

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

ORNL Second Target Station (STS)

- Highest peak-brightness short-pulsed spallation source of cold neutrons
- Smaller samples, more extreme conditions, shorter time
- Supports up to 18 neutron instruments

Scheduled completion ~2035

lon

Source

STS vs. FTS

FTS (upgraded)

- Short (<1 μs) 1.3 GeV proton pulses
- 45 pulses/second
- 2 MW beam power
- 44.4 kJ per proton pulse
- Large beam footprint (140 cm²)
- Hg target
- 4 moderators (water & hydrogen)
- Moderator viewed area 10 x 12 cm
- High flux
- Coupled & decoupled moderators
- In operation since 2006

STS

- Short (<1 μs) 1.3 GeV proton pulses
- 15 pulses/second
- 700 kW beam power
- 46.7 kJ per proton pulse
- Smaller beam footprint (30-90 cm²)
- W target (water cooled)
- 2 cold moderators (hydrogen)
- Moderator viewed area 3 x 3 cm
- High brightness
- Coupled moderators
- Scheduled commissioning ~2035
- More compact

STS Moderator-Reflector Assembly (MRA)

- Low-dimensional (flat) cylindrical and tube moderators delivering high brightness
 - Mezei, Zanini, et al., ESS
- Both coupled
- Para-hydrogen at 20 K
- H₂O premoderator
- Be reflector
- Tightly coupled with the target (10 mm gap)
- Serving 12 + 6 instruments

STS Moderator Performance

- Tube moderator delivers superior brightness to eventually 6 instruments
- Cylindrical moderator has superior time resolution (event. 12 instruments)

Motivation

- We need to solve problems with many design parameters
 - Moderator dimensions
 - Target dimensions
 - Beam footprint on target

- We need coupled neutronics and structural stress optimization
 - Optimal parameters for separate neutronics and structural analyses can differ greatly
 - Improved structural integrity reduces neutronics performance
- Such complex studies rarely done in the past
- New tools required for efficient STS optimization

L. Zavorka et al., An unstructured mesh based neutronics optimization workflow, NIM A 1052 (2023) 168252.

- Direct CAD to MCNP model conversion
 - Fast, efficient, reduces potential for introducing errors
- High-fidelity neutronics models
 - High-quality data with high spatial resolution (UM serves as a mesh tally)
- Results (heating, dpa, ...) available for subsequent analyses
 - Direct export/import for structural stress/dynamic FEA

- Scripted model re-generation, conversion to UM, MCNP input generation
 - CREO/Solidworks, SpaceClaim, Attila4MC, MCNP, Sierra, Dakota run from a command line
- Controlled by in-house bat/bash scripts on Win/Linux
- On-line data analysis
- Captures errors, restarts if necessary

```
target 1blk.rxmesher.xml - Notepad
File Edit Format View Help
kmeshing-spec>
    <solid-length-units>m</solid-length-units>
    <global-mesh-size>0.01</global-mesh-size>
    <scale-factors/>
    <size-transition-factor>0.8</size-transition-factor>
    <surface-optimization>true</surface-optimization>
    <surface-smoothing>3</surface-smoothing>
    <volume-optimization>true</volume-optimization>
    <volume-smoothing>1</volume-smoothing>
    <lock-surface-mesh>true</lock-surface-mesh>
    <attributes/>
    <rename/>
    <advanced-controls/>
    <curvature-refinement min mesh size="0.0025" aniso="t</pre>
</meshing-spec>
```

File Edit Format View Help num material assignments 12 material assignments SHROUD-m1 Steel TA CLADDING SOLID 1-m1 Ta1 TUNGSTEN BLK-m1 W1 Component1-m1 Water SHROUD-m2 Steel TA CLADDING SOLID 1-m2 Ta2 TUNGSTEN BLK-m2 W2 Component1-m2 Water SHROUD-m3 Steel TA_CLADDING_SOLID_1-m3 Ta3 TUNGSTEN BLK-m3 W3 Component1-m3 Water end material assignments end output abagus metadata modifications strip side info true shift bnd nodes false end modifications end rtt mesh editor input

- Controlled by Dakota Software Toolkit (free download from Sandia Natl. labs)
- Parameter and sensitivity study
- State-of-the-art optimization methods (efficient global, ...)
- Multi-objective optimization

Objective =
$$w_1 \times \frac{\text{PEAK}}{\text{PEAK}_{\text{ref}}} + w_2 \times \frac{\text{TINT}}{\text{TINT}_{\text{ref}}}$$

INPUT-file

- Define optimization problem
- Interface to your simulation code

OUTPUT-file

- Optimal point
- Raw data

Your simulation code (MCNP6)

Key features

- Only one parametric solid CAD engineering model is necessary
 - Contains all the details + provides detailed results
 - The same CAD model is used both for neutronics and FEA.
 - No manual conversion to an MCNP model (potential error reduction)
- Reduction of the time per one iteration from weeks/months to hours
- Many more design options can be explored and analyzed
- Efficient optimization (=<u>fewer iterations</u>) of the coupled problems with a large number of design parameters (>10)

Applications

- Neutronics optimization of the moderator-reflector assembly
 - 10 geometry parameters
- Neutronics and structural optimization of the target
 - 6 geometry parameters
- Coupled Target + Moderator + Beam optimization
 - 10 geometry parameters for the moderator
 - 12 geometry parameters for the target
 - 4 parameters for the beam on target

Original MCNP PSTUDY vs novel UM based optimization

~5-10% performance difference when using a simple vs. high-fidelity model

UM models contain variable thicknesses of the walls to withstand H₂/H₂O pressure ~15% difference

Neutronics optimization of the moderator-reflector

Coupled neutronics and structural optimization of the target

- Neutronics performance
- Detailed energy deposition distribution from MCNP as input to FEA

- Evaluation of the Factor of Safety (FOS)
 - Measure for the mechanical performance of the target (irradiated after 10 years of operation)
 - Goodman diagram of a failure theory extracted from dynamic response

Coupled neutronics and structural optimization of the target

Coupled neutronics and structural optimization of the target

"Cheese wedge" target design

Coupled Target + Moderator + Beam optimization

Lasagna target design

peak

Conclusion

- Developed an automated optimization workflow for coupled neutronics and structural stress analyses
- Reduced time per one iteration from weeks/months to hours
- Reduced number of necessary iterations
- Optimized moderators and several target designs
- Getting more efficient and moving towards more complicated problems

- Essential tool in the STS design process
- Can be applied at other facilities

Thank you!

Backup slides

Two approaches possible: Unstructured Mesh (UM)

- Efficient, accurate, but requires more RAM and longer computation time
- Necessary for generating Weight Windows with Attila4MC

~2M cells

Hybrid UM/Constructive Solid Geometry (CSG) model

- More efficient use of RAM and faster computation time
- Requires longer time to build
- Can use Weight Windows from Attila4MC

Target

STS Design

The pathway to high brightness:

- Compact target and neutron production zone
- Tight coupling between target and moderators
- Reduce the size of the moderator emission surfaces
- Use para hydrogen as moderator material
- Include water premoderator
- Develop and use state-of-the-art optimization tools

Flip side of the coin:

- High structural stress
- Reduced total neutron intensity

STS Cylindrical Moderator Design

- 2D geometry configuration
- 16 beam lines
- 3 x 3 cm² viewed area
- Originally optimized for peak brightness
- Key parameters:
 - Moderator radius
 - Premoderator radius
 - Premoderator thickness
 - Beryllium radius
 - Moderator position

STS Tube Moderator Design

- 1D geometry configuration
- 6 beam lines
- $3^2 \times (\pi/4)$ cm² viewed area
- Originally optimized for time-integrated brightness
- Key parameters:
 - Tube length
 - Tube radius
 - Premoderator thickness
 - Beryllium radius
 - Moderator position

Tube moderator concept proposed by Franz Gallmeier: "A Liquid Hydrogen Tube Moderator Arrangement for STS", 2018

Preliminary STS KPPs

KPP	Thresholds	Objectives
Demonstrate independent control of the proton beam on the two target stations	Operate beam to FTS at 45 pulses/s, with no beam to STS Operate beam to STS at 15 Hz, with no beam to FTS Operate with beam to both target stations: 45 pulses/s at FTS and 15 Hz at STS	
Demonstrate proton beam on STS at 15 Hz	100 kW beam power	700 kW beam power
Measure STS neutron brightness	Peak brightness of 2 × 10 ¹³ n/cm ² /sr/Å/s at 5 Å	Peak brightness of 2 × 10 ¹⁴ n/cm ² / sr/Å/s at 5 Å
Beamlines transitioned to operations	Eight beamlines successfully passed the integrated functional testing per the TTOP acceptance criteria	≥ Eight beamlines successfully passed the integrated functional testing per the TTOP acceptance criteria

TTOP = Transition to Operation Parameters.

 STS objective is to become the highest peak-brightness source of cold neutrons in the world USA
Asia
Europe
O Planned
• Existing

