

Cornelis B. Doorenbos :: on behalf of the nEDM collaboration :: Paul Scherrer Institute

Commissioning of the ultracold neutron guide system for the n2EDM experiment at PSI

Neutron Delivery Systems 2023 :: ILL, Grenoble

Goal of the n2EDM experiment

- Electric dipole moments (EDMs) can help to understand matter-antimatter asymmetry of the Universe
- We search for the neutron EDM using stored ultracold neutrons (UCN).
 Sensitivity: 10⁻²⁷ e cm
- Method: to measure precession frequency under (anti)parallel E and B fields $h
 u = 2\mu_{
 m n}B \pm 2d_{
 m n}E$
- Limited by:
 - UCN statistics
 - Systematics, magnetic field uniformity

The n2EDM experiment

Requirements for UCN guides

- 90% transmission, normalised to 1 m
- Homogeneous magnetic field
 - Field stability (30 fT)
 - Accurate magnetometry (30 fT)
 - Limit on local magnetic impurities
 - 10 nA m²
 - 16 pT @ 5 cm

In house DC magnetron sputtering facility High purity NiMo sputter targets

- 85:15 mass ratio
- $V_{F} = 220 \text{ neV}$ (CN reflectometry confirmed)
- Curie temperature << room temperature

UCN transmission measurements

normalised UCN counts in reference setup

UCN transmission measurements

- Pulsed UCN source
 - 8 s proton beam on spallation target
 - UCN production
 - Fill storage volume
 - Drain into experiment
- Region of interest: 12-200s
 - not all neutrons before
 12s are storable
- Normalisation using second beamport at same height

UCN transmission measurements, results

- UCN guides not equal in transmission
- Transmission is UCN energy spectrum dependent (higher transmission for lower energies)

- Simulation of the transmission measurements, from source to detector
- Diffuse scattering fraction ("roughness") explain differences (Lambert model)
- Not caused by coating, intrinsic to guides
- Not sensitive to the other parameters

The MCUCN simulation code for ultracold neutron physics Nucl. Inst. and Meth. A, Vol. 881, p. 16-26. https://doi.org/10.1016/j.nima.2017.10.065

Checking for magnetic dipoles

- All components degaussed
- Can components be magnetised?
- We check for dipoles:
 - After degaussing
 - After magnetisation with 30 mT magnet

(intrinsic dipoles) (areas that can be magnetised)

Checking for magnetic dipoles

- Vertical B₀ field: 2.6 uT
- Sample driven past Caesium magnetometers
- Quantity of interest: ΔB between Cs magnetometers
- Sensitive to dipoles of 1 nA m² (1 pT level)

Α

В

С

C1

C1

C1

C2

Example dipole signal

- PEEK (plastic)
- Signal: C2 C1

Max allowed dipole strength: 10 nAm² 16 pT

UCN guide dipole scan, degaussed

Characterisation of guides

- Guides closest to precession chamber
- #1
 - Magnetised: 9 nAm²
 - Degaussed: Below detection threshold ^{Chambers}
 - Transmission: 0.902
- #2
 - Magnetised: 5 nAm²
 - Degaussed: Below detection threshold
 - Transmission: 0.922

- Our goal: to search for nEDM with 10⁻²⁷ e cm sensitivity
- Our requirements
 - Transmission per meter > 90 %
 - Dipoles < 10 nA m^2
- All the guides we have are sufficient to guarantee the design sensitivity of n2EDM

PAUL SCHERRER INSTITUT

_

UCN transmission measurements

P A U L	SCHERRER		INSTITUT	
	—	\square	T	

Related to statistical errors		
(B-gen) Top-Bottom resonance matching condition	$-0.6 \mathrm{pT/cm} < G_{1,0} < 0.6 \mathrm{pT/cm}$	
(B-gen) Field uniformity in the chambers	$\sigma(B_z) < 170\mathrm{pT}$	
(B-gen) Field stability on minutes timescale	< 30 fT	
(B-meas) Precision Hg co-magnetometer, per cycle, per chamber	< 30 fT	
Related to systematical errors		
(B-gen) Gradient stability on the timescale of minutes	$\sigma(G)[5min] < 50 \text{ fT/cm}$	
(B-meas) Accuracy mercury co-magnetometer per chamber	< 100 fT	
(B-meas) Accuracy on cubic mode (Cs magnetometers)	$\delta G_3 < 20 \mathrm{fT/cm}$	
(B-gen) Reproducibility of the order 5 mode	$\sigma(G_5) < 20 \mathrm{fT/cm}$	
(B-meas) Accuracy of the order 5 mode (field mapper)	$\delta G_5 < 20 \mathrm{fT/cm}$	
(B-gen) Dipoles close to the electrode	< 20 pT at 5 cm	
(E-gen) Relative accuracy on E field magnitude	$< 10^{-3}$	