

The Jülich High-Brilliance Neutron Source Project

Paul Zakalek, JCNS

European Landscape

European Landscape

European Landscape

HBS, a High-Current Accelerator-driven Neutron Source (HiCANS)

Project rationale

High current linear accelerator

- 100 mA, 70 MeV pulsed proton beam
- Variable frequency

Several target stations

- Optimize pulse structure (length, rep. rate)
- Optimize thermal spectrum

Every beam port serves only 1 Instrument

- Optimize neutron source spectrum
- Optimize geometry
- Integrate neutron optics with beam port

Small shielding

- Neutron guide around cold source
- Chopper at <2 m from target

www.fz-juelich.de/jcns/jcns-2/EN/Forschung/ High-Brilliance-Neutron-Source/_node.html

6/37

HBS Target

Neutron production

Requirements:

- High blistering threshold
- Compact design allowing efficient feeding of moderators
- Save operation at 100 kW at 100 cm² (1kW/cm²)

Reliable

Tantalum target with microchannel design

• Neutron yield of 10¹⁵ n/s

Target system Probing target stability

Succesful test at JUDITH-2 electron gun with up to 1 kW/cm² heat input on the surface indicating a possible higher power deposition

Further experiment planed to determine critical heat flux and power limit

Target station bunker

- Compact target station with 4 m diameter
- Easy access after shutdown
 and maintenance possibilities
- Around 270° available space for instruments
- Optical elements can be placed close to moderator inside target bunker room

Target station

- Layered shielding design of BPE & Pb allows compact target station design
- Optical elements like choppers and neutron guides can be placed close to moderator surface
- Vertical beam allows extraction within large angular arc

Target-Moderator-Reflector

- Compact TMR design:
 - Efficient coupling of neutron production and moderation
 - High neutron flux in moderator
 - \rightarrow High Brightness
- Variable extraction channel design allows thermal, cold, bispectral and very cold extraction

Target-Moderator-Reflector

- Compact TMR design:
 - Efficient coupling of neutron production and moderation
 - High neutron flux in moderator
 - \rightarrow High Brightness
- Variable extraction channel design allows thermal, cold, bispectral and very cold extraction

Target-Moderator-Reflector

- Compact TMR design:
 - Efficient coupling of neutron production and moderation
 - High neutron flux in moderator
 - → High Brightness
- Variable extraction channel design allows thermal, cold, bispectral and very cold extraction

13/37

14/37

Moderator Plug

- Individual and optimized moderators for each instrument tailoring neutron energy spectrum
- Easy replacement and modification of single moderators
- Neutron guides placed as close as 40 cm to moderator surface extraction large divergence

Moderator Plug

- Individual and optimized moderators for each instrument tailoring neutron energy spectrum
- Easy replacement and modification of single moderators
- Neutron guides placed as close as 40 cm to moderator surface extraction large divergence

SOURCE

Forschungszentrum

Moderator Plug

Peak Brightness

24 Hz Target station

Reflector

30 mm

Target

Moderators

100 mm

Peak Brightness

Comparison

Reflector Target Moderators 100 mm 30 mm

	Instrument	$\tau_{\rm pulse}$	$L_{\rm tot}$	Det. Cov.	λ_{\min}	λ_{\max}	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\min}}$	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\text{max}}}$	$\phi_{ m average}$	Remarks
		[µs]	[m]	[Sr.]	[Å]	[Å]	[%]	[%]	10^6 [n/cm ² s]	
24.1	High Throughput SANS	667	24	0.01	2.0	8.7	5.5	1.3	2.2	Low angle
			15	0.7	2.0	8.7	8.8	2.0	220	Wide angle
24.2	SANS + GISANS	667	24	0.01	3.0	9.8	3.7	1.1	2.2	Low angle
			15	0.7	3.0	9.8	5.9	1.8	220	Wide angle
24.3	SANS + VSANS	667	23	0.01	2.0	9.0	5.7	1.3	2.7	Low angle
			15	0.7	2.0	9.0	8.8	2.0	220	Wide angle
24.4	Offspecular Reflectometer	667	13	0.08	2.0	12.5	10.1	1.6	1.1	
24.5	Therm. Powder Diffr.	29	80	6.25	0.6	2.7	0.2	0.1	0.7	High Res., 2 frames
		667	80	6.25	0.6	2.7	5.5	1.2	120	High Int., 2 frames
24.6	NSE	667	35	0.04	5	16	1.3	0.5		Very cold neutrons
24.7	NRSE	667	14	0.04	5	16	3.8	1.2		Very cold neutrons
24.8	Backscattering Spectrometer	70	85	2.5	5.8	7.8	0.06	0.04	8	
24.9	PGNAA-1	667	12.4		0.03	9			220	
24.10	NDP	667	15		2	15			44000	

	Instrument	$\tau_{\rm pulse}$	$L_{\rm tot}$	Det. Cov.	λ_{\min}	λ_{\max}	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\text{c}}}$	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\text{max}}}$	$\phi_{ m average}$	Remarks
		[µs]	[m]	[Sr.]	[Å]	[Å]	[%]	[%]	$10^{6} [n/cm^{2} s]$	
24.1	High Throughput SANS	667	24	0.01	2.0	8.7	5.5	1.3	2.2	Low angle
			15	0.7	2.0	8.7	8.8	2.0	220	Wide angle
24.2	SANS + GISANS	667	24	0.01	3.0	9.8	3.7	1.1	2.2	Low angle
			15	0.7	3.0	9.8	5.9	1.8	220	Wide angle
24.3	SANS + VSANS	667	23	0.01	2.0	9.0	5.7	1.3	2.7	Low angle
			15	0.7	2.0	9.0	8.8	2.0	220	Wide angle
24.4	Offspecular Reflectometer	667	13	0.08	2.0	12.5	10.1	1.6	1.1	
24.5	Therm. Powder Diffr.	29	80	6.25	0.6	2.7	0.2	0.1	0.7	High Res., 2 frames
		667	80	6.25	0.6	2.7	5.5	1.2	120	High Int., 2 frames
24.6	NSE	667	35	0.04	5	16	1.3	0.5		Very cold neutrons
24.7	NRSE	667	14	0.04	5	16	3.8	1.2		Very cold neutrons
24.8	Backscattering Spectrometer	70	85	2.5	5.8	7.8	0.06	0.04	8	
24.9	PGNAA-1	667	12.4		0.03	9			220	
24.10	NDP	667	15		2	15			44000	
96.1	Hor. Reflectometer	252	- 11	0.01	5	8.64	1.8	1.0	87	Small sample
		252	- 11	0.01	1.6	5.25	5.7	1.7	14	Multi Beam
96.2	Engineering Diffr.	35	21.8	3.0	0.8	2.68	0.8	0.2	0.5	
96.3	Diffuse scatt. Spectr.	252	21.5	2.39	2	3.9	2.3	1.2	96	
96.4	Pol. Diffuse Neutron Spectr.	252	21.5	2.04	2	3.9	2.3	1.2	21	
96.5	Small sample Diffr.	252	20.4	9	2	4	2.4	1.2	49	
96.6	Cold Chopper Spectr.	252	18.5	3.14	2	10	1.5	0.7	0.9	
96.7	Thermal Chopper Spectr.	252	60	3.14	0.9	3.5	2	0.5	0.1	5 frames
96.8	CRYSTOF	252	10.5	3.14	0.9	3.5	3	1.5	0.4	
96.9	Indirect Geom. Spectr.	252	60	1.7	3	3.7	0.6	0.4	120	
96.10	Cold imaging	252	15		1	15	6.6	0.4	1.6	High Res.
		252	5		1	15	19.9	1.3	12	High Int.
96.11	Thermal imaging	252	10		0.5	4.5	20	2.2	7.8	High Res.
		252	4		0.5	4.5	50	5.5	49	High Int.
96.12	Diffr. Imaging	252	35		1	15	2.8	0.2	8	

	Instrument	$\tau_{\rm pulse}$	$L_{\rm tot}$	Det. Cov.	λ_{\min}	$\lambda_{ m max}$	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\min}}$	$\frac{\delta \lambda_{\text{pulse}}}{\lambda_{\text{max}}}$	$\phi_{ m average}$	Remarks
		[µs]	[m]	[Sr.]	[Å]	[Å]	[%]	[%]	10^6 [n/cm ² s]	
24.1	High Throughput SANS	667	24	0.01	2.0	8.7	5.5	1.3	2.2	Low angle
			15	0.7	2.0	8.7	8.8	2.0	220	Wide angle
24.2	SANS + GISANS	667	24	0.01	3.0	9.8	3.7	1.1	2.2	Low angle
			15	0.7	3.0	9.8	5.9	1.8	220	Wide angle
24.3	SANS + VSANS	667	23	0.01	2.0	9.0	5.7	1.3	2.7	Low angle
			15	0.7	2.0	9.0	8.8	2.0	220	Wide angle
24.4	Offspecular Reflectometer	667	13	0.08	2.0	12.5	10.1	1.6	1.1	
24.5	Therm. Powder Diffr.	29	80	6.25	0.6	2.7	0.2	0.1	0.7	High Res., 2 frames
		667	80	6.25	0.6	2.7	5.5	1.2	120	High Int., 2 frames
24.6	NSE	667	35	0.04	5	16	1.3	0.5		Very cold neutrons
24.7	NRSE	667	14	0.04	5	16	3.8	1.2		Very cold neutrons
24.8	Backscattering Spectrometer	70	85	2.5	5.8	7.8	0.06	0.04	8	
24.9	PGNAA-1	667	12.4		0.03	9			220	
24.10	NDP	667	15		2	15			44000	
96.1	Hor. Reflectometer	252	- 11	0.01	5	8.64	1.8	1.0	87	Small sample
		252	- 11	0.01	1.6	5.25	5.7	1.7	14	Multi Beam
96.2	Engineering Diffr.	35	21.8	3.0	0.8	2.68	0.8	0.2	0.5	
96.3	Diffuse scatt. Spectr.	252	21.5	2.39	2	3.9	2.3	1.2	96	
96.4	Pol. Diffuse Neutron Spectr.	252	21.5	2.04	2	3.9	2.3	1.2	21	
96.5	Small sample Diffr.	252	20.4	9	2	4	2.4	1.2	49	
96.6	Cold Chopper Spectr.	252	18.5	3.14	2	10	1.5	0.7	0.9	
96.7	Thermal Chopper Spectr.	252	60	3.14	0.9	3.5	2	0.5	0.1	5 frames
96.8	CRYSTOF	252	10.5	3.14	0.9	3.5	3	1.5	0.4	
96.9	Indirect Geom. Spectr.	252	60	1.7	3	3.7	0.6	0.4	120	
96.10	Cold imaging	252	15		1	15	6.6	0.4	1.6	High Res.
		252	5		1	15	19.9	1.3	12	High Int.
96.11	Thermal imaging	252	10		0.5	4.5	20	2.2	7.8	High Res.
		252	4		0.5	4.5	50	5.5	49	High Int.
96.12	Diffr. Imaging	252	35		1	15	2.8	0.2	8	
Epi.1	Dis. Mat. Diffr.	167	85	4.5	0.1	0.6	7.8	1.3		
Epi.2	PGNAA-2	167	21						4.4	
Epi.3	Epitherm. Imaging	167	35	0	1.8					

Target-Moderator-Reflector Unit

h Centre for Neutron Science

24/37

HBS Target-Moderator-Reflector Unit

Experimental Platform at Big Karl @ COSY

HBS Target-Moderator-Reflector Unit

Experimental Platform at Big Karl @ COSY

HIGH

entre for Neutron Science

28/37

HBS Target-Moderator-Reflector Unit

Experimental Platform at Big Karl @ COSY

JULIC Neutron platform

	Big Karl	HBS
Particle type	Proton	Proton
Energy	45 MeV	70 MeV
Peak current	10 µA	90 mA
Duty cycle	4 %	1.6 %
Average power	18 W	100 kW
Neutron yield	1 · 10 ¹¹ s ⁻¹	$2 \cdot 10^{15} s^{-1}$

Big Karl experimental area allows performing basic neutron scattering experiments in time-of-flight mode

High Brilliance Neutron Source Project (HBS)

Conceptual Design Report

Technical Design Reports (06.2023)

Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T. Brückel, T. Gutberlet (Eds.)

J. Baggemann, S. Böhm, P. Doego, J. Ferske, M. Feygenson, A. Glavic, O. Holderer, S. Jaksch, M. Jentscho S. Köenfisch, H. Kleines, J. Li, K. Lieutensh, P. Mastinu, E. Mouerhofer, O. Meusel, S. Posini, H. Podlech, M. Rimmiley, U. Roicker, T. Schwader, W. Schweisk, M. Strödt, E. Vechkev, J. Veig, P. Zakaké, O. Zimmer

Allgemeines / General Band / Volume 8 ISBN 978-3-95806-501-7

Mitglied der Helmhpitz-Gemeinschaf

www.fz-juelich.de/jcns/jcns-2/EN/Forschung/ High-Brilliance-Neutron-Source/_node.html

Mitglied der Helmholtz-Gemeinschaft

TDR Accelerator

E. Mauerhofer (JCNS-HBS)

TDR Neutron Instruments Executive editors:

K. Lieutenant (JCNS-IT)

J. Voigt (JCNS-IT)

Infrastructure & Sustainability Executive editors:

C. Claudio-Weber (JCNS) T. Gutberlet (JCNS-HBS)

European Neutron Landscape

ZEA-1 | ENGINEERING UND TECHNOLOGIE Technologie für Spitzenforschung

European Neutron Landscape

ZEA-1 | ENGINEERING UND TECHNOLOGIE Technologie für Spitzenforschung

European Neutron Landscape

ZEA-1 | ENGINEERING UND TECHNOLOGIE Technologie für Spitzenforschung

HBS Team

J. Baggemann Th. Brückel T. Claudio-Weber T. Cronert (†) Q. Ding P.-E. Doege T. Gutberlet J. Li K. Lieutenant Z. Ma E. Mauerhofer N. Ophoven U. Rücker N. Schmidt A. Schwab E. Vezhlev J. Voigt P. Zakalek

- Core group: design, verification, instrumentation

Mitglied der Helmholtz-Gemeinschaft

ZEA-1: Y. Bessler

R. Hanslik R. Achten

F. Löchte M. Strothmann

- Engineering

IKP-4:

O. Felden R. Gebel A. Lehrach M. Rimmler

R. Similon

- Nuclear physics

INM-5:

B. Neumaier - Radio isotopes

- S. Böhm J.P. Dabruck R. Nabbi
- Nuclear simul.

TECHNISCHE UNIVERSITÄT DRESDEN C. Lange T. Langnickel Ch.Haberstroh M. Klaus S. Eisenhut

- AKR-2, liquid H₂

EG ES JE / HIM GSI Helmholtzzentrum für Schwerionenforschung GmbH

W. Barth

- Accelerator

HBS Team

Mock-up TMR

Neutron Yield

Tantalum

- High blistering threshold
- High neutron yield ۲

Neutron Yield

Tantalum

Centre for Neutron Science

Forschungszentrum

RADIATION DOSE MAPS

Total dose rate (neutron and photon) map

in horizontal (XY cross section) direction at the height z = 0 cm

Dose rates during operation on the outer surface of the wall • and bunker are less than 10 $\mu Sv/h$.

Centre for Neutron Science

MEASUREMENTS AT BIG KARL

