A (x4)
defining the modulation of the structure as an additional dimension and
construct in this “superspace” a mathematical 4-dim lattice periodic

“supercrystal” where the equation:

A= A, (xd=k.(+r)) |

which defines the atomic values of the real crystal is equivalent to
considering a certain section of this mathematical 4-dim construct.

The superspace concept is just a mathematical construct, which
allows to interpret the equations characterizing incommensurate
structures and their symmetry as analogous to those of ordinary
crystallography for a structure with lattice periodicity, but in a (3+1)-
dim mathematical space.

BUT this superspace concept is just a help. Essential are only the
equations!, and these can be derived without the need of a 4-dim
superspace.



MAGNETIC SYMMETRY IN COMMENSURATE CRYSTALS:
MAGNETIC SPACE GROUPS OR SHUBNIKOV GROUPS

A symmetry operation fullfills:

 the operation belongs to the set of transformations that keep

the energy invariant: rotations
translations

time reversal

.
)

- the system is undistinguishable after the transformation

Symmetry operations in commensurate magnetic crystals:
magnetic space group:  { {R| t.}, {R'j|tj} }

or {{R, 0|t} 0= +1 V\_nthqut time reversal
0= -1 with time reversal




SYMMETRY OF INCOMMENSURATE PHASES

Phase shift of the whole modulation: energy invariant!

Symmetry operations in 1-k incommensurate crystals:
Incommensurate

sym. operations: space group operations magnetic
structures have

+ phase shifts of the modulation :
an unambiguous

\ magnetic point
group symmetry

magnetic superspace group:  {{Rj| t;, 1}, {R'|t", 1} } /

magnetic point group: set of all roto-inversion and roto-
inversion+time inversion operations {R, R'} in its magnetic
superspace group!




Symmetry relations between the modulation functions
of different atoms in the basic unit cell due to a symmetry operation.

Superspace symmetry operation: {R,0|t,T}
{R|t} : is a space group operation of the basic (periodic) structure

atom atom’
Ayx) @ _Ritt_ %9 Apxd)

(hv) ()

superspace symmetry operation (R,0]|t,t) implies a relation among the modulation
functions of the atoms v and u of the basic structure:

Ay (x,) AH(X4)

For the modulation of magnetic moments:

Mp (Rix,+7, + Hpry ) = 0det(R)R . M, (x,) R, 7, , Hg defined by {R,0]t,}

If y=v ——> M,,(x,) symmetry constrained!



Symmetry relations between the modulation functions
of different atoms in the basic unit cell due to the symmetry
operation {R,0|t,1}:

M.u (Rix,+7, + Hp.ry ) = 6det(R)R . M,,(x,)
k-R=Rk+ H, R =+1or-1
T, =T+ k.t

R, 7, , Hy defined by {R,0|t,7} :

T, 1s independent of the translation t !

operations are then rather given and listed as {R,0|t,t_}, the t implying
also a translation —k.t along x,

Example and notation of operation with Hy#0 :

m r _ _
RS AX4 matrix k: ((X , 1/2, O) y 9 k _((x ” _1/27 O)_k+(09 _19 O)
E {m’|1/2 1720 1/2 ) R =+1 Hg=(0,-1,0)
ol1lx1 [61 [+ o ofo][x] [z
R |o]|]|x, t, 0-1 0fo ||X2| |2
(3X3) 0 X4 + t3 =10 0 110 Xz|+ |0 = X1+1/2,-x2+1/2,x3,-x2+x4,-1
o 7| [l o 1] [x
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8. Superspace approach to invariance symmetry of crystal
structures and spin configurations

8.1. Concept of superspace

The basic concepts related with incommensurate crystal structures and their
symmetry description using superspace groups can be found in references [81],
[82], [83], [84], [85], [86], [87]. The case of magnetic superspace groups has been
treated exhaustively in reference [88] and here we will follow some of their

explanations and generalise some expressions for multiple propagation vectors.

The concept of superspace comes from the consideration that all Bragg spots
observed in a modulated structure can be indexed using a series of modulation
(propagation) vectors q, with p = 1,2,...,d. The scattering vector for a Bragg spot
(diffraction vector) can be written as:

* * * d 41
h = hja; + hea, + hza; + > m,q, (41)
p=1

The extra integer indices m, correspond to the harmonics of the modulation



Symmetry relations between the atomic modulations

M. (x4) = M. ;.1 SIN(21x,) + M, .1 COS(2TX,)  IFX,Y,Z
Example: inversion (xyz) {-1]000} (-x-y-2)
atoml| —> atom 2
superspace operation Kk —1 5 &
(-1[000,0):  -x1 -x2 -x3 —x4 +1 R=-1 H.=0
My (R, +T, + Hery) = Odet(RIR . My (x,) T, =0+ k=0

Relation between the modulation of
their magnetic moments

M,(-x4) = M,(x,)

atom 2 atom 1 _ o
2 1 5 . it chooses the origin
M, =-M,, M. =M along xé on the

inversion center



Symmetry relations between the atomic modulations

Example: inversion

superspace operation

(-1]000,0):

M?(-x,) = M'(x,)

Relation between the modulation of
their magnetic moments

M, M, =M.

cosn cosn

2
Msinn
If atom 1= atom 2:
M1sin n

=0

only cosine terms

o cosn

IVli (X4) = |\/Ii sin1 sin(2nx4) + |\/Ii cos1 COS(ZTCX4) i=X,y,Z
(xyz) X -V -
1j0003 XV
atom1l | —> atom 2
-1
Kk ——> -k
-X1 —XZ _X3 _X4‘ +1 RI — _1 HR=O
MM (Rx,+1, + Hyr,) = 0det(R)R . MY (x,) T, =0+ kt=0

all modulations
In phase

M, (x,) =M' +>.M  cos(2mnx,)

=X,y Z

(collinear)




A non-
A centrosymmetric centrosymmetric
incommensurate incommensurate
modulation modulation

propagation vector:

k=(o.,,7)
P11’ (eBy)0s P11 (aBy)0s
{110000} :x1x2x3 x4 +1 {110000} :x1x2 x3 x4 +1
{110000} :-x1-x2 -x3 -x4 +1 {10001} :x1x2x3 x4+1/2 -1

{I''0003} :x1x2 x3 x4+1/2 -1
{1'10004} :-x1 -x2 -x3 -x4+1/2 -1



Translation into FullProf k-vector parameters:

M'(x,) =M+ ) [M, sin(2rnx,)+ M.

sin n cosn
n=l ...

cos(2mnx, )]

Superspace

M’ =M!+) [S]exp(—i2nk- L)+ S, exp(i2nk- L)l¢— FullProf
k

L

v _i2nk-r, __ . %
2S5, e =M. +i M.

sin 1




Translation into FullProf k-vector parameters:

M'(x,) =M+ ) [M, sin(2rnx,)+ M., cos(2mnx,)]

sin n cosn
n=l ...

Superspace

atom v at cell L:

M" =M"(x,=k-(L+1))<

L

M’ =M!+) [S]exp(—i2nk- L)+ S, exp(i2nk- L)l¢— FullProf
k

SY ™ =M +i M
k cosl

sin 1

Symmetry relation for the FullProf parameters:

{R,0|t,t}: (,v) —— (/,u) same cell: t must be a specific one

S, =0 det( R)R- S, exp(—i2nk- t)exp(i2nt,) if R=+1

S, =0 det(R)R- S,:* exp(—i2nk- wﬁn@)) if R=-1

t must be such that p atom is in zero cell !




Symmetry relations between the atomic modulations if
described with FullProf parameterization

superspace operation
(-1]000,0): -x1 -x2 -x3 -x4 +1

Example: inversion

6yD) oo Y

atoml | —> atom 2 | (at cell /)

S’ =S exp(—i2nnk-1

The lattice translation / depends on
which cell goes the atom 2, directly
related with atom 1 by the inversion
(-1]000)




PRI
Ce,Pd,Sn (magndata #1.1.9)

magCIF file

~space_group.magn_point_group_name “mmml'"

seseclevveecoeie

_space_group.magn_point_group_number "8.2.25"

_cell_length_a 7.7620(5)
_cell_length_b 7.7620(5)
_cell_length_c 3.9300(10)
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90

loop_

veelideseoloncodihveeleTideoedeRuTeedioeveteveeves

celeveseiosdeccesiloviedevecdvoscecodovoveie

x1,x2,x3,x4,+1
-x1,-x2,x3,-x4,+1
-x1+1/2,x2+1/2,-x3,-x4+1/2,+1
x1+1/2,-x2+1/2,-x3,x4+1/2,+1
-x1,-x2,-x3,-x4,+1
x1,x2,-x3,x4,+1
x1+1/2,-x2+1/2,x3,x4+1/2,+1
-x1+1/2,%x2+1/2,x3,-x4+1/2,+1

oONOUTDA WN ]

loop_

P - AT A e e - T e PR N P e P T P T P

1 x1,x2,x3,x4,+1
2 x1,x2,x3,x4+1/2,-1

(1'1000%)

loop_

_atom_site_label
_atom_site_type_symbol
' _atom_site fract_x

O T T T

Secessessiissicevvscecesese

| =SR2, teaSeestdeilitens
_atom_site_occupancy

,Cel Ce 0.17810(10) 0.6781 0.5 1
Pd1l Pd 0.37340(10) 0.8734 0 1
]Snl Sn 2001

'1oop_
I_atom_site_moment.label
atom_site_moment.crystalaxis_x

T £ D e A P e 2 P T P P P A T 2 A Y

..?.I.?!U...S.H?,JFQ['!?.UI...C..rx.iif.@.l.?.x.i.s..l average moment
~atom_site moment.crystalaxis_z
\ _atom_site_moment.symmform cero

Cel 200 0,0,0 e (symmetry forced)

]—itgmﬁsiiﬁ,fgutiﬁE,WQ¥§.M§9£Q£:§§§.iQ
atom_site_ Fourier_wave_vector.gl_coeff

Doex DL Lo Do 2 D T PP P R P R £ T

_atom_site moment_ Fourier.atom site_label

O S e A TR N A P P I A P e T P T e O

LA A I P P 1 2L P P A T P I e A A D R R I O P
L DL e e D T G A e L et e T Py
e it L L A I A P D Y P O A 2 T Py 2

34 N A I P P E Z L P P D T P P T P (D A (R Y

3t T e L o T T Ty eeeeceseciesveseiedecevecsovee

moment along z
(symmetry forced)



A simple but very important general “Theorem”:

(1'/ 0007%) isasuperspace symmetry operation of any single-k INC magnetic modulation.

time inversion

7 phase shift
Invariance of (sinusoidal) 1’ X+ Y
irrep magnetic modulations 9 4 )
for(1'|0007%):

time inversion belongs to the symmetry point group of a single-k INC phase (grey point group)

Consequences of (1'| 000 %): Ay(x+ %) =1°A),(x,)

modulation of —
magnetic moments Mu(x4+ V2) =- Mu(x4) odd-harmonics : 1k, 3k ,5k ...

modulation of
atomic displac. llu(X4+ 1/2) = uu(x4) even-harmonics : 2k, 4k ...




Ce,Pd,Sn magndata 1.1.9

superspace group: Pbam1'(a00)0s0s

space inversion is maintained

parent space group: P4/mbm

4 magnetic atoms per primitive unit cell

Htptesasotyt

Average atomic positions

irrep basis modes: 3 parameters

Atom|  x y y 2 refined model: all modulations in phase (1 parameter)
1 |0.17810 | 0.67810 | 0.50000 _—
> 082190 | 032190 | 0.50000 superspace.symmetry constraint: 2 parameters
(same amplitude for the 4 atoms, but atoms related by
3 | 0.32190 | 0.17810 | 0.50000
4 | 067810 | 0.82190 | 0.50000 inversion are not in phase but with opposite phases)
Magnetic moment Fourier Cos coeffs Magnetic moment Fourier Sin coeffs
Atom Symmetry constraints Numerical values Symmetry constraints Numerical values
X y z X y z X y z X y z
1 0 0 M_cos1 0.0 0.0 | 1.70000 0 0 M_sin1 0.0 0.0 0.0
2 0 0 M_cos1 0.0 0.0 | 1.70000 0 0 -M_sin1 0.0 0.0 0.0
3 0 0 M_cos1 0.0 0.0 | 1.70000 0 0 -M_sin1 0.0 0.0 0.0
4 0 0 M_cos1 0.0 0.0 | 1.70000 0 0 M_sin1 0.0 0.0 0.0




Mulferroic RbFe(MoO,),: Superspace group: P31°(1/3 1/3 y) ts
or P31°(1/3 1/13 vy) -ts

A “120° spin arrangement” and a spiral modulation is forced by the
superspace group:

magndata 1.1.2

P-3 —> P31(1/31/37)ts  y=0.458

{3] | OOO%} —>|M(x, +1)=3,. M(x,)

atom 0: M(x, =0)
atom 1: M(x4:k.r1:%):3_. M(0)

atom 2: M(x4:k_,~2:%):3—. M(%)

perspective



CeCuAl;: Superspace group: 141°(0 0 y) ds  point group: 41'

magndata 1.1.33 k=(000.52) Parent space group: [4mm

helical configuration is symmetry dictated (and protected!):

Ce site at (0,0,0) : invariant for { 4*,,, |0 00 1/4 }

My, (R +T, + Hery) = 0det(RIR . My (x,)

{47001 100014} —> | M(x, + %) =4%, M(x,)

IVli (X4) = IVli sin1 sin(2nx4) + |\/Ii cos1 COS(ZTCX4) i=X,y,Z
IVli (X4 + % ) = I\/Iisin
4%, .(My(X4), My(X4), M,(X4)) = (-My(X4), My(X4), M,(Xy))

1 €COS(21X,) - M, . o4 SIN(27X,)

i cos

I\/lz sin1 sin(2nx4) T IVlz cos1COS(2nX4)=Mz sin1 COS(ZTCX4) - IVlz cos1 sin(2nx4)

4

M =M

zsin1 ™

=0

z cos1

-My sin1 Sin(ZTCX4) B |\/Iy cos1COS(2nX4)=Mx sin1 COS(ZTCX4) - |le cos1 Sin(27'CX4)

My cos1— -M M =

x cos1 ™ ysin1

x sin1 7

o 95 9




CaFe,AS;  magndata1.1.5 Superspace group: Pnma1’( 0 B 0)000s

The MSSG symmetry forces that modulations of independent atoms
must be in phase

® 09 % % Pnma ——> Pnma1’( 0 f 0)000s 3=0.375
h~+£ # *.'ﬂ.. Average atomic positions of symmetry independent atoms
k ﬂ 9 * Label|Atom type|  x y z  |Multiplicity
ﬂ ’ ﬂ * Fe1 Fe 0.02100(15)| 0.25 |0.31350(19) 4
% *‘.* “' ﬂ Fe2 Fe 0.06677(16)| 0.25 |0.53727(18) 4
Fe3 Fe 0.30580(17)| 0.25 |0.12471(18) 4
o % j o %
Fed Fe 0.31841(17)| 0.25 |0.72371(18) 4
W 05 & o

{my,,101/200 }: x1,-x2+1/2,x3,-x4,+1
M, (-x,) =-m,,,. M, (X
it fixes the global phase !J«( +) 010 |J,( 1)

Magnetic moment modulation parameters of symmetry independent atoms M X, Mz : Sin

in phase My: Cos

c

Wave vector 1

Magnetic moment Fourier Cos c Magnetic moment Fourier Sin coeffs
Atom Symmetry constraints es Symmetry constraints Numerical values
X y y z X y z X y z
Fe1 0 Mycos 0 214 0.0 M,sin1 0 M_sin1 0.0 0.0 0.0
Fe2 0 Mycos1 0 0.0 1.55 0.0 M,sin1 0 M_sin1 0.0 0.0 0.0
Fe3 0 M, cos1 0 0.0 -1.83 0.0 Mysin1 0 M_sin1 0.0 0.0 0.0
Fe4d 0 M, cos1 0 0.0 1.94 0.0 Mysin1 0 M_sin1 0.0 0.0 0.0




Diffraction symmetry (non-polarized)

H=ha*+kb*+lc*+mk = (h,k,l,m)

perpendicular to H

Magnetic diffraction at diffraction vector H is proportional
to the squared modulus of the component of F(H)

Consequences of a symmetry operation {R,0|t,t_}:

non-magnetic: F(H')=ei2EH"‘F(H. Rs) Intensity(H.R,)=Intensity(H)

magnetic: F, (H)=e”™"@det(R)R.F,/(H. R;). Intensity(H.R,)=Intensity(H)

7

axial vector H.t_ represents ht +kt,+It,;+m7, \

H. R, stands for (hkim). R;

point-group symmetry
in the diffraction diagram

Systematic absences or extinction rules coming from superspace

symmetry operations may occur when H = H.R,




Systematic Absence (Extinction rules)

H=ha*+kb*+lc*+mk = (h,k,[,m)
Extinction rules: (“trivial” cases)
no condition
{1'l0000} F(H)=e"""“F(H.R;) = F(H)= F(’H)/

(non-magnetic structures)
F,(H)=e"™"6@det(R)R.Fy(H. R;). —> F,;(H)=- Fy,(H)

zero!

{1''0001/2}
(all 1k magn.structures)

F(H)=e™F (H) absent m= odd
F,, (H) o —eimFM (H) absent m= even

Systematic absences or extinction rules coming from superspace
symmetry operations:

To derive them for any MSSG: program MAGNEXT



Diffraction symmetry (non-polarized)

H=ha*+kb*+ic*+mk = (h,k,l,m)
Extinction rules:

2.11/2001/2} F (h0Om)=¢e™ ™™ F (hOOm) —y absent h+m= odd

k=(,0,0)  F (h0Om)=e™ "™ 2, F, (h00m) —3  h+m=odd F,=(0,Fy,Fz)
h+m= even F,=(Fx,0,0)//H

Magnetic diffraction: absent h+m= even

F,,(H)=e"™"@det(R)R.F,,(H. R.).
M M S

MAGNEXT provides systematic absences of magnetic diffraction
for any (3+1) MSSG




X-centerings: a

M, (Rix,+7, + Hpr,) = 0det(R)R . M, (x,)

s of the modulations
H-7#0

Example:

--------------------

(@*, b*,c*) k= (a, 2,0)

Indexation Bragg peaks:
(h,k,I,m) = (h,k,]) + mk

(1200)
Alternative with X centering:

(a*, b*/2,¢*) k'= (o, 0,0)
(h,k’,[,m’) = (h,k’,) + m’ K’
K'=2k m’=m
(h,k’,[,m’), K’'+m’= odd

k' (110-1)

(1000 Systematic absence:

Incident beam

7 working basic unit cell: (a,2b,c)

with centering operation: {1°[ 0, 2, 0 72}

systematic absences if
indexed with b*/2 and Kk’

which only means modulations of atoms separated by
b are in antiphase (as they should be):

M;.p(X4+ 72 ) = Mi(x,)




Acta Cryst. (1980). A 36, 399-408

Symmetry of Incommensurate Crystal Phases. I. Commensurate Basic Structures
By A. JANNER AND T. JANSSEN

9. Magnetic superspace groups

As shown by Overhauser (1962, 1968), the ground
state of an electron gas in a crystal does not necessarily
have a uniform spin and charge distribution, but may
show charge-density waves (CDW) and/or spin-density
waves (SDW). We have already seen that CDW’s may
lead to an incommensurate crystal phase. The same
can occur in magnetic crystals through SDW's.
10. Magnetic superspace-group symmetry of Cr Actually, mcommcnsurabnhty was discovered first in

el AV mmm e fma 0 el o el

Our analysis is based on those of Tsunoda, Mori,
Kunitomi, Teraoka & Kanamori (1974), Eagen &
Werner (1975) and Pynn, Press & Shapiro (1976). For

lacns wanant safacanmnnce tha candac (o wcalacand b sl cneil e,

gy mp e xiegs = Magnetic superspace groups

In the AF, phase S(k) is parallel to the z axis and left d f h “beginning”
invariant [according to (72)] by (4,,1) and (m,, 1) were proposed from the very “beginning
Again, if the phase relation (84) holds, then it is also left
invariant by (m,, 1). In this case the magnetic super-
space group for the AF, phase is

MAF, — Pl,4/mm' m' (86)
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IUCr Ewald Prize to Janner and Janssen

g‘ thflcrlands, have been awardc(i thc'tcnth Ewﬁld Prize, 'for the dcvclopmcnt'of s'upérspacc
e crystallography and its application to the analysis of aperiodic crystals'. The award will be
'!'!‘!’ﬁ'?_‘ presented on August 5, 2014, at the opening ceremony of the IUCr congress in Montreal,
Canada.

Aperiodic crystals are well ordered materials that lack translational lattice periodicity. One of the most
famous examples of an aperiodic crystal is calaverite, a gold telluride mineral discovered in the gold mines of
California. At the beginning of the 1900's, mineralogists had noticed that the morphology of calaverite's
crystal faces did not follow the accepted empirical rule of crystal growth (Haiiy's law of rational indices). The
diffraction patterns of calaverite also departed from those of a perfect crystal, then defined as an ordered and
periodic arrangement of atoms in space. De Wolff linked these spots to the absence of lattice periodicity in
NayCOj crystals. He described these crystals as 'incommensurately modulated structures' - they are
superimpositions of basic periodic structures, with a symmetry that can be described by a three-dimensional
space group. Janner and Janssen, who were investigating the relationship between symmetry and physical
properties in condensed matter, began collaboration with de Wolff. Together they conceived and developed
the 'super space' theory, publishing the first complete list of (3+1)-dimensional super space groups in 1981.
De Wolff, Janner and Janssen shared the 1998 Gregori Aminoff Prize awarded by the Royal Swedish
Academy of Sciences.

Janner and Janssen have dedicated more than thirty years to expanding the theoretical treatment of aperiodic
crystals. They laid the groundwork for the development of methods to solve and refine the structure of
aperiodic crystals, with applications from condensed matter physics to structural biology. Their superspace
formalism also applies to the analysis of quasicrystals, a specific class of aperiodic crystals, described in

T.W. I M.
(Ted) Janssen.
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Aloysio Janner.

1982 by Schechtman who won the 2011 Nobel Prize in Chemistry for the discovery. The award of the Ewald Prize to Janner

and Janssen highlights the tremendous impact that their work has had on the development of crystallography.

Superspace symmetry became rapidly the most efficient approach (software
developed!) for the characterization of incommensurate modulated non-

magnetic structures and is nowadays routinarily used




But in general the community dedicated to the analysis of magnetic
structures remained aside from superspace groups until the last
decade...

Why?



Representation analysis had been taken as a “superior” alternative
to magnetic symmetry groups, and it included incommensurate cases

Acta Cryst. (1968). A24, 217
Representation Analysis of Magnetic Structures

By E.F.BERTAUT

Abstract:
In the analysis of spin structures a ‘natural’ point of view looks for the set of symmetry operations
which leave the magnetic structure invariant and has led to the development of magnetic or Shubnikov
groups. A second point of view presented here simply asks for the transformation properties of a

magnetic structure under the classical symmetry operations of the 230 conventional space groups and
allows one to assign irreducible repr i

10 _assign_irreducible representations of the actual space group to all known magnetic
structures. The superiority of representation theory over symmetry invariance under Shubnikov EEOUH'S
is already demonstrated by the fact proven here that the only invariant magnetic structures describable
by magnetic groups belong to real one-dimensional representations of the 230 space groups. Representa-
tion theory on the other hand is richer because the number of representations is infinite, 7.e. it can deal
not only with magnetic structures belonging to one-dimensional real representations, but also with
those belonging to one-dimensional complex and even to two-dimensional and three-dimensional

representations associated with any k vector in lor on the first Brillouin zone.

rirrac M
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It includes incommensurate magnetic structures...




Representation analysis vs magnetic symmetry

Commensurate magnetic structures:

Representation 2

Analysis g " 5 Magnetic Symmetry
(irreducible representations, (MSGs, MSSGs...)
basis functions...)

They are not equivalent: in general several MSGs or MSSGs may be
possible for the same irrep.

But computer tools for applying magnetic superspace groups
were not developed until 2009-2010...



Computer programs for representation analysis were soon available:

®HABasireps Gui Interface -0 x|

File Run Results Help Exit

Dle|Ra@ 2] 2w x|

Basireps (version: July-2003, JRC-LLB)
Irreducible representations of Space Groups
Basis functions of polar and axial vector properties

Code of files:

Working Directory: I Browse... I
ez | SARAhA Representational Analysis -
e Performs the calculations of Representational Analysis. These allow the
[Kvector | | | [ BillovinZone Label determination of atomic displacements or magnetic structures that can
& Polar Vector € Asial Vector accompany a second-order phase transition. Output files includes a
Numberof toms: [ O[] I EvplictSublaices [ Atoms inurit cel tailored summary with cut-and-paste tables written in LaTeX. (Win8x,

Symbol #fa yla 2/a i’ 2000, \ﬁSta and WindO\VS 7) [1]

Atom #1
Atom #2 .
T = from A.S. Wills

from J. Rodriguez-Carvajal

Once the representation approach became the most used method of
analysis, most magnetic structures were determined and reported
without the assignment of a space (or superspace) group symmetry,




Representation analysis vs superspace magnetic symmetry

How to calculate the superspace group (single-k structures) for an irrep magnetic mode:
(isotropy subgroups (epikernels and kernel) of an irrep)

Global (complex) amplitudes of a frozen sinusoidal
spin wave with propagation vector k:

M(‘U,l) = Zsi(k)gi(‘u)e_ﬂ”k'(”ru) _|_Si(_k)ai*(‘u)eﬂnk.(Hru)

i=l...N

Generalized invariance equation: | phase shift N-dim | small irrep

i2nT z )
(R,0|t,T) belongs to superspace group if : Eez 1oe-i2n}T[(R,9|t)] |:§§52) = |:§E52)]
T y

(R|t) is an operation of the T
grey paramagnetic space
group that either keeps k
invariant or transforms it
into -k

I . .
Additional term in an m_agnetltispace group op_eratlon
. with Rq =xq (transformation
incommensurate phase represented by a a NxN matrix)

T[(R,8|t)] : 2N x 2N matrices

Possible subgroups (isotropy subgroups) for any irrep are derived
both by ISODISTORT (stokes.byu.edu/isotropy.html) or by JANA2006




Superspace magnetic symmetry produced by an irrep magnetic mode:

N-dim

Generalized invariance equation: -
1e'“™* 0
Ee ] TI(RI)] [ ] [S‘k )]

If the small irrep is 1-dim: only one global complex amplitude S(k)
for the spin wave, and a shift of this phase can always be included
in the symmetry operation.

N =1

one to one correspondance irrep — superspace group

But including
operations
changing k into -k !




CedeZSn magndata 1.1.9 space inversion is maintained !

superspace group: Pbam1'(a00)0s0s  parent space group: P4/mbm
k= (,0,0)

space inversion conserved | Kernel
[only one irrep mode)
{1°]000% }

and {-1/0000} Pbam1'(a00)000s
[2 parameters]

Pbam1'(a00)0sss
[4 parameters]

Pbam1'(a00)00ss
[4 parameters]

Pbam1'(a00)0s0s
[2 parameters]

symmetry of the mDT4
phase




Superspace magnetic symmetry produced by an irrep magnetic mode:

Generalized invariance equation: N-dim
K
161277 S(k) | — [ S(k
N >1 |; 1e'i27ﬂ] T[(th)] |:SE_|Z)] - |:S§-|z)]

One irrep with N>1 =» several possible
superspace groups



Another example: two possible higher alternative superspace
symmetries for the same irrep.

same irrep!

k= (1/31 1/31 Y) .
irrep: mP2p3 (4-dim)

L A T A S
Ny BN R N
| \ &'«\ b K»
Wtk AN

(M, ZEM, 0)cos(x,) + (M, 0, 0)sin(x) (M, My, M)cos(xs)




RbFe(MoO,),: A phase diagram with phases and symmetries
caused by a single active 4-dim magnetic irrep

Non-polar symmetry:
No polarization

16 | v I 1 I ) / I
Magnetic field ] Phase diagram
14 _ s ~ after
along [1 =1 ,0] 1 Pl 1'(a’ﬂ, ;/)05 Kenzelmann et al.
© 12- o B
- | PRL 2007
Id—, T T [— i
- '
° 81 )
m e
L 61 .
‘.q:-; 4 - Y
o 47 , a3l A
© P31'(:. 1. 0)ts _
= 2 =R Ly
0 T T T I/' T Y T T I ! I
Polar symmetry: 0.0 MA 06 08 1.0 1.2
induced (improper ferroelectricity) Reduced Temperature (T/Ty)
Multiferroic phase




Programs that determine the epikernels and kernel of any irrep, and
produce magnetic structural models complying with them, using MSSGs

Program for mode analysis:
ISODISTORT http://stokes.byu.eduliso/isotropy.php  Stokes & Campbell, Provo

Version 6.1.8, November 2014
Harold T. Stokes. Branton J. Campbell, and Dorian M. Hatch, Department of Physics and Astronomy, Brigham Young University, Provo, Utah, 84602, USA,

stokesh@byu.edu

Description: ISODISTORT is a tool for exploring the structural distortion modes of crystalline materials. It provides a user-friendly interface to many of the
algorithms used by the Isotropy Software Suite, allowing one to generate and explore distortion modes induced by irreducible representations of the
parent space-group symmetry. It also provides a Java applet for visualizing and interactively manipulating the free parameters associated with these modes.

Help, Tutorials, Version History

NOTICE: Version 6.1 is a major new release. We appreciate your bug reports -- please send relevant input files along with the html page showing the failed
output.

Legacy copy of ISODISTORT version 5.6.1, August 2013 Both programs also support incommensurate
cases, deriving epikernels and kernel of the irreps
in the form of MSSGs, and corresponding

Get started quickly with a cubic perovskite parent. mag netic mOdeIS

Import parent structure from a CIF structure file: m Browse... | No file selected.

Begin by entering the structure of parent phase: @

Program for structure refinement:

Institute of Physics  http://jana.fzu.cz/ V/, Petricek, Prague

Depal‘tmer?t of Structure Analysis Academy of Sciences | Institute of Physics
Cukrovarnicka 10 Dept of Structure Analysis | Laboratory of Crystallography
16253 Praha 6 ECA-SIG#3 | Contact Us

Czech Republic

CRYSTALLOGRAPHIC COMPUTING SYSTEM FOR STANDARD AND MODULATED STRUCTURES

Vaclav Petricek, Michal Dusek & Lukas Palatinus

News H

lmsmssmuns MDA ANAE ADEDIANIAANALE. Alateant avhmainain; Adasdli;a 2N A wsil




Beware when interpreting ISODISTORT output:

ISODISTORT: order parameter direction

Space Group: 127 P4/mbm D4h-5, Lattice parameters: a=7.76200, b=7.76200, c=3.93000, alpha=90.00000, beta=90.00000, gamma=90.00000
Default space-group preferences: monoclinic axes a(b)c, monoclinic cell choice 1, orthorhombic axes abc, origin choice 2, hexagonal axes, SSG ¢
Ce1l 4h (x,x+1/2,1/2), x=0.17810, Pd1 4g (x,x+1/2,0), x=0.37340, Pd2 4e (0,0,z), z=0.31900, occ=0.03100, Sn1 2a (0,0,0), occ=0.93800

Include strain, displacive ALL, magnetic Ce distortions

k point: DT (0,b,0), b=0.70000 (1 incommensurate modulation/2 arms) 1 Order Parameter

IR: mDT1 . .
> can be misleading!

Finish cting the distortion mode by c
©OP (a,0;0,0) 55.1.9.4.m354.2 Pcmat

with ANY OP direction (not (a,0))

n order parameter direction @
,0,9)000s, basis={(1,0,0,0),(0,0,-1,0),(0,1,0,0),(0,0,0,1)}, origin=(0,0,0,0), s=1, i=2, k-active= (0,0.300,0)

C (a,b;0,0) 26.1.9.1.m67.2 Pmc2_11'(0,0,g)000s, basis={(0,0,1,0),(1,0,0,0),(0,1,0,0),(0,0,0,1)}, origin=(1/4,0,0,0), s=1, i=4, k-active= (0,0.300,0)

it requires 2 independent Order
Parameters

with the same irrep

(Landau condition is not fulfilled)




Superspace magnetic symmetry tools and applications in the BCS :

Magnetic Symmetry and Applications

MGENPOS General Positions of Magnetic Space Groups
MWYCKPOS Wyckoff Positions of Magnetic Space Groups
MKVEC A\ The k-vector types and Brillouin zones of Magnetic Space Groups
IDENTIFY MAGNETIC GROUP Ld;ﬂii:;iig;i r?; a Magnetic Space Group from a set of generators in an
BNS20G Transformation of symmetry operations between BNS and OG settings
mCIF2PCR Transformation from mCIF to PCR format (FullProf).
RSN Megnretie-Reint-Croup=Tables
r MAGNEXT Extinction Rules of Magnetic Space Groups J
NI TagTTetic Space groups 10T & gIveTT Space group it propagation
MAXMAGN vector
MAGMODELIZE Magnetic structure models for any given magnetic symmetry
STRCONVERT ggggzg?trst t?:eEélet, fwt(g?lfwlgg'l?t\aaSP formats -- with magnetic information where available)
e SUBGCROURSMAG Magnetic subgroups consistent with some given propagation vector(s) or a
supercell
r MAGNDATA A collection of magnetic structures with portable cif-type files |
E 3D Misualization of magnetic structures withImol
MTENSOR 4\ Symmetry-adapted form of crystal tensors in magnetic phases |
5 . - . P
Get_mirreps Isr;i;;oir;)dp(:]rgseer i)raal;?srir:ieotsrs in a paramagnetic space group- magnetic




MAGNEXT: Magnetic diffraction systematic absences

Magnetic Symmetry and Applications

MGENPOS
MWYCKPOS

MKVEC 4\

IDENTIFY MAGNETIC GROUP

BNS20G
mCIF2PCR
MPOINT

éMAGNEXT

MAXMAGN
MAGMODELIZE
STRCONVERT

k-SUBGROUPSMAG

MAGNDATA
MVISUALIZE
MTENSOR 4\
MAGNETIC REP.

Get_mirreps

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

Transformation of symmetry operations between BNS and OG settings
Transformation from mCIF to PCR format (FullProf).

Magnetic Point Group Tables

Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a propagation
vector

Magnetic structure models for any given magnetic symmetry

Convert & Edit Structure Data
(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

A collection of magnetic structures with portable cif-type files
3D Visualization of magnetic structures with Jmol
Symmetry-adapted form of crystal tensors in magnetic phases
Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition




MAGNEXT: Magnetic Systematic Absences

tinction rules for
any Shubnikov magnetic

)e obtained introducing the
| for this purpose at the
pted form of the structure

r a set of generators in any
patible with a set of

Jr a superspace group

Option A: Systematic absences for a magnetic space group in standard settings

Magnetic Space Group number: Please, enter the label of group or ( choose it )
R

( Standard/Default Setting )

Other interfaces for alternative uses MAGNEXT are:
e Option B: For systematic absences for a magnetic space group in any setting, click here

e Option C: For a list of magnetic space groups compatible with a given set of systematic absences,
click here

e For systematic absences for magnetic super’space groups click here

also for incommensurate magnetic structures from
the input of its superspace group operations




MTENSOR: Symmetry-adapted form of crystal tensors properties of magnetic

crystals. Only the magnetic point group is relevant!

Magnetic Symmetry and Applications

MGENPOS
MWYCKPOS

MKVEC 4\

BNS20G
mCIF2PCR
MPOINT
MAGNEXT

MAXMAGN
MAGMODELIZE
STRCONVERT

k-SUBGROUPSMAG

MAGNDATA
MVISUALIZE

AMTENSOR AN
MAGNETIC REP.,

Get_mirreps

IDENTIFY MAGNETIC GROUP

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

Transformation of symmetry operations between BNS and OG settings
Transformation from mCIF to PCR format (FullProf).

Magnetic Point Group Tables

Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a propagation
vector

Magnetic structure models for any given magnetic symmetry

Convert & Edit Structure Data
(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

A collection of magnetic structures with portable cif-type files
3D Visualization of magnetic structures with Jmol
Symmetry-adapted form of crystal tensors in magnetic phases
Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition




MTENSOR

Magnetoelectric tensor:

Group 6/m’ (#23.4.85) Group 622 (#24.1.87) Group 62'2' (#24.4.90) Group 6mm (#25.1.91)

“T33
Number of independent Number of independent Number of independent Number of independent
coefficients: 3 coefficients: 2 coefficients: 1 coefficients: 1
Group 6m'm’ (#25.4.94) Group -6'm’2 (#26.3.97) Group -6'm2' (#26.4.98) Group 6/m'mm (#27.3.102)

1 2 3 1 2 3 1 2 3 1 9 3
’7 qT11 0 0 0T11 0 0 ’7 0 GT12 0 ’7 0 0T12 0
E 0 alyq 0 0 alyq 0 ’; -alqa 0 0 E -alqp 0 0
E 0 0 | aTss 0 0 | aTa EI: 0 0 EI 0 0
Number of independent Number of independent Number of independent Number of independent

coefficients: 2 coefficients: 2 coefficients: 1 coefficients: 1



Superspace magnetic symmetry tools and applications in the BCS :

Magnetic Symmetry and Applications

MGENPOS
MWYCKPOS

MKVEC A\

IDENTIFY MAGNETIC GROUP

BNS20G
mCIF2PCR
MPOINT
MAGNEXT

MAXMAGN
MAGMODELIZE
STRCONVERT

k-SUBGROUPSMAG

AMAGNDATA

MVISUALIZE

MTENSOR 4\
MAGNETIC REP.

Get_mirreps

General Positions of Magnetic Space Groups
Wyckoff Positions of Magnetic Space Groups
The k-vector types and Brillouin zones of Magnetic Space Groups

Identification of a Magnetic Space Group from a set of generators in an
arbitrary setting

Transformation of symmetry operations between BNS and OG settings
Transformation from mCIF to PCR format (FullProf).

Magnetic Point Group Tables

Extinction Rules of Magnetic Space Groups

Maximal magnetic space groups for a given space group and a propagation
vector

Magnetic structure models for any given magnetic symmetry

Convert & Edit Structure Data
(supports the CIF, mCIF, VESTA, VASP formats -- with magnetic information where available)

Magnetic subgroups consistent with some given propagation vector(s) or a
supercell

A collection of magnetic structures with portable cif-type files
3D Visualization of magnetic structures with Jmol
Symmetry-adapted form of crystal tensors in magnetic phases
Decomposition of the magnetic representation into irreps

Irreps and order parameters in a paramagnetic space group- magnetic
subgroup phase transition

MAGNDATA: Database with CIF files of magnetic structures both
commensurate and incommensurate, using MSGs and MSSGs




MAGNDATA: A Collection of magnetic structures with portable cif-type files

> 140 incommensurate magnetic structures

View Full Database
_ Somens search (separate wieh spaceer comma):

AND O OR (search

A database of more than 300 published commensurate Enter the label of the structure: ( Submit )
and incommensurate magnetic structures can be found

here. The structures are described using magnetic

symmetry (Shubnikov magnetic space groups) in the BNS

Login

INCOMMENSURATE STRUCTURES

One propagation vector

1.1.1 CsyCuCly 1.1.2 RbFe(MoOy); 1.13 Cr 1.1.5 CaFe4As3

1.1.6 TbMnO; 1.1.8 TbMnO; 1.19 CeyPd,Sn

1.1.11 MnWOq4 1.1.12 MnWO4 1.1.13 MnAu) 1.1.14 MnGe 1.1.15 CaCryOq4




Conclusions:

* Properties of magnetic phases are constrained by their magnetic
symmetry: a magnetic space group (if commensurate) or superspace
group (if incommensurate).

- Whatever method one has employed to determine a magnetic
structure, the final model should include its magnetic symmetry.

* Representation analysis of magnetic structures is NOT in general
equivalent to the use of magnetic symmetry (i.e. to give an irrep is
not equivalent to give the magnetic space (superspace) group of
the system)

» The best approach in incommensurate structures: to combine
magnetic symmetry and representation analysis



FCT/ZTF

¢
7

g

é

I .
Sg%

Crystallography Online: Workshop

on

the use of the structural and

magnetic tools of the Bilbao

Crystallographic Server
September 2021, Leioa (Spain)

Forthcoming schools and
workshops

News:

New Article in Nature
10/2020: Xu et al. "High-throughput
calculations of magnetic topological
materials" Nature (2020) 586,
702-707.

New programs: MBANDREP,
COREPRESENTATIONS,
COREPRESENTATIONS PG,
MCOMPREL, MSITESYM,
MKVEC, Check Topological
Magnetic Mat

10/2020: new tools in the sections
"Magnetic Symmetry and
Applications" and "Representations
and Applications". More info

Databases

bilbao crystallographic server o,

Contact us About us Publications How to cite the server
Quick access
Space-group symmetry to
some tables
Magnetic Symmetry and Applications Space Groups

Plane Groups

Group-Subgroup Relations of Space Groups

Layer Groups
Representations and Applications
Rod Groups

Solid State Theory Applications

Frieze Groups

Structure Utilities 2D Point Groups

3D Point Groups
Topological Quantum Chemistry

Magnetic Space
Groups

Subperiodic Groups: Layer, Rod and Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering




Structure Databases

IncStrbB A The Bilbao Incommensurate Crystal Structure Database

MAGNDATA A A collection of magnetic structures with portable cif-type files

B-IncStrDB Home Explore the aatabase Vvaldate Gl Heport an error  Apout us

Fully Upgraded version!

The Bilbao Incommensurate
Structures Database

B-IncStrDB

This database is dedicated to incommensurate modulated and composite structures.
Commensurate structures described in the superspace formalism are also included.

The database currently hosts 255 entries (of which 44 are composites).

Explore the database




B-IncStrDB: The Bilbao Incommensurate Crystal Structure Database :

Author name j = j Search E‘ ‘ Search ‘@

Order by: Date: first submitted j

Search results: 255

The incommensurately modulated structure of the blue View entry

bronzes K, ;M00; and Rb, sMoO
Download CIF

Authors:
Schutte, W.J.; de Boer, ].L. Open in JSmol

Journal:
Acta Cryst. B 49 579-591 (1993)

DOI:
https://doi.org/10.1107/S0108768192006578

Entry date: 2010-11-08  B-IncStrDB ID: 472EPJIsw

Jmol

A Incommensurately Modulated Structure of K,SeO, View entry
b’ @

Authors: Download CIF
. Yamada, N.; Ikeda, T.

Journal: Open in JSmol
; J- Phys. Soc. Jpn. 53 2555-2564 (1984)
X DOI:

‘ https://doi.org/10.1143/]PS].53.2555

l Entry date: 2010-11-08  B-IncStrDB ID: 492E3r0gG




3D Visualization of modulated structures with JSmol
Structure code: 492E3r0gG

Reset unit cell a,b,c

View Along Axis... ©

Add 1 cell along a

All / Modulated Atoms Remove 1 cell along a

Show element/label/Hide Add 1 cell along b

Remove 1 cell along b

Add 1 cell along ¢

Smaller B¢

Larger

Modulation On/Off Remove 1 cell along ¢

Modulation scale

L]
-
g
-
3]
-

Larger Choose supercell

Vectors On/Off

Draw bonds & polyhedra

Plot modulation On/Off Join atom [JIEM - | with atom [JIEM - |
from 075 to 275 A

Window size raw Polyhedra
1
Delete Bonds Polyhedra

Clear bonds and polyhedra
JSmol

Phase sliding On/Off 3
Jmol help | Jmol console | About the applet Reload initial model Phase shift APP'Y
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