Neutron Mirror with Magnetic Repulsive Wall

Yasuhiro Fuwa (J-PARC, Japan Atomic Energy Agency)

Yoshihisa Iwashita, Yasutoshi Kuriyama (Kyoto University) Masaaki Kitaguchi, Hirohiko Shimizu (Nagoya University) Masako Yamada, Katsuya Hirota (KEK)

- Principle of Magnetic Potential Mirror
- Beam Guide with Magnetic Potential Mirrors
- Proof-of-Principle Experiment at JRR-3
- Prototype Mirrors Design and Experiment Plans
- Summary

Magnetic Potential on Neutrons

Due to the interaction between the magnetic moment of the neutron spin and the magnetic field, the magnetic field acts as a potential for the neutron.

When a neutron beam passes through a region where a magnetic field gradient exists, the beam orbit is deflected by a force in the direction of the gradient. The direction of deflection depends on the direction of the spin.

Deflecting Force on Neutron Beam :
$$k$$
; constant $F = \mp k \cdot \nabla |B|$ B ; Magnetic field(sign depends on neutron spin direction)

Neutron Mirror with Magnetic Field Gradient

Generating a uniform magnetic field gradient spreading in the plane can be regarded as the existence of a potential wall for neutrons with parallel spins.

==> The planar potential wall acts as a mirror!!

Configuring permanent magnets in Halbach array, potential wall with magnetic field gradient can be constructed.

- Principle of Magnetic Potential Mirror
- Beam Guide with Magnetic Potential Mirrors
- Proof-of-Principle Experiment at JRR-3
- Prototype Mirrors Design and Experiment Plans
- Summary

"Magnetic Repulsive Neutron Guide"

A beam guide for slow neutrons can be formed by arranging magnetic gradient mirrors in a duct-like configuration. Neutron n Ν S zω zυ υ z υ Z S Z Z S Ν The reflective surface of the magnetic potential mirror is "fuzzy". n **Reduction of** installation/ S S S zυ υ Z z v υ Z o z z v Ν Ν manufacturing accuracy

Merit of "Fazzy" Neutron Guides

Current Device

Neutrons are transported by total reflection on the inner surface of the hollow tube.

But

Low actual transport efficiency due to accumulation of alignment errors. Expensive due to installation and processing accuracy requirements.

For example, in J-PARC MLF BL05, the actual transport efficiency is about 50% compared to the simulation.

Possible solution to the current problems

Magnetic Potential Mirror

Deflects neutron orbits by magnetic field gradient and transports them without contacting the material.

- Principle of Magnetic Potential Mirror
- Beam Guide with Magnetic Potential Mirrors
- Proof-of-Principle Experiment at JRR-3
- Prototype Mirrors Design and Experiment Plans
- Summary

Proof of Principle Experiment 1: Sample

Small sample mirror was constructed with neodymium magnets to build a potential wall.

- Effective mirror surface is 20 mm height and 30 mm width.
- The neodymium magnets were glued onto an iron base plate.
- Magnetic field flux density on the magnet pole is nearly 1 T.

Halbach Magnet Configuration

zω

S Z

υ Z

Z U

Built magnetic wall: 28 prisms (1 mm × 1 mm × 20 mm)

Proof of Principle Experiment 2: Setup

Experiment was performed at JAEA JRR-3 MINE2.

Central wavelength 0.88 nm (~ 1.1 meV), width 2.8 %

Proof of Principle Experiment 3: Result

Incident angle $\theta \sim 1.7$ mrad, (measurement time 75 s).

- Principle of Magnetic Potential Mirror
- Beam Guide with Magnetic Potential Mirrors
- Proof-of-Principle Experiment at JRR-3
- Prototype Mirrors Design and Experiment Plans
- Summary

Prototype Mirror Development

A couple of larger prototype mirrors are being fabricated to evaluate mirror characteristics in more detail.

Specifications of mirror:

- Height: 50 mm
- Width: 100 mm
- Magnets: H48 Nd₂Fe₁₄B
- Base Plate: SS430

Assembling is currently in progress by a local company and is expected to be completed by the end of this August.

Experiments with Prototype Mirror 1

Using larger prototype mirror (size of 100 mm x 50 mm), we are planning to measure the mirror characteristics at BL05 (NOP) or BL16 (SOFIA) at MLF in J-PARC from late 2023 to 2024.

Mirror characteristics to be measured:

- m-value evaluation of mirror
- position dependence of reflectivity

Experiments with Prototype Mirror 2

Mirror characteristics to be measured (continued):

- reflection characteristics in mirror-joint region

Summary and Future Plan

- A Magnetic Potential Mirror is proposed as efficient and cost-effective neutron mirrors.
- Since the reflective surface of the magnetic potential mirrors is "fuzzy", transport efficiency is less sensitive to alignment errors and fabrication precision compared with conventional mirror.
- Maybe less sensitive against dusts on mirror.
- A proof-of-principle experiment was performed at JRR-3.
- Prototype mirrors are under fabrication, which will be used in a performance test at J-PARC MLF.
- As a future plan, we plan to fabricate a 1-meter guide tube in 2025 and conduct a slow neutron transport experiment.

