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The FAULTS program is a powerful tool for the refinement of diffraction

patterns of materials with planar defects. A new release of the FAULTS

program is herein presented, together with a number of new capabilities, aimed

at improving the refinement process and evolving towards a more user-friendly

approach. These include the possibility to refine multiple sets of single-crystal

profiles of diffuse streaks, the visualization of the model structures, the

possibility to add the diffracted intensities from secondary phases as background

and the new DIFFaX2FAULTS converter, among others. Three examples

related to battery materials are shown to illustrate the capabilities of the

program.

1. Introduction

FAULTS is a profile refinement program that has been

developed to analyse the diffraction patterns of materials with

planar defects. It is based on the DIFFaX simulation program

developed by Treacy et al. (1991), which has been extended to

allow the refinement of all the parameters involved in the

calculation of DIFFaX diffracted intensities of powder

patterns through a minimization process. A similar software

was independently developed by Leoni et al. (2004). Addi-

tionally, FAULTS includes several modules from the Crys-

tallographic Fortran Modules Library (CrysFML; Rodrı́guez-

Carvajal & Gonzalez-Platas, 2003a,b).

The program FAULTS behaves like a Rietveld refinement

program in which the model for calculating the profile inten-

sities is not a simple crystallographic three-dimensional peri-

odic structure. The minimized function with respect to the set

of free parameters collected in the array a, like in the Rietveld

method, is

�2
¼
Pn
i¼1

wi yi � yc;iðaÞ
� �2

; ð1Þ

in which the calculated profile intensity at the point i, yc;iðaÞ, is

the convolution of the theoretically calculated intensity with

the resolution function of the diffractometer, and wi is the

inverse of the variance of the observed profile intensity yi (see

Appendix A for details).

Since the release of the first version (Casas-Cabanas,

Rodrı́guez-Carvajal & Palacı́n, 2006), the FAULTS program

has been successfully used for the refinement of many complex

faulted structures (see e.g. Casas-Cabanas, Rodrı́guez-

Carvajal, Canales-Vázquez & Palacı́n, 2006, Casas-Cabanas et

al., 2007; O’Malley, 2009; Kiefer et al., 2011; Knı́žek et al., 2015;

McCalla, Abakumov, Saubanère et al., 2015; McCalla,
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Abakumov, Rousse et al., 2015; Matsunaga et al., 2016a,b;

Shunmugasundaram et al., 2016). An upgraded version of the

original code, which includes a number of new features, is

herein presented together with three examples. Among the

novel features is the use of the Levenberg–Marquard algo-

rithm for minimization (instead of the simplex and simulated

annealing methods used in the previous version), which allows

a considerable speed-up of the computation time. Other useful

new features include the visualization of the model structures

with the program FullProf Studio (Rodrı́guez-Carvajal &

Chapon, 2004) or with VESTA (Momma & Izumi, 2011), the

possibility to include the diffracted intensities from secondary

phases as background, the refinement of background points

when treated as a polynomial, and the automatic conversion of

DIFFaX input files into FAULTS format using the

DIFFaX2FAULTS converter. We have also included the

possibility to refine multiple reciprocal lattice scans of single

crystals presenting defects.

Since the program has been completely reworked, three

examples are shown here to illustrate some of the new features

of FAULTS, and the corresponding input files are provided as

supporting information. The first example deals with the

simulation of O1-type stacking faults in the O3-type structure

of LixNiO2 (x < 0.3) (Croguennec et al., 2000a,b, 2001). This

material was studied as a cheaper alternative to LiCoO2 in Li-

ion batteries and was found to undergo an O3 (AB CA BC

oxygen stacking) to O1 (AB AB oxygen stacking) transition

upon Li+ extraction. Since slab gliding is at the origin of this

transition, stacking faults are formed, leading either to O3

domains with local O1 stacking faults or to O1 domains with

local O3 stacking faults. The diffraction pattern of O3-LixNiO2

with O1 structural defects has been simulated using FAULTS,

and the resulting pattern has been refined in order to test the

robustness of the new version of the program.

The second example refers to the related compound

Li2PtO3, isostructural to Li2MnO3 electrode material, which

also crystallizes in a layered structure with stacking disorder.

The FAULTS refinement of its experimental diffraction

pattern (Casas-Cabanas et al., 2007) has been revisited using

the new features included in this updated version of FAULTS

and a more realistic description of its defect structure has been

obtained.

The third example demonstrates that FAULTS is not

restricted to characterizing only layered structures but it is

rather intended for any structure that presents planar defects

(including three-dimensional frameworks). In this case, we

have refined the experimental X-ray diffraction (XRD)

pattern of a �-MnO2 sample which is used in commercial

alkaline primary batteries. Although the details of the struc-

tural arrangements of these electrode materials could be of

particular interest to correlate with their battery performance,

there has been up to now no method to characterize properly

their structural features. In fact, the X-ray patterns of the

electrochemically active MnO2 are usually of rather poor

quality and consist of a small number of sharp and broad lines.

A few patterns match more or less accurately that of the

pyrolusite mineral (rutile-type structure), while most exhibit a

strong resemblance to the diffraction pattern of ramsdellite

(de Wolff, 1959; Chabre & Pannetier, 1995). Herein we

demonstrate that the details of the structural arrangements of

these MnO2 materials can now be determined accurately using

FAULTS.

The upgraded version of FAULTS can be freely down-

loaded (see x5) to study these and other materials, for which

the exact determination of the parameters specific to their

different types of defects is essential to understand their

physical-chemical properties.

2. New features of FAULTS

2.1. Input file

The first step of any refinement using the program FAULTS

consists in defining a relevant set of layers to be stacked one

on top of the other through stacking vectors with certain

probabilities to describe the (ideal or faulted) structure. These

structural parameters, together with instrumental considera-

tions, are given in a free-format input data file, similar to that

of DIFFaX. The input file is created manually, although the

DIFFaX2FAULTS converter can now be used to adapt

existing DIFFaX input files.

Some new refinable parameters have been included in the

instrumental section to model experimental diffraction data

more accurately. These include �2 and the intensity ratio I2/I1,

zero shift, and other systematic 2� shifts with sin� or cos�
dependence (sample transparency coefficient and sample

displacement in �–2� diffractometers, respectively). As in the

first version of the program, the broadening of the theoretical

diffraction patterns is done by convoluting numerically with a

Voigt function using the approximation of Thompson–Cox–

Hastings (Thompson et al. 1987). See Appendix A for details.

The input file contains now several new optional subsec-

tions. The first one allows the description of an average unit

cell to generate all the Bragg positions in the output plot of

calculated and experimental patterns in the form of vertical

sticks, although this average unit cell is not used for the

pattern calculation. This option has been included for those

cases in which the cell parameters used in the FAULTS

description of the structure are different from those of the

original cell.

Another optional subsection is the possibility to generate an

output file suitable for FullProf Studio or VESTA to visualize

the model structure of the FAULTS input file. In this

subsection the user can decide how many layers and the exact

sequence to be plotted, which is particularly useful to validate

the model and avoid errors in the description of the crystal

structure and the corresponding stacking faults.

2.2. Background and secondary phases

The background can now be modelled as a polynomial of

refinable coefficients or can be subtracted after being

modelled by a linear interpolation of background points given

in a separate input file as in the first version of FAULTS.

computer programs
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Moreover, secondary phases can be included in the calcu-

lated pattern if separate free-format pattern files are provided

together with their refinable scale factors. The calculation of

the patterns corresponding to secondary phases can be done

straightforwardly by using FullProf (Rodrı́guez-Carvajal,

1993a,b) or any other Rietveld program that allows the

calculation of theoretical diffraction patterns. Thus, they will

be treated as background. A list of reflections for each of the

secondary phases can optionally be provided so as to include

them in the output plot of calculated and experimental

patterns in the form of vertical sticks. The program delivers

the phase fraction of each secondary phase, which is calculated

as the ratio of the diffracted area corresponding to each phase

and, therefore, is only valid provided that the composition and

density of the main and secondary phases are the same. In the

case of impurity phases of heterogeneous compositions a true

quantitative phase analysis is not currently possible. The

reason is that the lack of periodicity in the faulted phase

makes it complicated to put the scale factors on a common

footing. We are presently exploring the generation of the

calculated pattern with FullProf using a scale factor that may

be used together with the scale factor and average density and

composition of the faulted phase in order to perform a true

quantitative phase analysis.

2.3. Minimization algorithm

The minimization algorithm has now been changed from

the simplex and simulated annealing methods used in the

initial versions of FAULTS to the Levenberg–Marquard

Algorithm (LMA). This LMA calculation, also known as the

damped least-squares method, is a robust local minimization

method that allows a faster refinement. LMA does not take

into account boundary conditions and therefore the option of

giving upper and lower limits for the refinable parameters has

been suppressed.

This algorithm is applied to both single-crystal Q scans and

powder diffraction patterns. In the case of single-crystal scans

in reciprocal space, one can use several data files with different

reciprocal space directions simultaneously (see the manual for

details).

2.4. Output files

When a simulation is to be performed, the program creates

an output file either with the calculated powder pattern, with

streak patterns in the reciprocal space of a single crystal, or

with the calculated selected area diffraction pattern. The

former are free-format files that can be plotted with any

graphical interface (WinPLOTR can handle both directly;

Rodrı́guez-Carvajal & Roisnel, 1998; Roisnel & Rodrı́guez-

Carvajal, 2001), while the latter is an unsigned 16-bit image of

size 256 � 256. A progress report that contains a summary of

the information on the structural model read by FAULTS is

also generated.

When a refinement process is launched, the first output file

created at the end of the process contains the observed and

calculated profiles, together with the difference and the Bragg

reflections if an average cell has been described in the input

file (which will correspond either to the FAULTS unit cell or

to the average cell if included). Additionally, FAULTS

generates a progress report with the values of each refinable

parameter during the refinement process, and a new input file

in which the refined values of each refinable parameter have

already been updated so that it can now be used as input file to

continue with the refinement process.

In all cases, if the user has specified commands for the

drawing of the structural model, the program will create a file

to be fed into the visualization program FullProf Studio or

VESTA.

3. Case studies

3.1. LixNi1.02O2 example

LiNiO2 has been extensively studied as a replacement for

isostructural LiCoO2 as an Li-ion positive electrode material

owing to its lower cost and higher practical capacity. Both

crystallize in a structure consisting of three NiO2 slabs per unit

cell, with an AB CA BC oxygen stacking sequence and lithium

ions located in the octahedral sites of the interlayer spaces

(R3m space group, O3 structural type according to Delmas’

notation; Delmas et al., 1980) (see Fig. 1a). Li1�xNi1+xO2 is

usually obtained since there is a tendency towards loss of

lithium and nickel reduction to NiII+ (Rougier et al., 1996). The

excess nickel is located in the lithium layers owing to the

similarity in size to lithium, resulting in poor electrochemical

performance (Ohzuku et al., 1993; Delmas et al., 1997).

Lithium can be reversibly extracted from/inserted into the

computer programs
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Figure 1
(a) Ideal structure of LiNiO2 with O3 stacking and (b) proposed
structural model for LixNi1.02O2 with O1 stacking faults as visualized
using FullProf Studio (Rodrı́guez-Carvajal & Chapon, 2004). Grey, red
and yellow balls represent the nickel, oxygen and lithium atoms,
respectively.



structure concomitant to several phase transitions that occur

through slab gliding. In particular, highly deintercalated

LixNi1.02O2 (x < 0.3) also crystallizes in an O3-type layered

structure (Croguennec et al., 2001). In FAULTS, this can be

described with three structurally identical layers (Layer 1,

Layer 2 and Layer 3), containing an NiO2 slab and a lithium

interslab, but shifted with respect to each other by the tran-

sition vectors t12 = t23 = t31 = (2/3 1/3 1/3), with a stacking

probability of 1 for each transition.

A second phase, with AB oxygen stacking sequence (O1

structural type), is also formed at low Li content (Croguennec

et al., 2001). For the O3 phase, as soon as lithium ions are

removed from the interslab space, O1-type faulting occurs

locally. The real structure of the O3 phase has thus been

proposed to consist of 5% O1 stacking faults in the O3

structure from DIFFaX simulations (Croguennec et al., 2001).

In FAULTS, these defects require the definition of a new

type of layer, structurally different since these layers do not

contain any lithium. Therefore, three more layers (Layer 4,

Layer 5 and Layer 6) are defined in the faulted structure,

structurally identical to each other but different from the

previous ones, and new transitions [t14 = t25 = t36 = (0 0 1/3)]

are allowed in order to describe the defects (see Fig. 1b).

By means of the structural model described above,

FAULTS was first used to simulate a diffraction pattern of a

defective LixNi1.02O2 structure with the parameter values

described in Table 1. The background, number of counts and

Poisson noise were generated using an offset value of 150.0

and a scale factor of 1.0. Then, in a second stage, the obtained

simulated XRD pattern was used as input data to be refined in

order to analyse and test the program. The initial values of the

parameters to be refined in the starting structural model were

chosen to be far enough from the correct ones so as not to bias

the results, as shown in Table 1 and Fig SI1 (in the supporting

information). The refinement was done by means of the LMA

minimization algorithm, restraining the program to a

maximum of 2400 function evaluations and a criterion of

convergence of a difference between consecutive �2 of less

than 10�5. The starting Rp and �2 values were 45.62% and

186.38, respectively, and at the end of the refinement the final

values were 4.86% and 1.03, respectively, with a refinement

duration of 1 min and 55 s (using an Intel Core i5-3470S

processor CPU at 2.90 GHz with 4.00 GB of RAM). Fig. 2

presents a visual comparison between the calculated and the

simulated powder patterns and their difference, and Table 1

compares the initial and final values of the refined parameters.

The values of the refined parameters are very close to those

used in the simulation and lead to an XRD pattern practically

identical to the simulated one (Fig. 2). The evolution of the a

and b cell parameters and of �2 and Rp throughout a run of 12

iteration cycles is shown in Fig. 3. The plot shows the

convergence of the cell parameter values towards the value

used in the simulation and the concomitant decrease of Rp

and �2.

3.2. Li2PtO3 example

Similarly to the previous example, the structure of Li2PtO3

(whose formula can also be written as Li[Li1/3Pt2/3]O2) can be

computer programs

4 of 11 Montse Casas-Cabanas et al. � FAULTS J. Appl. Cryst. (2016). 49

Table 1
Starting and final values of the parameters refined in the analysis of the
simulated data of LixNi1.02O2.

Refinement

Refined parameters Simulation Initial values
Final values
(standard deviation)

a, b (Å) 2.81540 2.86540 2.81635 (5)
c (Å) 13.36300 13.26300 13.3643 (6)
zO1 0.07133 0.17133 0.0722 (1)
zO2 �0.07133 �0.17133 �0.0722 (1)
zO3 0.07133 0.17133 0.0984 (6)
zO4 �0.07133 �0.17133 �0.0984 (6)
�12, �23, �31 0.85800 1.00000 0.8631 (6)
�14, �25, �36 0.14200 0.00000 0.1369 (6)
�42, �53, �61 0.85800 1.00000 0.879 (4)
�44, �55, �66 0.14200 0.00000 0.121 (4)

Figure 2
Comparison of the X-ray diffraction patterns corresponding to the
FAULTS analysis of the simulated data of LixNi1.02O2: simulated pattern
(dotted red curve) and calculated pattern using the FAULTS refinement
(continuous black curve). The curve underneath shows the difference
between them. The vertical bars show the positions of the Bragg
reflections of the R3m average unit cell (the one used to describe the ideal
O3 structure of LiNiO2).

Figure 3
Evolution of the cell parameters a and b and of the agreement factors Rp

and �2, as a function of the cycle number during the refinement of the
simulated data of LixNi1.02O2.



described as [Li1/3Pt2/3]O2 slabs with lithium ions located in the

interlayer space. In this case, however, lithium and platinum

atoms of the same slab exhibit in-plane order in the form of a

honeycomb owing to their different size (Fig. 4a), which

results in the appearance of superstructure reflections in the

diffraction pattern, especially in the region 2� = 17–32�. These

superstructure reflections often appear broadened and adopt

the so-called Warren shape, which is indicative of significant

stacking disorder. The ideal structure can be indexed using the

C2/m space group (Casas-Cabanas et al., 2007; O’Malley et al.,

2008) and cell parameters a = 5.190 (4), b = 8.983 (2), c =

5.112 (3) Å and � = 109.9 (1)� (Fig. 4b). This description is

usually used for most Li2MO3 materials (M = transition metal)

(Charenton & Strobel, 1988; Bréger et al., 2005; O’Malley et

al., 2008; Boulineau et al., 2009), although this simplified

description does not take into account the particular features

along the stacking direction.

In previous work (Casas-Cabanas et al., 2007) the experi-

mental X-ray diffraction pattern of an Li2PtO3 sample was

refined using the first version of the FAULTS program. The

real structure was described using the FAULTS program with

a structural model built using four different layers: three

structurally identical layers containing lithium and platinum

atoms and a fourth layer with the rest of the lithium and

oxygen atoms. The three identical layers were required to

describe the rotational displacements (0, 1/3, 0) and (0, �1/3,

0) that were found to be at the origin of stacking faults and

that were included in terms of stacking transition vectors

(Figs. 4c and 4d). In order to gain computational speed, the

cell was transformed into a smaller primitive triclinic unit cell

with cell parameters a = 5.1874, b = 5.1874, c = 5.1123 Å, � =

80.193, � = 99.807, � = 60.039� obtained from the transfor-

mation: a0 = 1/2(a + b), b0 = 1/2(a� b), c0 = c (Fig. 4b). Our best

fit was obtained for a sample with similar stacking prob-

abilities for the three types of Li/Pt layers (39.5, 30.4 and

30.1%), but an explicit sequence of layers was needed in order

to avoid excessive broadening of the peaks at 2� = 20–25�.

Since it is unlikely that all measured particles share the same

stacking sequence, the refinement has now been re-examined

with the current version of the program [see Casas-Cabanas et

al. (2007) for experimental details of the Li2PtO3 sample]. A

two-phase model has now been used by including a defect-free

secondary phase. As previously mentioned, free-format

pattern files that are linked to a refinable scale factor can be

read and included as background in FAULTS. This secondary

phase would be at the origin of the sharpness of superstructure

reflections despite having a pronounced Warren fall caused by

the defects of faulted particles.

As in our previous refinement the smaller primitive cell was

used and a new cell c parameter had to be calculated (c00 =

4.8069 Å) in order to have the stacking direction perpendi-

cular to the a and b axes, which in turn requires the correction

of atomic positions and stacking vectors with an additional

shift vector. In this model, however, a recursive stacking

sequence with an infinite number of layers was used to model

the faulted structure. The background was modelled by linear

interpolation of selected points, and two additional patterns

computer programs
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Figure 4
(a) Li/Pt structural layer in Li2PtO3 where the honeycomb ordering can
be visualized. (b) Ideal Li2PtO3 structure where C2/m and P1 unit cells
can be viewed as well as the stacking sequence used in FAULTS to
describe the structure. (c), (d) Hypothetical structure for Li2PtO3

following the stacking sequence 1 2 1 3 1 4 1 2 viewed from the b and
a axes, respectively. All structures were drawn using FullProf Studio
(Rodrı́guez-Carvajal & Chapon, 2004).

Figure 5
Comparison of the X-ray diffraction patterns corresponding to the
FAULTS analysis of Li2PtO3: experimental pattern (dotted red curve)
and calculated pattern using the FAULTS refinement (continuous black
curve). The curve underneath shows the difference between them. The
inset is an enlargement of the patterns at low 2�, showing the good fit of
the superstructure reflections.



were included as separate files to be added as background in

order to account for secondary phases: defect-free Li2PtO3 to

describe a material consisting of a mixture of faulted and non-

faulted particles (or areas); and Pt, since the studied sample

contained small residual amounts of precursor. These files

were generated using the FullProf program using the same cell

parameters as the FAULTS refined structure for the former,

and PDF file number 4-802 for the latter. A total of 39 inde-

pendent parameters were simultaneously refined, including

scale factors for each of the different phases, cell parameters,

atomic positions (except for Biso, which were fixed to the

values obtained from the Rietveld refinement), stacking

probabilities and stacking vectors. The final refinement results

using this alternative model are shown in Table 2 and Fig. 5.

The calculated phase fraction of the faulted material is

�77.3%. The refined stacking probabilities of this phase

describe a structure with a majority of ideal stacking

sequences, represented by transitions from layer 1 to layer 2,

with a refined probability of 63.5%; nevertheless, stacking

faults are significant, represented by transitions from layer 1 to

layers 3 and 4, with a probability of 14.6 and 21.9% respec-

tively. The goodness of the refinement is supported by the final

figure of merit R factor = 10.32% which is lower than that of

our previous refinement thanks to the use of secondary phases

and the combination of a faulted and a non-faulted phase of

similar structure. This new model describes well the experi-

mental XRD data and is more plausible than the explicit

stacking sequence used in our previous refinement (Casas-

Cabanas et al., 2007).

3.3. MnO2 example

Manganese oxide, MnO2, is probably one of the metal

oxides that show the largest structural complexity, as widely

discussed by Chabre & Pannetier (1995) in their extensive

review on this kind of material and by other authors in more

recent reports (Jouanneau et al., 2001; Balachandran et al.,

2003; Kim et al., 2006; Hahn et al., 2013). Manganese oxides

exhibit a diverse range of compositions and polymorphs. The

forms usually classified as �- and "-MnO2 are the electro-

chemically active forms of manganese oxide, which are

commonly used in battery applications. Generally, a few

diffraction patterns of these manganese oxides match more or

less accurately that of the pyrolusite mineral (rutile-type

structure), while most exhibit a strong resemblance to the

diffraction pattern of ramsdellite.

Both the pyrolusite and the ramsdellite structures present a

distorted hexagonal close packed array of oxygen atoms, in

which half of the octahedral sites are occupied by manganese

+IV. The two structures differ only in the arrangement of the

manganese atoms (Figs. 6a and 6b). The pyrolusite structure

presents single chains of edge-sharing MnO6 octahedra

running along the b axis; each chain is connected to four other

chains through the corners of its MnO6 octahedra. Conversely,

the ramsdellite structure is built on double chains of edge-

sharing MnO6 octahedra. As a result, the atomic arrangements

of the two structures are very similar in the a- and b-axis

directions; the difference resides in the arrangement along the

c axis.

On the basis of this observation, de Wolff proposed in 1959

to describe the structure of poorly crystallized samples of

�-MnO2 as an irregular intergrowth of pyrolusite and rams-

dellite elements (de Wolff, 1959). An illustration of a hypo-

thetical structure of this kind is given in Fig. 6(c). Such an

atomic arrangement, which would be later named ‘de Wolff

disorder’ by Chabre & Pannetier (1995), implies the absence

of long-range ordering along the c direction and explains why

the structure of these materials is not directly attainable by

conventional treatment of powder diffraction data. In 1995,

Chabre and Pannetier presented a pseudo-quantitative inter-

pretation of the XRD patterns of different MnO2 materials

based on the comparison of experimental data with numerical

simulation using the DIFFaX program (Treacy et al., 1991;

Chabre & Pannetier, 1995). They confirmed that most of the

polymorphs of manganese oxides (i.e. natural, chemically

prepared, electrochemically prepared �- and "-MnO2) can be

described as ramsdellite-type compounds containing various

computer programs
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Table 2
Refined structural model of the sample of Li2PtO3.

Cell: a0 = 5.18616 (5), b0 = 5.18616 (5), c0 0 = 4.81316 (3) Å, � = 90, � = 90, � =
60.030 (1)�.

Layers.

Atom x/a0 y/b0 z/c0 0 Biso (Å2) Occupancy

Layer 1 LiI+ 0 0 0 0.7 1.0
LiI+ 0.35 (5) 0.35 (2) 0 0.7 1.0
LiI+ 0.660 (2) 0.660 (4) 0 0.7 1.0
OII–

�0.042 (8) 0.68 (1) 0.25 (2) 0.1 1.0
OII– 0.35 (2) 0.04 (3) 0.24 (4) 0.1 1.0
OII– 0.709 (5) 0.28 (2) 0.240 (6) 0.1 1.0
OII– 0.046 (1) 0.32 (3) �0.25 (1) 0.1 1.0
OII– 0.654 (9) �0.04 (1) �0.24 (1) 0.1 1.0
OII– 0.295 (6) 0.72 (2) �0.244 (3) 0.1 1.0

Layer 2 =
3 = 4

PtIV+ 0.834 (2) 0.841 (1) 0 0.1 1.0
PtIV+ 0.167 (2) 0.157 (1) 0 0.1 1.0
LiI+ 0.500 0.500 0 0.7 1.0

Transition vectors.

Transition x/a0 y/b0 z/c0 0 Probability Type

From layer
T1

T1! T1 – – – 0 Forbidden
T1! T2 �0.1677 (2) 0.1670 (5) 1

2 0.635 (1)

T1! T3 0.178 (3) 0.4799 (3) 1
2 0.146 (1)

T1! T4 0.492771 0.848048 1
2 0.219 (1)

From layer
T2

T2! T1 0.493 (2) 0.8480 (2) 1
2 1

T2! T2 – – – 0 Forbidden
T2! T3 – – – 0 Forbidden
T2! T4 – – – 0 Forbidden

From layer
T3

T3! T1 0.178 (3) 0.4799 (3) 1
2 1

T3! T2 – – – 0 Forbidden
T3! T3 – – – 0 Forbidden
T3! T4 – – – 0 Forbidden

From layer
T4

T4! T1 0.493 (2) 0.8480 (2) 1
2 1

T4! T2 – – – 0 Forbidden
T4! T3 – – – 0 Forbidden
T4! T4 – – – 0 Forbidden



numbers of de Wolff defects and/or amounts of microtwinning,

while heat-treated samples of MnO2 were better described as

pyrolusite frameworks including random ramsdellite defects

(Chabre & Pannetier, 1995). However, the authors concluded

their study by stating that their analytical ‘approach could be

improved and alleviated by developing dedicated profile

refinement techniques, analogous to the Rietveld method’.

Below, we show that FAULTS responds to this open call and

enables us to extract quantitative information about the

intergrowth of pyrolusite and ramsdellite motifs.

A powder sample of MnO2 used in commercial primary

batteries was kindly provided by the company SAFT

(Bordeaux, France). The sample consisted of a fine black

powder. Scanning electron microscopy (SEM) observations,

performed with an FEI QUANTA 200FEG equipped with an

EDAX probe, showed that it was constituted of micrometric

aggregates of smaller particles, whose sizes ranged from 20 to

200 nm. An X-ray powder diffraction pattern of the sample

was recorded in the range 10� 2� �
120� (step size 0.03�) using a Bruker

D8 Advance diffractometer in

Bragg–Brentano �–� configuration,

equipped with Cu K� radiation (�1 =

1.5406 Å and �2 = 1.5444 Å) and a

LYNXEYE detector, operated with

discrimination. Fig. 7 compares the

experimental XRD pattern of the

sample with the simulated patterns

of the pyrolusite and ramsdellite

structures [ICSD collection codes

No. 73716 (Bolzan et al., 1993) and

No. 171866 (Post & Heaney, 2004),

respectively], which were calculated

with the program FullProf. The

experimental pattern of the MnO2

sample shows similarities with that

of the pyrolusite structure, but exhibits significant anisotropic

broadening and additional reflections, which suggest the

existence of de Wolff defects. Indeed the pattern cannot be

refined with a conventional Rietveld refinement, even using

anisotropic models of size or strains (Fig. SI2). We performed

a FAULTS refinement of the XRD data to extract relevant

information about the structural details of this material.

The structural model used to start the FAULTS refinement

was built from the published structures of pyrolusite and

ramsdellite [ICSD collection codes No. 73716 (Bolzan et al.,

1993) and No. 171866 (Post & Heaney, 2004), respectively].

Both published structures were first transformed to define the

c axis parallel to the stacking direction (Figs. 6a and 6b). Then,

each structure was described as a set of two layers with respect

to a unique set of orthogonal vectors, whose norms were

chosen to be a = 4.4041, b = 2.8765, c = 4.4041 Å (Fig. 8 and

Table SI1). This set of vectors corresponds to the unit cell of

the pyrolusite structure. By analogy with the notation

previously used by Chabre & Pannetier (1995), the layers were

computer programs
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Figure 7
Comparison of the XRD pattern of the commercial sample of MnO2 (red)
with the simulated XRD patterns of the ideal pyrolusite (green) and
ramsdellite (blue) structures. The Bragg indices and interreticular
distances corresponding to selected reflections are indicated.

Figure 6
Illustration of the (a) pyrolusite and (b) ramsdellite structures, and of (c) a hypothetical intergrowth of
pyrolusite (single chains) and ramsdellite (double chains) elements (de Wolff disorder). The MnO6

octahedra are coloured with two different blues, denoting two different coordinates of the Mn site along
the a axis (0 and 1

2, respectively).

Figure 8
Illustrations of the four types of layers (r1, r2, R1 and R2) used in the
FAULTS refinement. Blue and orange spheres represent the manganese
and oxygen atoms, respectively.



denoted r1 and r2 for the two pyrolusite-type layers and R1

and R2 for the ramsdellite-type ones; it should be noted that

our structural description of the layers is not strictly the same

as theirs although it is equivalent. The transitions vectors,

which describe the way the layers are vertically stacked, were

defined so as to obtain the ideal pyrolusite and ramsdellite

structures from the stacking sequences r1–r2–r1–r2� � � and

R1–R2–R1–R2� � �, respectively. On the other hand, the tran-

sition vectors used to switch from a pyrolusite layer to a

ramsdellite layer, and the reverse, were chosen so as to place

the manganese atom of the top layer at the position that would

be occupied by the manganese atom in an ideal stacking.

Examples of resulting structures are shown in Fig. SI3. For

ease of comparison, we employ herein the same notations and

statistical tools as proposed by Chabre & Pannetier (1995) to

describe the stacking sequence of the two kinds of layers; the

definitions of these statistical tools are reviewed in the

supporting information. For both the simulations and the

refinement presented below, the layer width and the number

of layers stacked were taken as infinite and size effects were

only modelled with DG and DL parameters (see Appendix A).

No improvement of the refinement was obtained when

working with anisotropic size broadening parameters, which is

in agreement with the three-dimensional nature of the struc-

ture of manganese oxides (as opposed to layered materials).

Finally, the stacking of the layers was treated as a recursive

sequence of layers, which means that the diffracted intensities

were calculated for a statistical ensemble of crystallites: each

with a distinct stacking sequence, but weighted by the prob-

ability that such a sequence occurs.

Given the structural complexity and the considerable

number of different stacking possibilities, we started our study

by generating the simulated patterns of different stacking

models in order to find out the general trends of evolution of

the patterns as a function of the type of defect included. We

analysed six different models that explore different restric-

tions in the stacking probabilities or different local motifs

[some of them were already discussed by Chabre & Pannetier

(1995)] and the results obtained are presented in the

supporting information (Figs. SI4–SI9). The qualitative

comparison of these simulated patterns with the experimental

XRD pattern of the MnO2 sample permitted us to establish

that the latter was probably mainly constituted of pyrolusite

domains with small random inclusions of ramsdellite motifs

(i.e. probability of having a ramsdellite layer after a rutile one

of approximately Pr�R ’ 5–10%; models 5 and 6 in the

supporting information).

At this stage, and using model 6 as starting point, we started

the refinement of the experimental XRD pattern of the MnO2

sample using the program FAULTS. The initial values of

stacking probabilities Pr�r and PR�r (i.e. having a pyrolusite

layer after either a pyrolusite or a ramsdellite one, respec-

tively) were thus chosen to be 90%, so that to start with the

(101)r reflection at d ’ 3.11 Å (2�Cu ’ 28.7�) sufficiently

broadened.

In a first phase, we initially refined the zero shift, the cell

parameters and the probabilities of transitions (P) in order to

properly index all the reflections. Then, we introduced some

isotropic broadening (parameters DL and DG and later U) to

better fit the actual shape of the experimental peaks. Finally,

we refined the atomic positions, transition vectors, atomic

displacement parameters and background.

The results of the refinement are presented in Table 3 and

Fig. 9. Selected Mn–O distances are given in Table SI2. The

goodness of the refinement is supported by the final figures of

merit R factor = 5.56% and �2 = 3.36. One can remark that all

the experimental reflections are well indexed and that the

broadening of each of them is well simulated. Note in parti-

cular the good position and intensity calculation of the tiny

peaks (001)r at d ’ 4.44 Å (2�Cu ’ 20.3�), (002)r at d ’ 2.24 Å

(2�Cu ’ 40.0�) and (200)r at d ’ 2.22 Å (2�Cu ’ 41.1�), which

were very badly assigned in the starting model. This refine-

ment eventually led to a structural model based on a pyrolu-

site lattice which contains about PR ’ 9% of ramsdellite

motifs. Finally, the refinement results in an apparent size of

crystallites of about �90 Å, which is in agreement with SEM

observations.

In an attempt to improve this refinement, we explored the

effect of anisotropic particle size by varying the number of

layers stacked along the c axis or the width of the layer in the

ab plane, but, as previously mentioned, this did not improve

the quality of the refinement. In particular, the two small

reflections at around 2�Cu’ 40.0� were less well accounted for

(see Fig. SI10). We also explored the possibility of having

clusters or extended domains of ramsdellite structure included

in a pyrolusite matrix by means of explicit stacking (as

opposed to random stacking), but without additional

improvement. In the same way, we discarded the presence of

"-MnO2 as a secondary phase, as suggested by previous

reports on electrochemically active manganese oxides (Bala-

chandran et al., 2003; Kim et al., 2006). Finally, we examined

the effect of twinning on the XRD patterns of the pyrolusite

from a series of simulations using FAULTS. The modifications

computer programs
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Figure 9
FAULTS refinement of the XRD pattern of the MnO2 sample. The red
circles, the black line and the blue line represent the observed, calculated
and difference patterns, respectively. The vertical green bars show the
positions of the Bragg reflections of the average cell.



induced in the XRD patterns do not match the features of the

MnO2 sample studied herein (see Fig. SI11) since the small

reflection at around 2�Cu ’ 40.0� does not appear for any of

the twinned pyrolusite patterns simulated and the (101)

pyrolusite reflection splits at lower 2� angles even for a small

degree of twinning. This is in agreement with Chabre &

Pannetier’s (1995) conclusion on pyrolusite-like heat-treated

manganese oxides. However, as rightly pointed out by several

groups (Chabre & Pannetier, 1995; Hahn et al., 2013), besides

their structural complexity, manganese oxides are known to be

nonstoichiometric and to contain substantial amounts of

intercalated species (e.g. alkali cations, hydroxyl groups, water

molecules etc.); our ideal MnO2 stoichiometry assumed for the

refinement presented herein is likely not to be strictly true,

although deviations are expected to be minor and therefore to

have little impact in the diffraction pattern. Despite this

approximation the final results of our FAULTS refinement are

of good quality and provide for the first time a quantitative

estimation of the contents of each structural motif (pyrolusite

versus ramsdellite).

4. Summary, conclusions and outlook

FAULTS is a program which permits the refinement of the

X-ray and neutron powder diffraction patterns of any material

presenting planar defects (e.g. stacking faults, twinning etc.).

The program has been upgraded to increase its capabilities

and make it more accessible to non-initiated users. The new

features of the program include the DIFFaX2FAULTS

converter (which automatically converts DIFFaX input files

into FAULTS files), the visualization of the structural model,

new instrumental parameters, the treatment of background

and secondary phases, and a new minimization algorithm.

The refinement possibilities of the program were tested

against a simulated pattern of a defective LixNi1.02O2 sample,

as well as the experimental XRD patterns of Li2PtO3 and

MnO2 samples. The first example proved the speed and

reliability of the refinement process. The second one illustrates

the use of secondary phases in the refinement. The last

example led to the first quantitative analysis of ramsdellite

motifs in a pyrolusite structure.

It is expected that the program will be enriched in the future

with additional features aimed at strengthening the refinement

process, such as a true quantitative phase analysis and the

averaging of calculated diffraction patterns corresponding to

different stacking sequences.

5. Download

The FAULTS program can be obtained either as part of the

FullProf Suite at http://www.ill.eu/sites/fullprof/ or as a sepa-

rate program by downloading the compressed file at http://

www.cicenergigune.com/faults/. The source code is also avail-

able in the CrysFML repository at http://forge.epn-campus.eu/

projects/crysfml/repository/show/Program_Examples/Faults

(Rodrı́guez-Carvajal & Gonzalez-Platas, 2003a,b). Individual

packages containing FAULTS executables for different plat-

forms (Windows, Linux and MacOS) together with docu-

mentation and examples can also be obtained from http://

forge.epn-campus.eu/projects/crysfml/files.

APPENDIX A
For the sake of completeness, we provide here a summary of

the general expressions for calculating the kinematical inten-

sity of a set of N layers of which there are M distinct types (for

more details see Treacy et al., 1991, and references therein).
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Table 3
Refined structural model of the sample of MnO2.

Cell: a = 4.378 (1), b = 2.870 (1), c = 4.445 (1) Å, � = 90, � = 90, � = 90�.

Pyrolusite-type layers.

Atom x/a y/b z/c Biso (Å2) Occupancy

Layer r1 MnIV+ 0 0 0 0.90 (1) 1.0

OII� 0.27 (1) 0 0.32 (1) 0.09 (1) 1.0

OII� 0.73 (1) 0 �0.32 (1) 0.09 (1) 1.0

OII� 0.82 (1) 1
2 0.21 (1) 0.09 (1) 1.0

OII� 0.18 (1) 1
2 �0.21 (1) 0.09 (1) 1.0

Layer r2 MnIV+ 1
2

1
2 0 0.90 (1) 1.0

Ramsdellite-type layers.

Atom x/a y/b z/c Biso (Å2) Occupancy

Layer R1 MnIV+
�0.01 (1) 3

4 0.30 (1) 0.90 (1) 1.0

MnIV+ 0.01 (1) 1
4 �0.30 (1) 0.90 (1) 1.0

OII� 0.24 (1) 1
4 0.04 (1) 0.09 (1) 1.0

OII� 0.76 (1) 3
4 �0.04 (1) 0.09 (1) 1.0

OII– 0.33 (1) 3
4 0.59 (1) 0.09 (1) 1.0

OII� 0.67 (1) 1
4 �0.59 (1) 0.09 (1) 1.0

OII� 0.70 (1) 1
4 0.39 (1) 0.09 (1) 1.0

OII� 0.30 (1) 3
4 �0.39 (1) 0.09 (1) 1.0

Layer R2 MnIV+ 0.51 (1) 3
4 0.29 (1) 0.90 (1) 1.0

MnIV+ 0.49 (1) 1
4 �0.29 (1) 0.90 (1) 1.0

OII� 0.21 (1) 1
4 0.03 (1) 0.09 (1) 1.0

OII� 0.79 (1) 3
4 �0.03 (1) 0.09 (1) 1.0

Transition vectors.

Transition x/a y/b z/c Probability Type

From layer
r1

r1! r1 – – – 0 Forbidden
r1! r2 0 0 1

2 0.908 (1) Pyrolusite
r1! R1 – – – 0 Forbidden
r1! R2 0 1

4 0.789 (1) 0.092 (1) de Wolff

From layer
r2

r2! r1 0 0 1
2 0.908 (1) Pyrolusite

r2! r2 – – – 0 Forbidden
r2! R1 0 �1

4 0.789 (1) 0.092 (1) de Wolff
r2! R2 – – – 0 Forbidden

From layer
R1

R1! r1 – – – 0 Forbidden
R1! r2 0 �1

4 0.789 (1) 0.976 (1) de Wolff
R1! R1 – – – 0 Forbidden
R1! R2 0 0 1.075 (1) 0.024 (1) Ramsdellite

From layer
R2

R2! r1 0 1
4 0.789 (1) 0.976 (1) de Wolff

R2! r2 – – – 0 Forbidden
R2! R1 0 0 1.075 (1) 0.024 (1) Ramsdellite
R2! R2 – – – 0 Forbidden



Each layer of type i has a scattering density �i(r) about an

arbitrary origin. We define the probability �ij that an i-type

layer is followed by a j-type layer with origin with respect to

the origin of the layer i given by the vector Rij. A crystal

constructed as a sequence of layers i, j, k, l, . . . has a scattering

density given by

V
ðNÞ
ijkl...ðrÞ ¼ �iðrÞ þ �jðr� RijÞ þ �kðr� Rij � RjkÞ

þ �lðr� Rij � Rjk � RklÞ þ � � � : ð2Þ

The probability of that sequence is given by the product

gi�ij�jk�kl . . . in which gi is the probability that the i-type layer

exists. The following restrictions hold:

gi ¼
P

j

gj�ji;
P

i

gi ¼ 1;
P

j

�ji ¼ 1: ð3Þ

Using the reciprocal space vector variable s (scattering vector)

for the kinematic approximation we can write the scattering

amplitude as the Fourier transform of (2):

	ðNÞijkl...ðsÞ ¼
R

V
ðNÞ
ijkl...ðrÞ expð�2
is � rÞ dr

¼ FiðsÞ þ FjðsÞ expð�2
is � RijÞ

þ FkðsÞ exp½�2
is � ðRij þ RjkÞ	

þ FlðsÞ exp½�2
is � ðRij þ Rjk þ RklÞ	 þ � � � ; ð4Þ

where FiðsÞ is the form factor (structure factor) of the i-type

layer. The scattering intensity for a statistical ensemble of all

possible permutations (MN) of layers is given by the weighted

sum

IðsÞ ¼
P

i;j;k;l;...

gi�ij�jk�kl . . .	ðNÞ
ijkl...ðsÞ	
ðNÞ
ijkl...ðsÞ: ð5Þ

Explicitly writing out expression (4) in (5) and after some

algebraic manipulations one arrives at the equation

IðsÞ ¼
PN�1

m¼0

P
i

gi½F


i ðsÞ	

ðN�mÞ
i ðsÞ þ FiðsÞ	

ðN�mÞ

i ðsÞ � jFiðsÞj

2
	:

ð6Þ

To obtain this equation we have used the following recursive

relation:

	ðNÞi ðsÞ ¼ FiðsÞ þ
P

j

�ij expð�2
is � RijÞ	
ðN�1Þ
j ðsÞ ð7Þ

with 	ð0Þi ðsÞ ¼ 0. The expression for the intensity can be further

simplified using matrix notation and realizing that we obtain a

geometrical series that can be readily summed. We define the

following matrices:

Column matrices:

UðNÞ ¼ ½	ðNÞi ðsÞ	; F ¼ ½FiðsÞ	; G ¼ ½giFiðsÞ	: ð8Þ

Square matrices:

T ¼ ½�ij expð�2
is � RijÞ	; I ¼ identity: ð9Þ

Using the superscript T for transpose, the superscript �1 for

inverse and the quantity (appearing as a final step in the

calculation of a geometric series)

WðNÞ ¼
1

N
ðI� TÞ�1

½ðN þ 1ÞI� ðI� TÞ�1
ðI� TNþ1

Þ	F

¼ ðI� TÞ�1F0;

WðNÞ ¼ F0 þ TWðNÞ;

F0 ¼
1

N
½ðN þ 1ÞI� ðI� TÞ�1

ðI� TNþ1
Þ	F;

ð10Þ

we obtain the normalized intensity per layer in the compact

and closed form

INðsÞ ¼
IðsÞ

N
¼ G
TWðNÞ þGTWðNÞ
 �G
TF: ð11Þ

For a powder sample we have to take the powder average of

(11) by performing a surface integration in reciprocal space

for constant s = |s| shells. This is done numerically within the

calculation kernel of DIFFaX that we use in FAULTS. After

multiplying by the Lorentz–polarization factor Lp(s), we

obtain the resulting function IPow(s) as

IPowðsÞ ¼ LpðsÞ
R R
jsj¼s

INðsÞ d�s

¼ LpðsÞ
R R
jsj¼s

INðs; #; ’Þ s
2 sin# d# d’: ð12Þ

This function is directly transformed to the 2� space within the

numerical integration procedure. Let us call the result

IPow(2�). This quantity is finally convoluted with the instru-

mental resolution function g(2�) that we assume to be a Voigt

profile with a full width at half-maximum following a Caglioti-

like (Caglioti et al. 1958) dependency on the scattering angle.

The profile intensity is finally given by the expression

yð2�; aÞ ¼ S IPowð2�; cÞ 
 gð2�; pÞ þ bð2�; bÞ; ð13Þ

in which * indicates convolution product, S is a scale factor

and bð2�; bÞ is the background function, which takes into

account all other components of the diffraction pattern that

are not described by the modelled diffraction pattern of the

faulted sample IPow(2�). The arrays � ¼ fc; p; bg contain the

list of all free parameters of the global model. The set of

parameters c of the faulted model contains the scale factor,

atom positions within the layers, atomic displacement para-

meters, transition probabilities, stacking vectors with their

corresponding anisotropic displacements parameters etc. (see

the manual of FAULTS for details).

The model for the instrumental function is a Thompson–

Cox–Hasting (Thompson et al. 1987) pseudo-Voigt function

approximating the full Voigt function Vð2�;HG;HLÞ, which

includes components for spherical size effects to handle effects

of coherence domains in all directions. The Gaussian, HG, and

Lorentzian, HL, full widths at half-maximum measured in

degrees are assumed to have the following dependency on �:

H2
Gð2�;U;V;W;DGÞ ¼ U tan2 � þ V tan � þW

þ
180




� �2
4 ln 2�2


D2
G cos2 �

;

HLð2�;X;DLÞ ¼ X tan � þ
180




2�


DL cos �
:

ð14Þ
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The profile refinable parameters are constituted by the set p =

{U, V, W, X, DG, DL}. In the case of refinement of a diffraction

pattern with two wavelengths, the peak profile is assumed to

be formed by normalized Voigt doublets.

The background function bð2�; bÞ can contain secondary

phases and a real background modelled by linear interpolation

or by a Chebychev polynomial:

bð2�; bÞ ¼ Bckgð2�; bckgÞ þ
P
	

S	ycalc;	ð2�Þ: ð15Þ

The secondary phases are provided in external files that have

been previously produced by using FullProf in simulation

mode without background. There is a scale factor S	 asso-

ciated with each secondary 	 phase provided as a contributing

profile and specific background parameters bckg in a number

that depends on the degree of the polynomial, so that if Np is

the number of additional phases, b = {bckg, {S	}	=1, . . . , Np} is the

subset of parameters concerning background and secondary

phases.

Presently the program calculates the relative area of the full

diffraction pattern of each component; however, a true

quantitative phase analysis is not yet possible.
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