

Nested Mirror Optics – Towards a New Generation of Neutron Transport Systems?

Christoph Herb^{a,c}, Richard Wagner^b, Oliver Zimmer^b, Robert Georgii^c, Peter Böni^a

Herb, C., Zimmer, O., Georgii, R., & Böni, P. (2022). Nested Mirror Optics for Neutron Extraction, Transport, and Focusing. NIMA, 1040, 167154. doi:10.1016/j.nima.2022.167154

^aPhysics Department E21, Technical University of Munich, D-85748 Garching, Germany ^bInstitut Laue-Langevin, 71 avenue des Martyrs, F-38042 Grenoble, France ^cHeinz Maier-Leibnitz Zentrum, Technical University of Munich, D-85748 Garching, Germany

MLZ is a cooperation between:

Small Samples at Extreme Conditions

- Small samples of exotic crystals
- Investigation of novel effects requires
 sophisticated sample environment
 - High pressure
 - Cryogenic temperatures
 - Magnetic fields
- Neutron guides increase the signal-to-noise ratio

Bannenberg, L. et al. (2019). Skyrmions and Spirals in MnSi under Hydrostatic Pressure. Physical Review B, 100(5), 054447. doi:10.1103/PhysRevB.100.054447

Brandl, G. et al. (2015). Compact turnkey focussing neutron guide system for inelastic scattering investigations. Applied Physics Letters, 107(25), 253505. doi:10.1063/1.4938503

Outline

- Small Samples at Extreme Conditions
- Theory of Nested Mirror Optics (NMO)
- NMO in Simulation and Experiment
 - Elliptic NMO
 - Parabolic NMO
- Applications
 - Beam Extraction
 - Beam Shaping
- Conclusions and Outlook

Long Elliptic Guides: Geometric Aberrations

- Elliptic guides enable point-to-point-transport of neutrons [1]
- Depending on the point of reflection, *z*, off-axis-neutrons are focused or defocused
- Deviations from optical imaging, i.e., $\Delta r_1 \neq \Delta r_2$, are only small for reflections close to the semi-minor axis, $z \approx 0$ [2]

^[1] Schanzer et al. (2004). Advanced geometries for ballistic neutron guides. NIMA. 529 63-68.
 doi:10.1016/j.nima.2004.04.178
 ^[2] Oliver Zimmer. (2016). Multi-mirror imaging optics for low-loss transport of divergent neutron beams and tailored wavelength spectra.

Elliptic Nested Mirror Optics (NMO)

- Restrict reflections to the ellipse center $\rightarrow \Delta r_2 \approx \Delta r_1 \rightarrow$ preservation of neutron phase space during reflection between focal points
- Transport of required divergence by nesting short elliptic mirrors according to simple recipe

11/07/23

Elliptic Nested Mirror Optics (NMO)

- Restrict reflections to the ellipse center $\rightarrow \Delta r_2 \approx \Delta r_1 \rightarrow$ preservation of neutron phase space during reflection between focal points
- Transport of required divergence by nesting short elliptic mirrors according to simple recipe

۰

•

Toroidal NMO versus Double-Planar NMO

- Single reflection for 2D-imaging
- Technically demanding

- Technically simple
- Transversal beam polarization
- Compatible with rectangular guides
- Less susceptible to gravity
- Two reflections

^[1] B. Khaykovich et al. "From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam". Nuclear Instruments and Methods 2011; 631(1):98 – 104. doi:10.1016/j.nima.2010.11.110

11/07/23

Nested Mirror Optics: Past Work

M. Friedmann; H. Rauch (1970). Neutron focusing by a curved soller collimator system. NIMA, 86(1), 55–59. doi:10.1016/0029-554X(70)90035-2

Fig. 2. Schematic of the experimental set up used to demonstrate the focussing effect of the NSL.

Mark R Daymond; Michael W Johnson (2002). An experimental test of a neutron silicon lens. NIMA, 485(3), 606–614. doi:10.1016/s0168-9002(01)02132-5

D.F.R. Mildner (1990). The neutron microguide as a probe for materials analysis. NIMA, 299(1-3), 416–419.

doi:10.1016/0168-9002(90)90816-0

Fig. 1. Schematic of the neutron silicon lens with two stacks of bent supermirror coated silicon wafers.

Roland Bartmann; Nicolas Behr; André Hilger; Thomas Krist (2011). New solid state lens for reflective neutron focusing. NIMA, 634(1-supp-S), 0–0. doi:10.1016/j.nima.2010.05.040

Properties of Elliptic Polarizing NMO

Properties of Elliptic Polarizing NMO (MIRA)

- High fraction of neutrons arriving at the target (outlined in red), Q = 72%
- Determination of beam width limited by detector resolution

Properties of Elliptic NMO (BOA, Matteo Busi)

- Control of beam size (FWHM) at F_2 using an aperture at F_1 (*w*) •
- Intensity distribution determined by using a neutron scintillator ٠

45 mm

Properties of Elliptic NMO

- MIRA: High fraction of neutrons arriving at sample position, Q = 72%
- BOA: Control of beam size (FWHM) at F_2 via aperture at F_1 (w)

Imaging of a 1D Grid (BOA)

2D-Imaging of Complex Structures (BOA)

11/07/23

11/07/23 Nested Mirror Optics – NDS 2023

11/07/23

22

Mirror Deformation

Neutron Extraction from Compact Sources

- Compact sources, large guides \rightarrow dilution of phase space, "under-illumination"
- Liouville's theorem: Phase space density can only decrease

• Elliptic NMO images compact sources onto second focal point

• Controlling beam size and divergence by apertures distant to the sample

• Series of elliptic NMO might allow for efficient chopper placement and illumination

Transport of Low-Divergence Beams

- Transform source to low-divergence beam using parabolic NMO
- Efficient transport over $I_g = 160 \text{ m}$
- Refocusing by parabolic NMO

Adjustment of Beamsize

- Combinations of parabolic NMO with different focal lengths allow to adjust the size of the beam
- $\Delta r_1/f_1 = \Delta r_2/f_2$

11/07/23

Conclusions and Outlook

- NMO as modular units for extraction and transport of neutrons
 - Beam can be tailored to experimental requirements (size, divergence)
 - Clean spatial definition of the beam (no penumbra)
 - Short-wavelength cut-off with central beam stop

Conclusions and Outlook

- Practical advantages
 - Space for sample environment and biological shielding
 - Simple alignment
 - Simple to manufacture
 - Simple replacement/exchange
- Further applications
 - Extraction of very-cold neutrons under large angles from high-brilliance moderators ^[1]
 - High divergence options for existing beam lines

[1] Zimmer, O. et al. (2022). In-beam superfluid-helium ultracold neutron source for the ESS. Journal of Neutron Research, 24(2), 220045. doi:10.3233/JNR-220045

Acknowledgments

- Peter Böni (supervisor)
- Robert Georgii (MIRA)
- Oliver Zimmer (all measurements)
- Richard Wagner (BOA)
- Matteo Busi (BOA)
- Tobias Neuwirth & Simon Sebold (3D-printing)
- Boris Khaykovich (provided McStas code)
- The MIRA group

Thank you for your attention! Questions?

McStas Component

Elliptic Nested Mirror Optics (NMO)

- Restrict reflections to the ellipse center $\rightarrow \Delta r_2 \approx \Delta r_1 \rightarrow$ preservation of neutron phase space during reflection between focal points
- Simulation of single, short mirror \rightarrow good imaging, at the cost of low efficiency

Grid Imaging (NMO)

- Restrict reflections to the ellipse center $\rightarrow \Delta r_2 \approx \Delta r_1 \rightarrow$ preservation of neutron phase space during reflection between focal points
- Transport of required divergence by nesting short elliptic mirrors according to simple recipe

• Size related dependence of the brilliance transfer of a simple elliptic NMO

- Size related dependence of the brilliance transfer of a simple elliptic NMO
- Better transport for smaller source/target relative to NMO size
 - Geometric losses scale proportionally to the ratio of beam width to semi-minor axis $~~rac{\Delta r_1}{b_n}$

- Size related dependence of the brilliance transfer of a simple elliptic NMO
- Better transport for smaller source/target relative to NMO size
 - Geometric losses scale proportionally to the ratio of beam width to semi-minor axis
- Initially minor influence of gravity due to symmetric flight paths reflected at approximately flat mirrors

1.0

Influence of Gravity on Phase Space

- Source: lam = 4.0 A, div = 2*1.6 deg
- NMO: f = 20 m, l = 0.5 m, b0 = 0.7 m •
- dy = (20/1000)^2*5 m = 2 cm •
- Another mirror enables the reflection

Parabolic NMO Construction

Parabolic NMO: Focusing a Parallel Beam

• Points of reflection are limited to a small range of distances from the focal point: Beam divergence before NMO \rightarrow beam width at the focal point, $\Delta r \approx \alpha f$

Parabolic NMO Phase Space

11/07/23

- Segmentation of NMO entrance window in 5 x 5 segments A = 8 x 8 mm²
- Relative position of panel corresponds to the illuminated segment

Properties of Elliptic NMO (BOA)

Neutron extraction from small sources

- NMO come with divergence hole
- Minimum distance of mirrors is limited by mirror thickness
- Larger NMO provide higher brilliance transfer, *B*, until gravity dominates
- Larger wavelengths allow larger angles of reflection → higher B

11/07/23

NMO for Illumination of Virtual Sources

- Controlling beam size and divergence by apertures distant to the sample
- NMO yield uniform volumes of phase space with good efficiencies of transport

Combination of Parabolic and Elliptic NMO (BOA)

Properties of Elliptic NMO (BOA)

11/07/23 Nested Mirror Optics – NDS 2023

Single-Side vs. Double-Side Coating

Improved Approx

Efficiency of Transport

Addition to extraction into low div

Analytic Calculations

Realistic reflection

Analytic Calculations

Equidistant in z

Long Guide Simulation

- f = 40 m
- I = 39.75 m
- B0 = 13 cm
- w = 6 mm
- m = 4

NMO Simulation

- f = 40 m
- I = 2 m
- n = 60
- b0 = 66 cm
- w = 6 mm
- m = 4
- Includes $g = 9.81 \text{ m/s}^2$ and refraction
- $d_{sub} = 0.15$ mm

Geometric Aberrations in Long Elliptic Guides

• Strong distortion of original grid-shaped intensity distribution

Elliptic Nested Mirror Optics (NMO)

- Restrict reflections to the ellipse center $\rightarrow \Delta r_2 \approx \Delta r_1 \rightarrow$ preservation of neutron phase space during reflection between focal points
- Simulation of single, short mirror \rightarrow good imaging, low efficiency

Elliptic Nested Mirror Optics (NMO)

- Nested mirror system, $n = 2 \times 30$ (simulation) \rightarrow good imaging, high efficiency
- Shorter mirrors yield better images

2D-Imaging of a Grid (BOA) X 4 mm not reflected vertically reflected horizontally non-reflected 30 500 25 400 20 у (mm) 300 15 10 200 5 100 0 -30 -20 -1010 0 *x* (mm) doubly reflected reflected vertically

Combination of Parabolic and Elliptic NMO (BOA)

