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ORNL Second Target Station (STS)

Second
Target 
Station

1 out of 4 proton pulses
15 Hz
700 kW

3 out of 4 proton 
pulses
45 pulses/second
2 MW

First 
Target 
Station

Accumulator 
Ring

Linac, 60 Hz, 2.8 MW capable
Ion
Source

Scheduled completion ~2035

Srivastava et al., Nat. Comm. 2017
Banerjee et al., Science 356, 2017

• Highest peak-brightness short-pulsed 
spallation source of cold neutrons

• Smaller samples, more extreme 
conditions, shorter time

• Supports up to 18 neutron instruments
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STS vs. FTS

FTS (upgraded)
– Short (<1 μs) 1.3 GeV proton pulses
– 45 pulses/second
– 2 MW beam power
– 44.4 kJ per proton pulse
– Large beam footprint (140 cm2)
– Hg target
– 4 moderators (water & hydrogen)
– Moderator viewed area 10 x 12 cm
– High flux
– Coupled & decoupled moderators
– In operation since 2006

STS
– Short (<1 μs) 1.3 GeV proton pulses
– 15 pulses/second
– 700 kW beam power
– 46.7 kJ per proton pulse
– Smaller beam footprint (30-90 cm2)
– W target (water cooled)
– 2 cold moderators (hydrogen)
– Moderator viewed area 3 x 3 cm
– High brightness
– Coupled moderators
– Scheduled commissioning ~2035
– More compact
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STS Moderator-Reflector Assembly (MRA)

• Low-dimensional (flat) 
cylindrical and tube 
moderators delivering  
high brightness
– Mezei, Zanini, et al., ESS

• Both coupled
• Para-hydrogen at 20 K
• H2O premoderator
• Be reflector
• Tightly coupled with the 

target (10 mm gap)
• Serving 12 + 6 instruments

Cylindrical moderator

Tube moderator Target

Target shaft

40 cm

Beam

HPMB

HPMT
HMOD

TPMT

Be reflector

Premoderator
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STS Moderator Performance 

• Tube moderator delivers superior brightness to eventually 6 instruments
• Cylindrical moderator has superior time resolution (event. 12 instruments)

Factor 20 FTS

FWHM

Peak brightness

Time-integrated brightness

Factor 3 FTS
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Motivation

• We need to solve problems with 
   many design parameters

– Moderator dimensions
– Target dimensions
– Beam footprint on target

• We need coupled neutronics and structural stress optimization
– Optimal parameters for separate neutronics and structural analyses can differ greatly
– Improved structural integrity reduces neutronics performance

• Such complex studies rarely done in the past

• New tools required for efficient STS optimization

Beam

50 kJ /
short 
pulse
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Filling volumes with SpaceClaimParametrization with CREO Unstructured Mesh (UM) 
generation with Attila4MC

MCNP6

DAKOTA
Optimization

Hybrid UM/CSG MCNP model

Neutronics 
analysis

WINDOWS

LINUX

Unstructured mesh based automatic optimization workflow

L. Zavorka et al., An unstructured mesh based neutronics optimization workflow, NIM A 1052 (2023) 168252. 

O
PT

IO
N

AL Structural
analysis

Sierra & Cubit
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Unstructured mesh based automatic optimization workflow

• Direct CAD to MCNP model conversion
– Fast, efficient, reduces potential for introducing errors

• High-fidelity neutronics models
– High-quality data with high spatial resolution (UM serves as a mesh tally)

• Results (heating, dpa, …) available for subsequent analyses
– Direct export/import for structural stress/dynamic FEA
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Unstructured mesh based automatic optimization workflow

• Scripted model re-generation, conversion to UM, MCNP input generation
– CREO/Solidworks, SpaceClaim, Attila4MC, MCNP, Sierra, Dakota run from a command line

• Controlled by in-house bat/bash scripts on Win/Linux

• On-line data analysis

• Captures errors, restarts if necessary
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Unstructured mesh based automatic optimization workflow

• Controlled by Dakota Software Toolkit (free download from Sandia Natl. labs)

• Parameter and sensitivity study

• State-of-the-art optimization methods (efficient global, …)

• Multi-objective optimization

DAKOTA
Keeps selecting new 
design parameters 
until convergence

Your simulation code (MCNP6)

INPUT-file
• Define optimization 

problem
• Interface to your 

simulation code

OUTPUT-file
• Optimal point
• Raw data

PARAMS.IN RESULTS.OUT
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Key features

• Only one parametric solid CAD engineering model is necessary
– Contains all the details + provides detailed results
– The same CAD model is used both for neutronics and FEA
– No manual conversion to an MCNP model (potential error reduction)

• Reduction of the time per one iteration from weeks/months to hours

• Many more design options can be explored and analyzed

• Efficient optimization (=fewer iterations) of the coupled problems with a 
large number of design parameters (>10)
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Applications

• Neutronics optimization of the moderator-reflector assembly
– 10 geometry parameters 

• Neutronics and structural optimization of the target
– 6 geometry parameters

• Coupled Target + Moderator + Beam optimization
– 10 geometry parameters for the moderator
– 12 geometry parameters for the target
– 4 parameters for the beam on target



1313

Original MCNP PSTUDY vs novel UM based optimization

~5-10% performance difference when using a simple vs. high-fidelity model

UM models contain variable 
thicknesses of the walls to 
withstand H2/H2O pressure
   ~15% difference Courtesy Jim Janney, ORNL STS
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Neutronics optimization of the moderator-reflector

40 iterations

110 iterations

Pareto front

Multi-objective
optimization

T

P

U

C
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Coupled neutronics and structural optimization of the target
• Neutronics performance
• Detailed energy deposition distribution from MCNP as input to FEA

• Evaluation of the Factor of Safety (FOS)
– Measure for the mechanical performance of the target (irradiated after 10 years of operation)
– Goodman diagram of a failure theory extracted from dynamic response

Courtesy Tom Mcmanamy, ORNL STS

FOS 1.28
FOS 1.79

For illustration only For illustration only

For illustration only

For illustration only

For illustration only
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Coupled neutronics and structural optimization of the target
FOS

Brightness

FOS Brightness

Pareto fro
nt

SG Profile σx= 1.98 cm, σy=5.17 cm;
90 % of the beam within ~62 cm2

σx

Simple monolithic 
target design

σy

HR
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“Cheese wedge” target design

Coupled neutronics and structural optimization of the target

Brightness

FOS

Target height [mm]

Target height [mm]

Be
am

 fa
ct

or
 [-

]
Be

am
 fa

ct
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]

SG Profile σx= 1.98 cm, σy=5.17 cm;
90 % of the beam within ~62 cm2

σx

σy Beam factor = 

Large beam factor is
small 𝝈𝒚 for a chosen target height

Target height
sy

3D view
Horizontal Vertical
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Coupled Target + Moderator + Beam optimization
Lasagna target design 

Pareto front
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Conclusion

• Developed an automated optimization workflow for coupled neutronics 
and structural stress analyses

• Reduced time per one iteration from weeks/months to hours

• Reduced number of necessary iterations

• Optimized moderators and several target designs

• Getting more efficient and moving towards more complicated problems

• Essential tool in the STS design process

• Can be applied at other facilities 
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Thank you !
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Backup slides
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Two approaches possible: Unstructured Mesh (UM)

~2M cells

• Efficient, accurate, but requires more RAM and longer computation time
• Necessary for generating Weight Windows with Attila4MC
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Hybrid UM/Constructive Solid Geometry (CSG) model
CSG skeleton UM/CSG

Predefined
universe

• More efficient use of RAM and faster computation time
• Requires longer time to build
• Can use Weight Windows from Attila4MC

UM



2424

STS Design

9 m

6 
m

Target & moderators

Target shaft

Core vessel

Proton beam window

Shielding

Target viewing periscope

Moderators

Target



2525

STS Design

The pathway to high brightness:
• Compact target and neutron production zone
• Tight coupling between target and moderators
• Reduce the size of the moderator emission surfaces
• Use para hydrogen as moderator material
• Include water premoderator
• Develop and use state-of-the-art optimization tools

Flip side of the coin:
• High structural stress
• Reduced total neutron intensity



2626

STS Cylindrical Moderator Design

• 2D geometry configuration
• 16 beam lines
• 3 x 3 cm2 viewed area
• Originally optimized for 

peak brightness
• Key parameters:

– Moderator radius
– Premoderator radius
– Premoderator thickness
– Beryllium radius
– Moderator position

RMOD

Beryllium reflector

Water premoderator

Hydrogen moderator

RBe
TPM
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STS Tube Moderator Design

• 1D geometry configuration
• 6 beam lines
• 32 x (𝜋/4) cm2 viewed area
• Originally optimized for 

time-integrated brightness
• Key parameters:

– Tube length
– Tube radius
– Premoderator thickness
– Beryllium radius
– Moderator position

Tube moderator concept proposed by Franz Gallmeier:
“A Liquid Hydrogen Tube Moderator Arrangement for STS”, 2018

T
LEN
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Preliminary STS KPPs

USA
Asia
Europe

Planned
Existing

l = 5 Å
SNS-STS ESS 

(5 MW)

ESS 
(2 MW)

J-PARC
SNS-FTS (2 MW)

CSNS

SNS-FTS
ISIS TS2

ISIS TS1
HFIR

ILLFRM-II

NIST
SONATE (est.) PSI

ORPHEE

LUJAN

short-pulse

long-pulse

steady-state

• STS objective is to become the 
highest peak-brightness source 
of cold neutrons in the world
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