Outline

1. Summary of the simplified method (double-Voigt approximation) for analyzing microstructure of materials
2. Isotropic cases
3. Anisotropic cases

Live presentation: (Cont. isotropic) Complete creation of an IRF file using the case of spinel $\mathrm{MgAl}_{2} \mathrm{O}_{4}$
Live presentation: (Anisotropic) Examples of anisotropic cases

Summary: IRF for microstructure analysis

1. Collect a diffraction pattern with a well crystalized sample free of defects ($\mathrm{Al}_{2} \mathrm{O}_{3}$, Garnet, $\mathrm{LaB}_{6}, \mathrm{Na}_{2} \mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{~F}_{14}$, etc.) for each used conditions of the diffractometer
2. Refine the collected patterns to obtain either the Gaussian and Lorentzian components of each peak (Peak fitting, Res=4, 8) or the instrumental $\mathbf{U}_{\text {ins }}, \mathbf{V}_{\text {ins }}, \mathbf{W}_{\text {ins }}, X_{\text {ins }}, \mathbf{Y}_{\text {ins }}$ (Le Bail fits or Rietveld, Res=1)
3. Use EdPCR to copy the refined parameters in the dialog: Template > Instrumental Resolution File. Save the IRF file.
4. Refine a diffraction pattern of a normal sample using the IRF file putting, for starting the refinement, all the UVWXY parameters equal to zero. Select a microstructural model and refine it.

Observed, instrumental and intrinsic profiles
$h(x)=g(x) \otimes f(x)$
Gaussian $U, V, W, I_{G} \quad$ Lorentzian $\quad X, Y$
The parameters U, V, W, I_{G}, X, Y appearing in the PCR file make reference to the observed profile $h(x)$ if no IRF file is used $\left(U_{b}, V_{b}, W_{h}, I_{h G}, X_{b}, Y_{h}\right)$.

The same parameters refer to the intrinsic profile $f(x)$ if an IRF file is used ($U_{\mathcal{\beta}} I_{f G}, X_{f}, Y_{f}$). Normally $V_{f}=0, W_{f}=0$

The IRF file stores the characteristics ($U_{g}, V_{g}, W_{g}, X_{g}, Y_{g}$) of the instrumental profile $g(x)$

Simplified methods for treating the intrinsic profile as implemented in FullProf

Parameters controlling the Full-Width at half maximum (isotropic case)

$$
\begin{gathered}
\text { Isotropic Gaussian Strain } \\
H_{h G}^{2}=\left(U_{g}+U_{f}\right) \tan ^{2} \theta+V_{g} \tan \theta+W_{g}+\frac{I_{f G}}{\cos ^{2} \theta} \\
\text { Isotropic Lorentzian Strain } \quad \text { Isotropic Lorentzian Size } \\
H_{h L}=\left(X_{g}+\stackrel{X}{X}_{f}\right) \tan \theta+\frac{Y_{g}+Y_{f}}{\cos \theta}
\end{gathered}
$$

Simplified methods for treating the intrinsic profile as implemented in FullProf

Parameters controlling the Full-Width at half maximum (anisotropic case)

GAUSSIAN

Anisotropic strains

Position of peaks determined by: $\quad\left\{\alpha_{i}\right\}=\{A, B, C, D, E, F\}$

$$
M_{h k l}=\frac{1}{d_{h k l}^{2}}=M\left(\alpha_{i} ; h k l\right) \quad \frac{1}{d_{h k l}^{2}}=A h^{2}+B k^{2}+C l^{2}+D k l+E h l+F h k
$$

The mean and the variance of the function $\boldsymbol{M}_{\boldsymbol{h k} /}$ are given by :
Average cell parameters
Spread of peaks (variance) :

$$
\begin{array}{r}
\left\langle M_{h k l}\right\rangle=M\left(\left\langle\alpha_{i}\right\rangle ; h k l\right) D_{f S T}^{2}\left(\boldsymbol{\alpha}_{D}\right) \sim \sigma^{2}\left(M_{h k l}\right)=\sum_{i, j} C_{i j} \frac{\partial M}{\partial \alpha_{i}} \frac{\partial M}{\partial \alpha_{j}} \\
\sigma^{2}\left(M_{h k l}\right)=\sum_{\substack{H K L \\
\{H+K+L=4\}}} S_{H K L} h^{H} k^{K} l^{L} \\
\boldsymbol{\alpha}_{D}
\end{array}
$$

Anisotropic size

$$
H_{\text {sizeL }}=k \beta_{\text {size }}=\frac{\left[Y_{f}+F_{f}\left(\boldsymbol{\alpha}_{S}\right)\right]}{\cos \theta}=\frac{k \lambda}{D_{\mathrm{h}} \cos \theta}
$$

Integral breadth (β) and FWHM (H) are related by the constant k
Ellipsoidal shapes of crystallites .

$$
\frac{\lambda}{D_{\mathbf{h}}}=Y_{f}+F_{f}\left(\boldsymbol{\alpha}_{S}\right)=\mathrm{k}_{s} d_{\mathbf{h}}^{2}\left(\alpha_{1} h^{2}+\alpha_{2} k^{2}+\alpha_{3} l^{2}+2 \alpha_{4} h k+2 \alpha_{5} h l+2 \alpha_{6} k l\right)
$$

Arbitrary shapes of crystallites can be simulated using spherical harmonics.

$$
\frac{\lambda}{D_{\mathbf{h}}}=Y_{f}+F_{f}\left(\boldsymbol{\alpha}_{S}\right)=\sum_{l m p} a_{l m p} P_{l m}\left(\cos \Theta_{\mathbf{h}}\right)\left\{\begin{array}{c}
\cos m \Phi_{\mathbf{h}} \\
\sin m \Phi_{\mathbf{h}}
\end{array}\right\} ; \quad p=+/-
$$

Volume averaged shape of crystallites is obtained from the refined parameters

Outline

1. Summary of the simplified method (double-Voigt approximation) for analyzing microstructure of materials
2. Isotropic cases
3. Anisotropic cases

Live presentation: (Cont. isotropic) Complete creation of an IRF file using the case of spinel $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ Live presentation: (Anisotropic) Examples of anisotropic cases

