Progress towards production of pulsed 2 keV and 24 keV neutrons, using neutron moderators and filters

Photo Credit

EIE

CIC

Pratyush Patel and Scott Hertel

Caveat!!

I am not a nuclear engineer or scientist

My background is to look for rare Nuclear Recoil signals from neutrinos or Dark Matter(DM) using diff. target materials

To be very specific: Understand diff. target materials

Neutrinos

Energy deposited by the scattered neutrino is measured via charge and heat signal

Dark Matter

Deep underground shield from cosmic ray

The TESSERACT Dark Matter Project

Thematic Areas:

- IF1 Quantum Sensors
- IF8 Noble Elements
- CF1 Dark Matter: Particle-like
- CF2 Dark Matter: Wavelike

Contact Information:

Dan McKinsey (LBNL and UC Berkeley) [daniel.mckinsey@berkeley.edu]: TESSERACT Collaboration

Energy deposited by the scattered dark matter is measured via heat signal

Why neutrons?

Gamma interacts mostly with electron cloud

Neutron, however interacts mostly with nucleus cloud

Most Dark matter models assume that DM interacts with nucleus, thus a DM signal is imitated with the help of neutrons

Produce a Nuclear Recoil of known energy using neutrons

Why keV-scale neutrons?

State of art quantum sensor enable us to sense "eV" scale energy deposit

keV-scale neutrons are suitable to produce eV scale recoil energies in various target

keV neutrons deposit eV Energy in He

Why a Pulsed source?

Pulsing:

- 1. Pulsed neutron source eliminates non-corelated backgrounds
- Non-corelated Backgrounds < keV is not yet completely understood

How do we produce keV scale neutron?

Moderate and filter?

Using the dips in the neutron-nucleus elastic scattering crossection

Neutron source: Nuclear Reactor

<u>P.S.Barbeau,</u> <u>J.I.Collar,</u> <u>P.M.Whaley</u>

A little history lesson

Idea of neutron Filter is quite old, dates back to 1970s

McGarry, E D, and Schroder, I G.

<u>link</u>

Our Novel aspect: **Pulsing** and **moderation**

Working Principle

- Start MeV scale neutron
- Find good neutron • moderators at these energies
- En
- Create broad < 100 keV-scale n-population
- Filter to select desired • neutron energy

position

Intial Moderation Steps: sub-MeV Moderation

Why DT?

- DT reaction cross-section is higher
- More neutrons per pulse

Why Lead?

- n-> 2n cross-section of Pb
- broad < 1 MeV-scale neutron population

Next Moderation Steps: using AI/F mixture and Ti

- Complemenatry resonance feature in Al and F helps effective moderation of neutrons doen to 20 keV
- Iron can now filter out 24 keV neutrons

Next Moderation Steps: using AI/F mixture and Ti

- Complemenatry resonance feature in Al and F helps effective moderation of neutrons doen to 20 keV
- Iron can now filter out 24 keV neutrons

- Another step of moderation of neutrons using Ti is need for 2 keV neutrons
- Ti moderates neutrons down to 1 keV
- Sc can filter out 2 keV neutrons

Finally let's put things together

Neutron Flux

- A fairly monoenergtic peak, with little contaminants
- Needs optimisation of various length scale and also shield neutrons, gamma escaping the assembly from diff. faces

Optimisation using Geant4

- AI/F length: 40cm
 width: 50cm
- Ti length: 7cm
 - radius same as AI/F
- Lead length: 25
 radius of Al/F + 5cm

Shielding Challenges

Reiterated various design, but the sandwich layers

16

of high-z (lead and concrete) and low-z materials

(poly) performs better

Progress in construction

- Lead and Titanium plates have been shipped from China

- Recived the interlocking concrete bricks
- Recieved the Sc rod and the DT generator

- Al/F mixture is in process of Hot Isotatic Pressing + Cold Isostatic Pressing treatment to achieve density of 2.5g/cc

Some Pictures

- Only via Hot Isotatic Pressing obtained density ~ 2.4 +-0.1 g/cc

- Cold Isotatic Pressing + HIP part density ~ 2.6 +-0.2 g/cc

Next challenge, large neutron detector

- not entirely monoenergetic
- efficiency of the neutron moderation and filtering idea is too low
- we have finite amount of neutron from DT/DD unit

- need large neutron detector, maxmize the solid angle
- also efficient in detecting keV scale neutron

Neutron (Backing) Detector (NIMA 1039)

- Large in area and low in cost/area
- High capture efficiency
- Short capture time (enabling coincidence cut)
- Low in gamma
 background rate with
 Pulse Shape
 Discrimination

Summary

After:

-Optimising filter geometry parts -reducing corelated background rates

Now :

-Procurement of various materials

Goal: Turn *on* this low energy calibration facility:

- Diff. targets materials can be calibrated

- Pulsed low energy neutron beam is essential in understanding LHe quasiparticles, triplet kinematics and quenching.

Eneutron 24 keV: Final Spectrum

 Clearly we see a 24keV peak, but there are higher energy contaminants....quasimonoenergetic neutron beam

Eneutron 24 keV: Initial Toy Model Sim

Eneutron 2 keV: Initial Toy Model Sim

Optimization using GEANT4

2keV neutron event in geant4 220 Al/F - length Lead 200 - width [ш 2] Л 160 - length • Ti AI-F - width same as AI/F 140 Lead - length 120 Ti - width of AI/F + 5cm100 •Sc length and width is fixed by price! 80 60 40

20

x[cm]

40

-20

0

-60

-40