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The combination of the Rietveld method together with a modeling of the peak shape is 

extremely useful when the materials under study suffer from bad crystallization. The presence 

of structural defects like dislocations, stacking faults, anti-phase domains, micro-strains and 

small crystallite sizes manifests in the diffraction pattern by a broadening of the Bragg peaks. 

In most cases the Voigt approximation for peak broadening is sufficient to get quantitative 

explanation of the existing defects through the different hkl and angular dependence of the 

broadening. In this paper we give an introduction to the treatment of microstructural effect 

using the program FullProf. 

 

Introduction 

 

The microstructural effects within FullProf are treated using the Voigt approximation: both 

instrumental and sample intrinsic profiles are supposed to be described approximately by a 

convolution of Lorentzian and Gaussian components. The TCH pseudo-Voigt profile function 

[1] is used to mimic the exact Voigt function and it includes the Finger‘s treatment of the 

axial divergence [2]. The integral breadth method to obtain volume averages of sizes and 

strains is used to output a microstructural file where an analysis of the size and strain 

contribution to each reflection is written. No physical interpretation is given by the program; 

only a phenomenological treatment of line broadening in terms of coherent domain size and 

strains due to structural defects is performed. The user should consult the existing broad 

literature to go further in the interpretation of the results. A recent book [3], gathering 

different articles, is a good introduction to microstructural problems. 

 

Some useful expressions for microstructural analysis 

 

A particular peak shape will be generally denoted as ( )x , the argument is x T T  h , (T is 

the scattering variable and Th the Bragg position) and the FWHM will be called H.  

Let us define explicitly the most important parameters defining the relevant peak shapes for 

microstructural analysis. The Voigt approximation is based on the assumption that the 

contribution of microstructural effects to the final peak shape can be approximated by a Voigt 

function: convolution of a Gaussian and a Lorentzian. The normalized Gaussian function is 

defined as: 

  

 2( ) exp( )G GG x a b x   (1) 
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The normalized Lorentzian function is defined as: 
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where: 
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The integral breadth of the Lorentzian function is: 
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It is important to realize that the requirement of normalization (i.e. ( ) 1x dx



  ) is essential 

in a Rietveld program than can automatically perform quantitative phase analysis. This 

requirement is not common in the literature on microstructural analysis, where the parameters 

aG and aL are taken as the height of the peak. See the appendix for the relations between the 

parameters defining the both the normalized and non-normalized pseudo-Voigt functions. 

  

The Voigt function defined as the convolution of a Lorentzian and a Gaussian: 

 

 ( ) ( ) ( ) ( ) ( )V x L x G x L x u G u du



     (3) 

where ( )L x  and ( )G x  have different FWHM ( LH  and GH , respectively). The shape of the 

Voigt function is determined by the relative importance of the two components ( , )L GH H . The 

Voigt function can be written in a closed form in terms of the complex error function and the 

integral breaths of the Lorentzian ( L ) and Gaussian components ( G ): 

( ) ( , , ) ( , , )L G L GV x V x H H V x     
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where: 

 
2

0

2
( )

x
terf x e dt



   (5) 

 

The pseudo-Voigt function, ( )pV x , is an approximation of the Voigt function that substitutes 

the two shape parameters LH  and GH  by the pair ( , )H : 

 

 ( ) ( ) (1 ) ( ) 0 1pV x L x G x         (6) 

 

The ( )pV x  function is a linear combination of a Lorentzian ( )L  and a Gaussian ( )G  of the 

same FWHM ( )H , so there are two parameters characterizing the peak shape: 

( ) ( , , )pV x pV x H . If L’(x) and G’(x) are normalized, ( )pV x  is also normalized. It is easy 

to verify that the FWHM is the same for L(x), G(x) and pV(x). 



The integral breadth of a normalized pseudo-Voigt function is just the inverse of the 

maximum value. If the function is multiplied by a constant (integrated intensity) the integral 

breadth doesn’t change: 
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Numerically it is more easy and fast to calculate the pseudo-Voigt approximation (6) instead 

of directly using the expression (4). The mapping between the pairs ( , )L GH H  and ( , )H  can 

easily be obtained using the numerical approximation provided by TCH expressions [1]:  

 

( , ) ( , )G LH F H H   (8) 
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The inversion of the above two expressions leads to the relations: 

 
1( , ) ( , )G LH H F H   (11) 
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The integral breath of the Voigt function is then calculated using the expression (7) of the 

pseudo-Voigt approximation, through the previous calculation of ( , ) ( , )G LH F H H   using 

the expressions (9) and (10). 

The intrinsic profile of a particular reflection due to size effect has an integral breadth S , the 

Scherrer formula: 
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gives the volume-averaged apparent size of the 

crystallites in the direction normal to the scattering 

planes. This apparent size has a perfectly defined 

physical interpretation: 
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or in terms of the normalized column-length distribution pV(L): 
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Figure 1 : Scheme for interpreting the 
apparent size of a particular grain (see 

text). 
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The integrals (15) give the average for all crystallites of the sample in reflection position (N) 

of the volume average of the length of the cords (column-length) normal to the scattering 

planes for each crystallite. It is clear that the relation of the apparent size with physical 

dimensions of the coherent domains is not direct. We should normally assume a particular 

average shape of the crystallite (e.g. spheres) in order to relate the apparent sizes obtained for 

different Bragg reflections with characteristics dimensions (e.g. diameter). 

 

The intrinsic profile of a particular reflection due to a strain effect has an integral breadth D , 

the apparent strain is defined as cotD    [4]. We shall use the so-called maximum strain, 

which is derived from the apparent strain as: 
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The relation of this definition of strain with the root-mean-square (RMS) strain can be found 

in the literature [3]. In the Voigt approximation the mean-square strain can be written in terms 

of the Gaussian and Lorentzian components and the distance L separating two cells along the 

normal to the scattering planes. If L is the undistorted distance and L is the distortion, the 

local strain is (L)= L/L, so the mean-square strain is: 
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The treatment of microstructural effects within FullProf 

 

There is a new file containing information about the microstructure (extension “.mic”) that is 

output only if the user provides an input file containing the instrumental resolution function 

(IRF, see manual for the different ways of giving resolution parameters). At present, this 

option works only for constant wavelength mode. 

The FWHM of the Gaussian ( GH ) and Lorentzian ( LH ) components of the peak profile have 

an angular dependence given by: 
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If the user provides a file with the IRF, the user should fix V and W to zero, then the rest of 

parameters in the above formula have a meaning in terms of strains ( , ,DU Xα ) or size 

( , ,G ZY I α ) . The functions ( )ST DD α  and ( )ZF α  have different expressions depending on the 

particular model used of strain and size contribution to broadening. The parameter   is a 

mixing coefficient to mimic Lorentzian contribution to strains.  

 



The anisotropic strain broadening is modeled using a quartic form in reciprocal space. This 

corresponds to an interpretation of the strains as due to static fluctuations and correlations 

between metric parameters [5].  
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The metric parameters i  (direct, reciprocal or any combination) are considered as stochastic 

variables with a Gaussian distribution characterized by the mean i  and the variance-

covariance matrix ijC . Here we consider the set:    , , , , ,i A B C D E F  .The position of the 

peaks is obtained from the average value of hklM  given by:  ;hkl iM M hkl . The 

broadening of the reflections is governed by the variance of hklM : 
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Where the non-diagonal terms may be written as product of standard deviations multiplied by 

correlation terms: ( , )ij i jC S S corr i j . This original formulation can be used with a total 

control of the correlation terms that must belong to the interval [-1, 1]. When using this 

formulation the user cannot refine all parameters (up to 21) because some of them contribute 

to the same term in the quartic form in reciprocal space, however this allows a better 

interpretation of the final results. Taking the appropriate caution one can test different degrees 

of correlation between metric parameters. There are several special formulations, within 

FullProf, for working with direct cell parameters instead of using reciprocal parameters. 

 

A useful notation corresponding to a grouping of terms was proposed by Stephens [6] who 

also included a phenomenological Lorentzian contribution to the microstrains (the parameter 

  in the equation 19). The final grouping of terms simplifies to: 

 

              

 

2

2

2

2 2 2 2

4

H K L

hkl HKL

HKL
H K L

h

k

l
M h k l kl hl hk C S h k l

kl

hl

hk



  

 
 
 
 

  
 
 
  
 

    (22) 

 

The Stephens’ notation can also be used within FullProf. A maximum of 15 parameters can 

be refined for the triclinic case. Whatever the model used for microstrains the mixing 

Lorentzian parameter,  , may be used. In FullProf the function 2 ( )ST DD α , being Dα  the set of 

parameters ijC or HKLS , is given by: 
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An example of anisotropic strain refined 

using this formulation is shown in Figure 

2, where the neutron diffraction pattern of 

the low temperature phase of Nd2NiO4 is 

refined using the diffractometer D2B at 

ILL [7]. 

 

Concerning anisotropic size broadening it 

is possible to use a very general 

phenomenological model, using the 

Scherrer formula, that considers the size 

broadening can be written as a linear 

combination of spherical harmonics 

(SPH). At present the anisotropic size is 

supposed to contribute to the Lorentzian 

component of the total Voigt function. A 

Gaussian contribution will be introduced 

using a mixing parameter similar to that 

used for anisotropic strain. The explicit 

formula for the SPH treatment of size 

broadening is the following: 
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Where h  is the size contribution to the 

  S_400     S_040      S_004     S_220

22.04(78) 17.74(57)  0.016(2)  -38.8(1.2)

Lorentzian Parameter:  0.093(2)

Nd2NiO4, LT

A-strain h k l

43.4585  0 1 2

48.1172  1 0 2

 7.1018  1 1 0

 5.9724  1 1 1

 4.1383  1 1 2

 9.7952  0 0 4

 4.0162  1 1 3

79.5271  0 2 0

87.5578  2 0 0

 
Figure 2: High angle part of the neutron powder 

diffraction pattern (D2B, ILL) of the low temperature 

phase of Nd2NiO4 [11]. (top) Comparison of the 
observed pattern with the calculated pattern using the 

resolution function of the diffractometer. (bottom) 

Observed and calculated pattern using an anisotropic 

model of strains with non-null values given in the 

panel. A list of apparent strains (x 10-4), extracted from 

the microstructure file, for a selected number of 

reflections is also given. 

Figure 3: Simulated “observed” powder 

diffraction pattern corresponding to a single 

component (tetragonal aluminum oxide) of a 

multiphase real sample containing crystallites of 

nanoscopic size. The observed pattern has been 

calculated using the parameters determined for 

the  real material.  (a) Comparison of the 

instrumental resolution function of a CuK

powder diffractometer with the “observed” 

pattern, (b) Rietveld refinement using an 

isotropic model, (c) Rietveld refinement using 

spherical harmonics

(a) (b)

(c)Figure 3: Simulated “observed” powder 

diffraction pattern corresponding to a single 

component (tetragonal aluminum oxide) of a 

multiphase real sample containing crystallites of 

nanoscopic size. The observed pattern has been 

calculated using the parameters determined for 

the  real material.  (a) Comparison of the 

instrumental resolution function of a CuK

powder diffractometer with the “observed” 

pattern, (b) Rietveld refinement using an 

isotropic model, (c) Rietveld refinement using 

spherical harmonics

(a) (b)

(c)

 



integral breadth of reflection h, and  ,lmpy  h h
 are the real spherical harmonics with 

normalization as in [8]. The arguments are the polar angles of the vector h with respect to the 

Cartesian crystallographic frame. After refinement of the coefficients lmpa  the program 

calculates the apparent size (in angstroms) along each reciprocal lattice vectors if the IRF is 

provided in a separate file. 
 

In Figure 3 we can see the aspect of the 

refinement of a diffraction pattern 

corresponding to a tetragonal material 

(aluminum oxide) and, in  Figure 4, the 

visualizing of the results obtained by 

reading with GFourier  [12] the output 

binary file generated with FullProf when 

Jvi=5 

 

An important type of defects that give rise 

to size-like peak broadening is the presence 

of anti-phase domains and stacking faults. 

These defects produce selective peak 

broadening that cannot be accounted using a 

small number of coefficients in a SPH 

expansion. In fact only a family of 

reflections verifying particular rules suffers 

from broadening. For such cases there are a 

number of size models built into FullProf 

corresponding to particular sets of 

reflections that are affected from 

broadening. In Figure 5 it is represented the 

case of Pd3MnD0.8 [9] of structure similar to 

Au3Mn and showing the same kind of 

defects: anti-phase domains [10].  

In Figure 6 a portion of the final 

microstructural file is shown. 

 

Other models for size broadening in 

FullProf following particular rules for each 

(hkl) are available. Moreover an anisotropic 

size broadening modeled with a quadratic 

form in reciprocal space is also available. 

The expression presently used in FullProf is 

the following: 

 

 2 2 2 2

s 1 2 3 4 5 6( ) k  d  ZF h k l kl hl hk          α  

 
Figure 5: Portion of the neutron diffraction pattern of 

Pd3MnD0.8 at room temperature obtained on 3T2 

(LLB,  = 1.22 Å). On top, the comparison with the 

calculated profile using the resolution function of the 

instrument. Below the fit using IsizeModel = -14. 

Notice that only the reflections with indices of 

different parity are strongly broadened. An isotropic 

strain, due to the disorder of deuterium atoms, is also 

included for all kind of reflections. 
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The visualization of the average crystallite 

shape is done by using GFOURIER to read 

the binary file: myPCR_size_n.bin 

generated when an IRF file is used and Jvi=5
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Figure 4: Visualisation of the average crystallite 

shape obtained from refinement of spherical 

harmonics coefficients in a tetragonal material. 



Where ks is defined as ks=360/
2
   10

-3
 for the 2 space and ks=2/  Dtt1 10

-3
 for TOF and 

Energy space. Simple crystallite shapes as infinite platelets and needles (IsizeModel = 1 

and –1, respectively) are also available. 

 

Together with the size broadening models 

built into FullProf and described above, 

there is another way of fitting independent 

size-like parameters for different sets of 

reflections. The user may introduce his 

(her) own rule to be satisfied by the 

indices of reflections provided the rule can 

be written as a linear equality of the form: 

1 2 3 4 5n h n k n l n n n    . Where n  is an 

arbitrary integer and ( 1,2,...5)in i   are 

integers given by the user. A size 

parameter is associated to each rule (a 

maximum of nine rules may be given per 

phase) that may be refined freely or 

constrained using the codewords 

appropriately. 

 

To access this option in FullProf the value 

of IsizeModel should be in the interval 

[-2,-9]. The absolute value of 

IsizeModel corresponds to the number 

of rules (independent parameters) to be 

given. If all ni=0 the rule is not used. To 

!  MICRO-STRUCTURAL ANALYSIS FROM FULLPROF (still under development!) 

!  ================================================================== 

!  Pattern No:  1 Phase No:   1 Pd3MnD.8 - CFC 

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 

!  Integral breadths are given in reciprocal lattice units (1/angstroms)x 1000 

!  Apparent sizes are given in the same units as lambda (angstroms) … 

!  Apparent strains are given in %% (x 10000) (Strain= 1/2 * beta * d) 

!  An apparent size equal to 99999 means no size broadening 

............................................................................. 

! 

!  The standard deviations appearing in the global average apparent size and  

!  strain is calculated using the different reciprocal lattice directions. 

!  It is a measure of the degree of anisotropy, not of the estimated error 

 

 ...   betaG     betaL ...  App-size App-strain    h     k     l     twtet ... 

 ...  1.4817   11.5859 ...     93.58   41.6395     1     0     0   17.7931 ... 

 ...  2.0954   11.9584 ...     93.58   41.6395     1     1     0   25.2665 ... 

 ...  2.5664    1.5573 ...  99999.00   41.6395     1     1     1   31.0743 ... 

 ............................................................................. 

 ...  4.6855   13.5301 ...     93.58   41.6395     3     1     0   58.5562 ... 

 ...  4.9142    2.9820 ...  99999.00   41.6395     3     1     1   61.7169 ... 

 ...  5.1327    3.1146 ...  99999.00   41.6395     2     2     2   64.7864 ... 

 ...  5.3423   13.9286 ...     93.58   41.6395     3     2     0   67.7802 ... 

 ...  5.5440   14.0510 ...     93.58   41.6395     3     2     1   70.7114 ... 

 ............................................................................. 

 

Figure 6:  Portion of the microstructural file (extension mic) corresponding to the fitting of the neutron 

diffraction pattern in Figure 5.  
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Figure 7: Selective size broadening observed by 
neutron diffraction at room temperature (3T2, LLB) 

for superstructure reflections in Ca2MnO4[11]. (top) 

Size parameter fixed to zero. (bottom) Single size 

parameter according to the rule (hkl), l=2n+3. The 

indices of the most intense Bragg reflections affected 

by size broadening are also given. 



give a single rule one must put IsizeModel = -2 and put zeros for the last condition. This is 

needed in order to avoid the confusion with the case of an infinite needle. In Figure 7 we give 

an example using IsizeModel = -2 and if Figure 9 the relevant part of the PCR file is 

written. 

 

Finally, a general formulation for peak shifts, due to defects or to residual stresses, has also 

been implemented. For JSOL0, the lines corresponding to shift parameters are read in the 

PCR file. Selective shifts can be selected when IShif  -1. For this option a set of up to 

ABS(IShif) (10) lines can be given. The lines define rules to be satisfied by reflections 

undergoing shifts with respect to the theoretical Bragg position due to some kind of defects 

(stacking and twin faults for instance).  The rules are similar to those of selective size 

broadening discussed above. The positions of the reflections satisfying the rules are displaced 

according to the expressions: 
 

2S  =2B + 2 Shift d
2
 tan  10

-2
  (2 space) 

TOFS=TOFB  Shift d
3
 Dtt1  10

-2
  (T.O.F. space) 

ES=EB  Shift/(2d) Dtt1  10
-2

  (Energy space) 
 

Where the index B stands for the theoretical Bragg position of the non-defective material and 

Shift is the shift parameter to be refined.  

The shift of Bragg reflections may also be due to external stresses or residual stresses. For 

those cases it is more appropriate to use the following generalized model for shifts. The model 

is implemented for IShif = 100+NumLaue (with NumLaue the number of the Laue class 

according to FullProf manual) , and a set of parameters corresponding up to quartic form in 

hkl can be refined. The position of a reflection is displaced according to the expressions: 

 

2S  =2B + 2 Sh d
2
 tan  10

-2
  (2 space) 

TOFS=TOFB  Sh d
3
 Dtt1  10

-2
  (T.O.F. space) 

ES=EB  Sh /(2d) Dtt1  10
-2

  (Energy space) 

 

The expression used for calculating the scalar Sh for reflection h is given by: 

 

{ 2} { 4}

2 4h

H K L H K L

HKL HKL

H K L H K L

S D h k l D h k l
     

    

 

The free parameters for this option are the sets 2HKLD and 4HKLD . To refine these parameters 

the average cell parameters of the non-stressed material should be fixed during the 

refinement. 

 

Finally, in the desperate case where a simple rule for the hkl dependency of peak broadening 

and shifts cannot be easily obtained, there is the possibility of relaxing the peak broadening, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . 

! Selective Size-Broadening: 

! hkl cond.      (n1.h + n2.k + n3.l=n n4 +/- n5)   Size-par      Code 

  0  0  0          0      0      1      2      3     9.61440   661.000 

  0  0  0          0      0      0      0      0     0.00000     0.000 

 

Figure 8: Portion of the PCR file for IsizeModel = -2 corresponding to the refinement in Figure 7. The 

first set of zeros below the text ‘hkl cond.’ is not used at present. 



with respect to the resolution function, and the shifts, with respect to the Bragg positions, for 

individual reflections. This can help in determining a posteriori a physical rule governing the 

behavior of broadening and shifts. An example of the relevant part of a PCR file in which this 

last option is used is given in Figure 9. 

 

 

Note: A non-negligible part of the present text has been previously published in [13]. 

 

 

Appendix 

 

The non-normalized pseudo-Voigt appears in many papers. Let us call the non-normalized 

function as: 

( ) ( ) (1 ) ( )n n n n npV x L x G x      (0) 1npV   

where: 

2

1
( ) (0) 1

1
n n

L

L x L
b x

 


 

2( ) exp( ) (0) 1n G nG x b x G    

 

The integral breadth of a non-normalized pseudo-Voigt function of peak intensity I0 and 

FWHM=H is given by: 

!----------------------------------------------------------------------- 

!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern# 1:  1.06 

!----------------------------------------------------------------------- 

 Myphase 

! 

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth     ATZ   Nvk Npr More 

   6   0   0 0.0 0.0 1.0   0   0   0   0   0     5050.20   0   7   1 

! 

!Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp  Nsp_Ref 

   0   0   0   0   0   0  1.0000  0.0000  0.0000  0.0000   1   3 

! 

P 3 1 c                  <--Space group symbol 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  0.00000  0.00000  0.07373  0.01902  0.00000  0.00000  0.00000  0.00000 

     0.00     0.00   251.00   241.00     0.00     0.00     0.00     0.00 

! Special reflections: 

!  h   k   l  nvk   D-HG^2    Cod_D-HG^2  D-HL   Cod_D-HL    Shift   Cod_Shift 

   1   0   1    0  0.00000       0.000  0.04417   551.000  -0.01236    561.000 

   2   0   0    0  0.00000       0.000  0.03056   571.000  -0.00274    581.000 

   3   0   1    0  0.00000       0.000  0.00759   591.000  -0.00119    601.000 

 

 

Figure 9: Portion of the PCR file when Nsp_Ref  0. In red there are the important parts concerned with 

this option. Notice that we need to give explicitly the indices (en eventually the propagation vector for 

magnetic structures) of the reflections suffering from anomalous broadening or shift. The Gaussian and 

Lorentzian broadening shifts with respect to the instrumental resolution width, as well as the shift with 

respect to the calculated value of the peak position using the cell parameters, are free variables. 
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(0) (0) 1
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1 1
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2 2 ln 2
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n
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L G
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

  

 
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
  



  
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  
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The integral breadth of a particular peak is independent of the formulation of the pseudo-

Voigt function. Both descriptions give the same FWHM and the same integral breadth, so the 

numerical relation between the  values is given by: 

 

Non-normalized: (1 )
2 2 ln 2

pVn n n

H H 
      

 

Normalized: 
2

(1 ) ln 2
pV

H


  


 
 

 

2
(1 )

2 2 ln 2 (1 ) ln 2
n n

H H H  
 

   
  

 
 

 

(1 ) ln 2
n




  

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ln 2

n

n n



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
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