Recent achievements in advanced diffractive optics for neutron monochromators P. Courtois, F. Barneaud, S. Michallat, B. Mestrallet , F Philit

NSTITUT LAUE LANGEVIN

P. Courtois Service for Neutron Optics

Recent Achievements in advanced diffractive optics for neutron monochromators at ILL

- Basics in mosaic crystal monochromators
- New Monochromators under the scope of the modernization programme at ILL
 - Instruments on the new H24 guide : D10+, IN13+ and XTREMED
 - PANTHER and IN20
- Development of innovative optics from perfect Si crystals

Crystal for neutron monochromator

- > To select a given wavelength band according to the Bragg's Law $2 d_{hkl} \sin \theta_B = n \lambda_0$
- \blacktriangleright To match the neutron beam divergence α which is typically 0.2°-1°

Crystal for neutron monochromator

- > To select a given wavelength band according to the Bragg's Law $2 d_{hkl} \sin \theta_B = n \lambda_0$
- \blacktriangleright To match the neutron beam divergence α which is typically 0.2°-1°
- Perfect crystal is not suitable since reflection range is too narrow (~ 0.005°)

Crystal for neutron monochromator

- > To select a given wavelength band according to the Bragg's Law $2 d_{hkl} \sin \theta_B = n \lambda_0$
- \blacktriangleright To match the neutron beam divergence α which is typically 0.2°-1°
- Perfect crystal is not suitable since reflection range is in the order of 0.005°

- Mosaic crystals should have high neutron reflectivity, low background and small attenuation
- Large single crystals must be available ! HOPG, Cu, Si, Ge, CaF₂ and Cu₂MnAl

- Thermal Triple Axis Spectrometer IN20
- Diffractometer for extreme conditions **XTREMED**
- Single crystal diffractometer **D10+**

The double focusing HOPG Monochromator for IN20 Thermal neutron three-axis spectrometer

- Effective Area 20 x 22.3 cm²
- 225 HOPG mosaic crystals
- Neutron mosaic FWHM = 0.5 ° 0.6°
- ¹⁰B₄C plate is used to reduce background and activation

• SMALL Crystal size = 13.4 x 14.9 mm²

-> Size of HOPG crystals has been chosen to optimize focusing efficiency in both direction

-> Crystal size ~ average sample size

The double focusing HOPG Monochromator for IN20 Crystal alignment using neutron diffraction on T13C - First results on IN20

- The final alignment of the monochromator was performed by neutron diffraction on T13C (450 rocking curves!)
- Orientation accuracy of each crystal: ± 0.1° (// diffracting plane). ± 0.2° (perp diffracting plane)
- First tests on IN20 : Direct comparison of performance between HOPG(002) & Si(111) monochromators
- > Flux Gain up to a factor of 3 (at k_i = 4 Å⁻¹ / λ = 1.5 Å)

The double focusing HOPG Monochromator for XTREMED Diffractometer for extreme conditions of pressure and magnetic field

- Neutron rocking curve from the monochromator shows the good alignment of HOPG single pieces
- Vertical Focusing leads to a gain in neutron flux of a factor of 3

The vertical focusing HOPG Monochromator for D10+ Single crystal four-circle diffractometer with 3-axis energy analysis

HOPG Monochromator 30 HOPG crystals (42 x 8 x 2 mm³)

- High neutrons flux Monochromator at λ = 2.36 Å
- Gain in neutron flux of a factor of 5.3 !
- But degradation of the resolution due to the higher m value of the new H24 guide (m=2)

Copper Monochromators High neutron Flux or High Resolution

- Production of mosaic Cu single crystals
- New Monochromators for **PANTHER** and **D10**+
- First Results on **D10**+

Production of mosaic Cu single crystals Crystal growth, Characterization & Cutting

- Growth of large Cu single crystals of high Quality well established at ILL, in our laboratory
- Non-destructive characterization of the as-grown crystal by Hard X-Ray diffraction (100-450 keV)
- > The neutron mosaic spread is too narrow for neutron applications !

Production of mosaic Cu single crystals Control of the mosaic distribution by plastic deformation

- Production of high quality Cu(220) and Cu(200) single crystals with a controlled mosaic distribution
- ▶ Peak reflectivity at $\lambda = 1.1 \text{ Å}$ R_{exp} ≈ 80-90 % of R_{th}
- Construction of Cu monochromators for D10+ and PANTHER

13

The double Focusing Cu(220)&Cu(331) Monochromator for PANTHER Thermal neutron time-of-flight spectrometer

Crystal alignment on T13C

- Hot and Thermal Neutrons (λ = 0.5 2 Å)
- (hhl) reflections available, especially the Cu(331) reflection
- \blacktriangleright Extend the energy range to short wavelengths up to λ = 0.5 Å
- Better resolution compared to the old set-up

- 165 Cu(220) crystal (20x 20 x 7mm³)
- FWHM = 0.4°- 0.5°
- Alignment accuracy ± 0.03°

The vertical Focusing Cu(200) Monochromator for D10+ Single crystal Diffractometer D10+

Peak profile of 110 reflection from a ruby crystal (Courtesy : B. Ouladdiaf)

- High Resolution Diffractometer at λ = 1.26 Å
- Use of Cu single crystals with a neutron mosaic spread of 0.25°
- > Intensity gain of a factor of 6.6 at λ = 1.26 Å

- 30 Cu(220) crystals (42 x 8 x 7 mm³)
- FWHM = 0.25°- 0.3°
- Alignment accuracy ± 0.03°

New CaF₂(224) mosaic crystals for the monochromator of IN13+ Thermal neutron backscattering spectrometer

CaF2 crystals (45 x 45 x 10 mm³)

IN13 Cryo-furnace (100K - 450K) (SANE - Eddy Lelièvre)

- Production of mosaic CaF₂ crystals (FWHM = 0.05°) by plastic deformation
- Cryo-furnace: variation of the temperature of the monochromator at a fixed Bragg angle
- Energy resolution 2 μeV at 16.5 meV
- Commissioning in progress !

THE EUROPEAN NEUTRON SOURCE

Development of Innovative neutron optics from perfect Silicon crystals

- Bent perfect Si crystals
- An Innovative Analyzer concept
- Mosaic Si crystals

Silicon Monochromator

Si perfect crystal exhibits excellent properties for neutrons applications

- No $\lambda/2$ contamination, low attenuation factor, no parasitic scattering \geq
- Use of elastically bent perfect crystals to produce effective mosaic distribution

Stack of thin Si blades to allow bending

- wafer thickness = 1 mm
- 10 wafers to get t = 10 mm (or more)
- Curvature : flat to $R_{H} \approx 2 \text{ m}$

Si(111) Monochromator Si blade dimensions : 270 x 19 x 1mm³

18

t = *total crystal thickness R* = radius of curvature $\theta_{\rm B}$ = Bragg angle (ex: $\theta_{\rm B}$ = 30°, t=10mm, R=2m -> $\delta = 0.5^{\circ}$)

Validation of an innovative multi-analyzer concept Multiplexed Array for Mapping on ThALES (Three Axis Low Energy Spectroscopy)

Si blades: length 100 mm - R = 2 m

Aims to provide a continuous energy analysis from 3 to 6 meV

- Use of plastically bent perfect Si crystals (R=2m)
- Each Si crystal diffracts neutrons having a given energy range
- It requires precise alignment & positioning of each crystal
- Construction of a full-scale prototype

(P. Steffens, M. Boehm)

Construction of a Prototype

A key facility : the Hard X-Ray diffractometer

Production of high quality bent perfect Si crystals using plastic deformation at high temperature

Detailed studies using Hard X-Ray diffraction have shown that crystal quality is not affected by bending

• Accurate alignment using Hard X-Ray diffraction (+/- 1 arc minute)

Prototype successfully tested on ThALES !!

•

Mosaic Silicon crystal

A new Optical component for neutron monochromator ?

A mosaic Si crystal would theoretically outperform a mosaic Ge crystal: Si could replace Ge and why not... HOPG !

- Production of mosaic Si crystals (FWHM = 0.2°) using plastic deformation at high temperature
- Construction of stacks to improve diffraction efficiency and increase mosaic distribution up to 0.5°
- Promising results !

MANY THANKS TO :

The monochromator Group – Service for Neutron Optics (for the huge work on the construction of monochromators)

Franck Barneaud Sandrine Michallat Benoît Mestrallet Florian Philit

Gilles Pastrello (Drawing Office - mechanics)

Instrument Responsibles (for preliminary results) Mechtild Enderle (IN20) Bachir Ouladdiaf (D10+) Stanislav Savvin (XTREMED)

Thank you for your attention

