BOND-VALENCE ENERGY LANDSCAPES A SIMPLE COMPUTING TOOL FOR ASSESSING IONIC CONDUCTIVITY IN BATTERY MATERIALS

The Program Bond_Str

Juan Rodríguez-Carvajal & Nebil A. Katcho

J. Appl. Cryst. (2019). 52, 148–157

ISSN 1600-5767

An investigation of the structural properties of Li and Na fast ion conductors using high-throughput bond-valence calculations and machine learning

Nebil A. Katcho,^a* Jesús Carrete,^b Marine Reynaud,^c Gwenaëlle Rousse,^d Montse Casas-Cabanas,^c Natalio Mingo,^e Juan Rodríguez-Carvajal^a* and Javier Carrasco^c*

The Bond-Valence Sum method

The bond-valence method is a development of the Pauling rules. The bond-valence of a bond A-X can be written as:

$$s_{A-X} = \exp\left(\frac{R_0 - R_{A-X}}{b}\right)$$

Where R_0 and $b \approx 0.37$ Å) are tabulated parameters characteristic of the pair *A*-*X* and R_{A-X} is the bond length.

The total valence V_A of the cation A (ideally equal to the magnitude of the formal charge) coordinated by N_C anions X is given by the bond-valence sum (BVS):

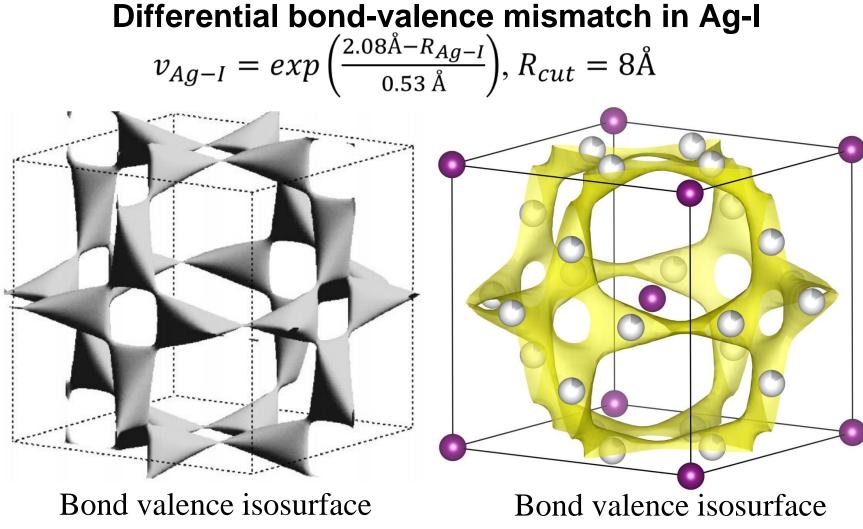
$$V_{A} = \sum_{i=1}^{N_{C}} s_{A-X_{i}} \approx V_{A}^{ideal} (formal \ charge)$$

http://www.iucr.org/resources/data/data-sets/bond-valence-parameters I. D. Brown, *The Chemical Bond in Inorganic Chemistry: The Bond Valence Model*, Oxford University Press, 2002.

The Bond-Valence Sum method

• The bond valence approach is frequently used to validate newly determined crystal structures by the calculation of the Global Instability Index (GII)

$$GII^{2} = \frac{1}{N_{cell}} \sum_{i=1}^{N_{asym}} m_{i} (BVS_{i} - V_{i}^{ideal})^{2}$$


where N_{cell} is the total number of atoms in the unit cell, N_{asym} is the number of atoms in the asymmetric unit, and m_i is the multiplicity of the site *i*.

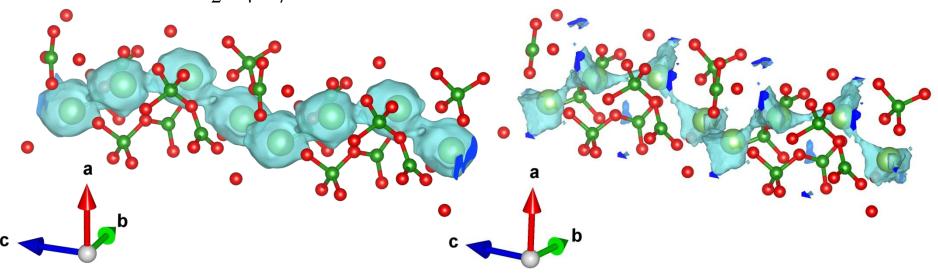
- Charge ordering is often quantified using bond-valence
- These calculations are implemented in a variety of computing programs: FullProf, LHPM-Rietica, ICSD web-based search, etc.

The bond-valence method can be used for assessing the ionic conduction path from the knowledge of the crystal structure.

Low-energy transport pathways for the motion of ions between equilibrium sites should correspond to a sequence of positions for which the BVS mismatch: $\Delta V(r)=|BVS(r)-V^{ideal}(r)|$ remain as small as possible, so a simple geometric calculation allows to figure out possible ionic conduction paths.

Examples of the BVS isosurfaces

for α -AgI (Δ V=0.05 val. un.) for α -AgI (Δ V=0.083 val. un.) S. Adams, J. Swenson, Phys. Rev. B 63 (2000) 054201


Examples of the BVS isosurfaces

Differential bond-valence mismatch in Li₂B₄O₇

$$v_{Li-O} = exp\left(\frac{1.17096\text{\AA} - R_{Li-O}}{0.516\text{\AA}}\right), R_{cut} = 5.5\text{\AA}$$

MEM reconstruction of negative (Li) nuclear scattering densities in $\text{Li}_2\text{B}_4\text{O}_7$

Differential valence map of lithium in $Li_2B_4O_7$ ($\Delta V=0.2$ val. un.)

Ionic conduction and the BVS method

Limitation of the conventional BVS:

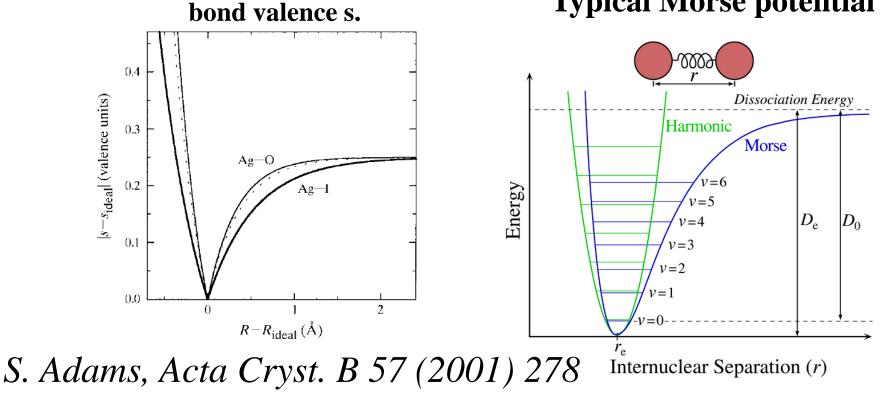
Only the first coordination shell is considered.

No energy units are available to compare between different compounds

Trick:

Use simple parameters for converting to an adequate potential allowing to get more precise results

Ionic conduction and the BVS method


Struct Bond (2014) 158: 129–160 DOI: 10.1007/430_2013_137 © Springer-Verlag Berlin Heidelberg 2014 Published online: 12 February 2014

Understanding Ionic Conduction and Energy Storage Materials with Bond-Valence-Based Methods

Stefan Adams and R.Prasada Rao

Extension of the BVS method

- Not only first coordination shell but a sphere with cutoff radius R_{cut} is considered;
- both R₀ and b parameters are adapted using bond-stifness approach;
 Pseudopotential representation of the correlation between bond-length R and bond valence s
 Typical Morse potential

Extension of the BVS method

Stefan Adams, *Practical Considerations in Determining Bond-Valence Parameters*, Structure and Bonding **158**, 91-128 (2014)

$$E = D_0 \left\{ \left(\exp[\alpha (R_{\min} - R)] - 1 \right)^2 - 1 \right\}$$
$$= D_0 \left\{ \left(\frac{\exp\left[\frac{R_0 - R}{b}\right] - s_{\min}}{s_{\min}} \right)^2 - 1 \right\}$$

$$D_{0} = \frac{kb^{2}}{2} = c \cdot 14.4 \frac{eV}{A} \frac{[V_{id}(M) \cdot V_{id}(X)]^{1/c} b^{2}}{2R_{\min}\sqrt{n_{M}n_{X}}}, \quad R_{\min} \approx R_{0} \times [f_{1} + f_{2} \cdot |\sigma_{A} - \sigma_{X}|] - b \cdot \ln\left(\frac{V_{id}}{N_{C}}\right)$$
$$BVSE(M) = D_{0} \left[\sum_{j=1}^{N_{X}} \frac{(s_{M-X_{j}} - s_{\min})^{2}}{s_{\min}^{2}} - N\right] + \sum_{i=1}^{N_{M}} E_{Coulomb}(M - M_{i})$$
$$E_{Coulomb}(M_{1} - M_{2}) = \frac{q_{M_{1}}q_{M_{2}}}{R_{M_{1} - M_{2}}} \operatorname{erfc}\left(\frac{R_{M_{1} - M_{2}}}{\rho_{M_{1} - M_{2}}}\right)$$

Extension of the BVS method

computer programs

Journal of Applied Crystallography

ISSN 0021-8898

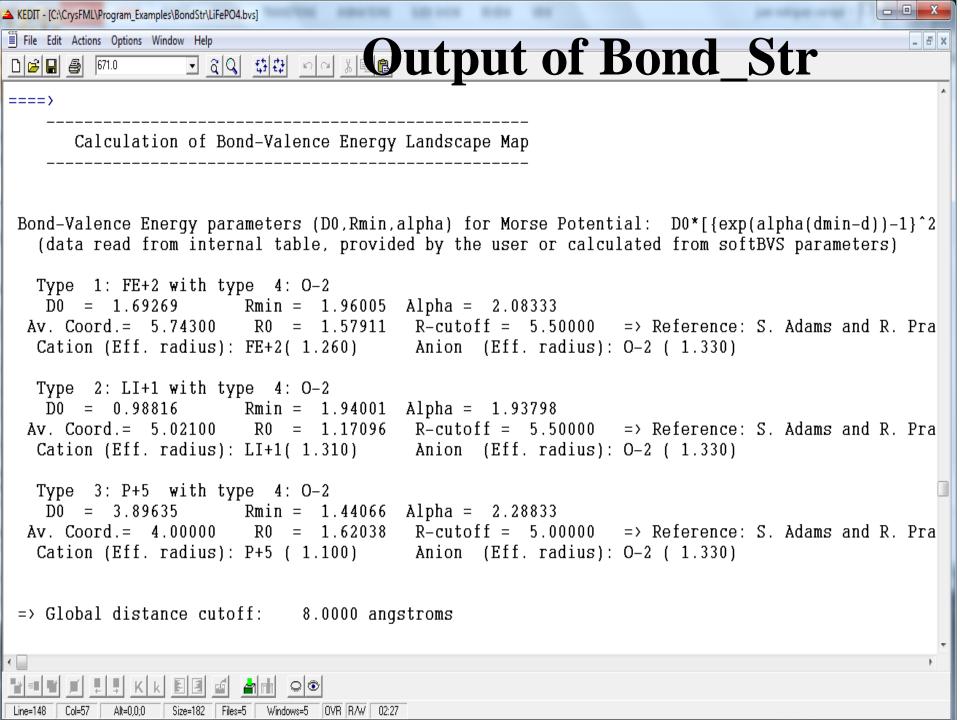
3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes

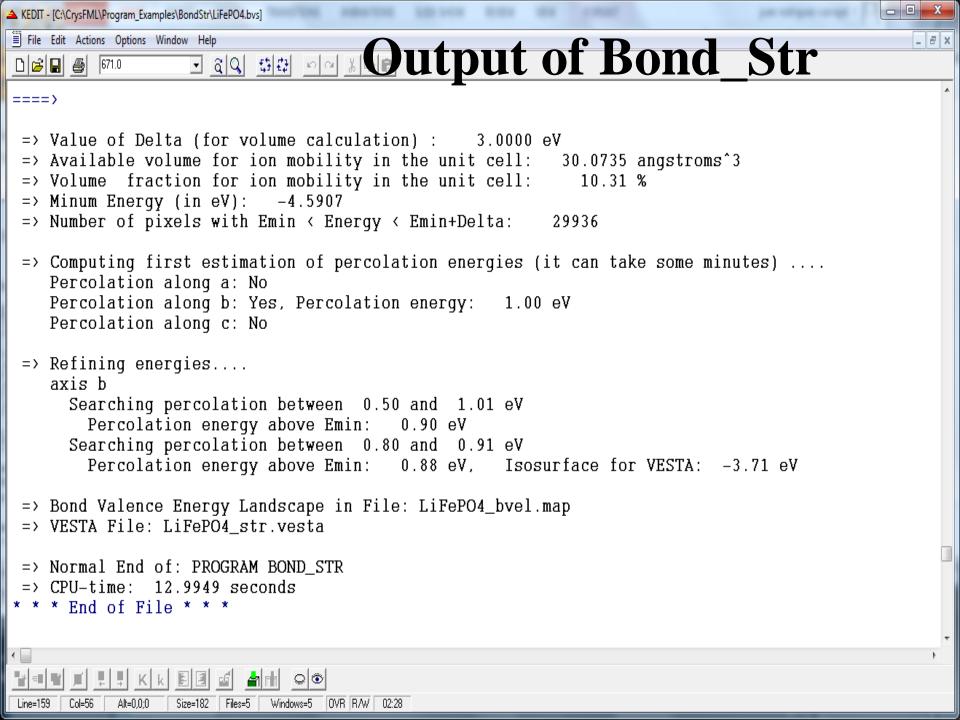
Matthew Sale* and Maxim Avdeev*

Received 8 March 2012 Accepted 20 July 2012

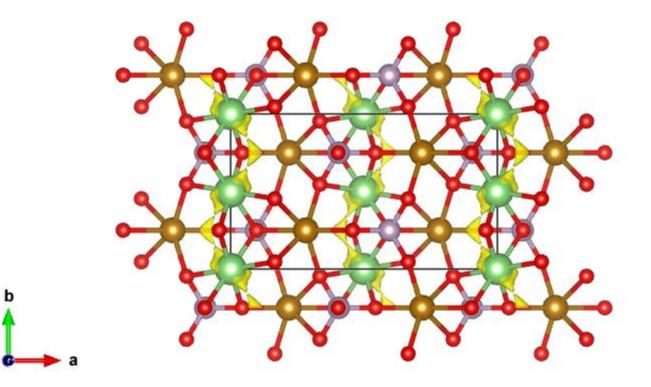
$$BVEL_{+/-} = \sum_{j=1}^{N} \left(m_j D_0 \{ \exp[\alpha (R_{\min} - d_j)] - 1 \}^2 - 1 \right), \quad (2)$$

$$BVEL_{+/+,-/-} = \sum_{j=1}^{N} \left\{ ConvEV \frac{m_j}{d_j} \frac{|V_{TI}| |V_j|}{\left(n_{qnTI} n_{qnj}\right)^{1/2}} \times \left[erfc\left(\frac{d_j}{c}\right) - erfc\left(\frac{d_{cutoff}}{c}\right) \right] \right\}, \quad (3)$$

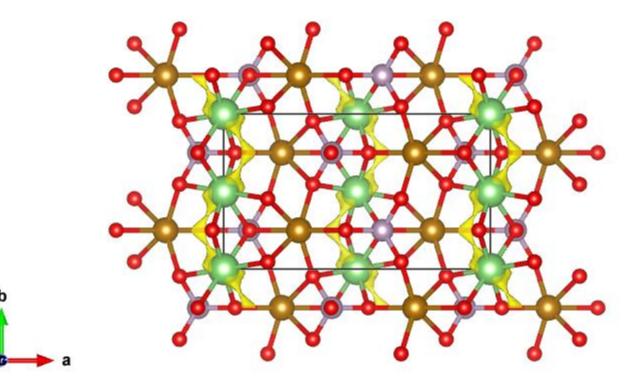

The program needs the use of Materials Studio $\rho = \rho_{\rm f}(r_{\rm TI} + r_j),$ (4)

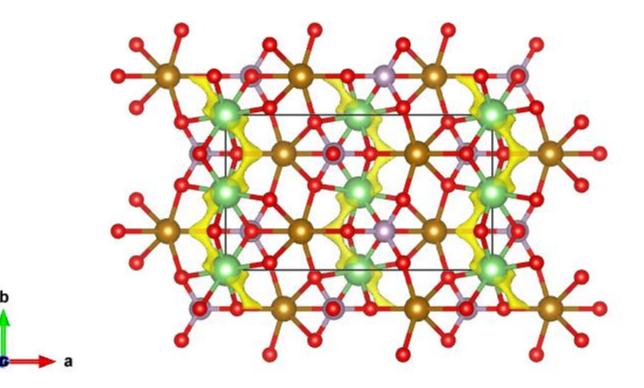

Bond_	Str GUI-	Interface	2								x
ile Rur	n Run-	VESTA	Results	Help	Exit						
Ê	M				Dist	anc	es, (an	gles a	ınd	
	Y	4									
\mathcal{L}	6			DO	na-	vau	ence	C	alculi	uioi	LS
	P.	Ш									
Code	of files:	LiFeF	°04			Restraints	File: CFN	1L_Res	traints.tpcr		
Working I	Directory	C:\Cr	ysFML\Pro	ogram_E:	xamples\Bo	ndStr				Brows	se
Title:	CFL-file g	enerated	from FullP	'rof for pł	nase: L'FePI	04 300K					
SpaceG	roup (HM	or Hall <	symbol): F			_	or 🗆 List	of Sum	metry Operators	View Lis	
								-			
	ell parame s are opti		0.3383(4)	6.0114(2) 4.69518	(15) 90.00	000 90.000(00 90.0	0000		
		🗌 Dist	ances Outj	put 🕅	Restraints	output D	_n ax, Angl_	min: 2	2.500 95.00		
Number	of Atoms	6	÷ Dm	nax (Dist,	Anal) 3.	200 0.000			Tolerance(%)	30.00	- 1
		string:		-	,		234(2) 0.4	(1)	0.5	,	_1
		sung.	re-a re	9+3 0.	2311(2) (234(2) 0.4		0.0		
							x/a y/b z		o Occ		
Atom ‡		LI+1 0.	0.28218(14	0.00000				JU 10000			
Atom ‡			0.20210(1)	0.2500		17	(10) 0.50				-
	·								<u> </u>	6	
Example	for BVS.	'BVEL M	ap: 50	50 7	70 Li+1	8.0/10.0	0.2/2.4		C Bond-Vales		
Number o				03 60 4	47 LI+1	8.0 3	so	ftBVS	BV-Energy-L	.andscape	мар
Atom Spe		-		-	ormat C	GEourier			 No Map Percolation 		
			-							-	
Number o			-Valence p			÷	Number of I	-	STA commands	÷]
		'C-A, d0,	BO'' as: FE	2+30-2	1.760 0.37	Â		Ex	: conn Fe () (),0 2	2.4 4	•
BVSpar							Fst #1	-		_	
BVSpar	#2					-	Fst #2				

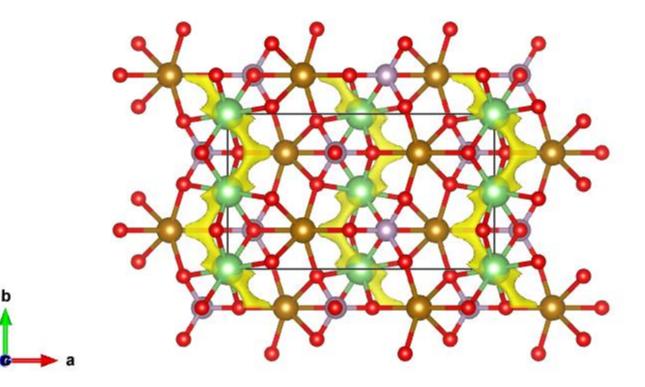
NEW options

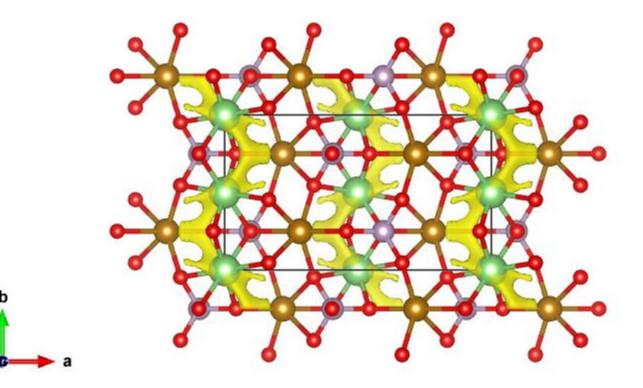

Now in **Bond_Str** there is the **possibility** to calculate bond-valence energy landscapes (BVEL) (see fp2k.inf, note of 16 January 2015)

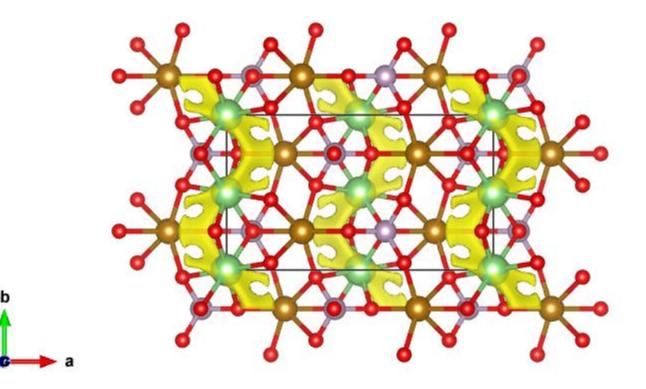
The BVEL isosurfaces can be visualized using VESTA

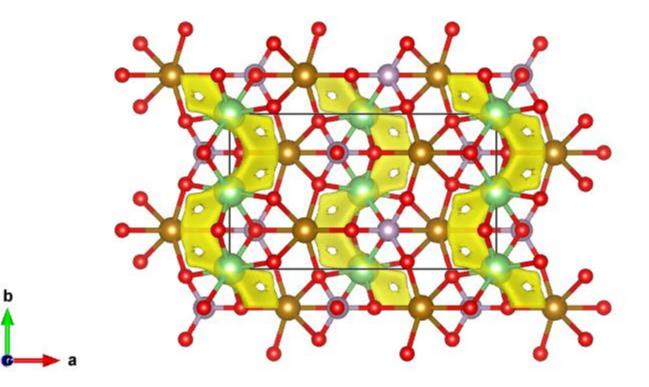


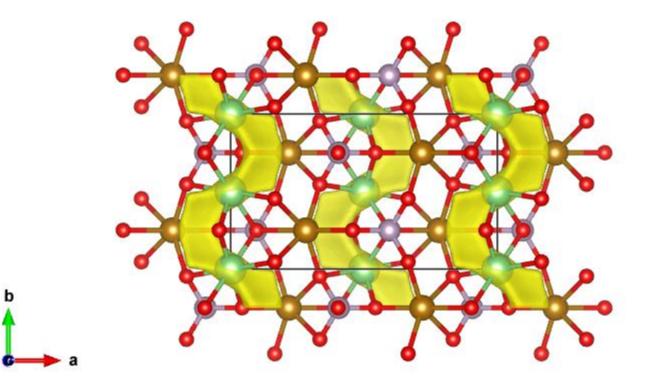

Iso-surface at the percolation energy: -3.71 eV

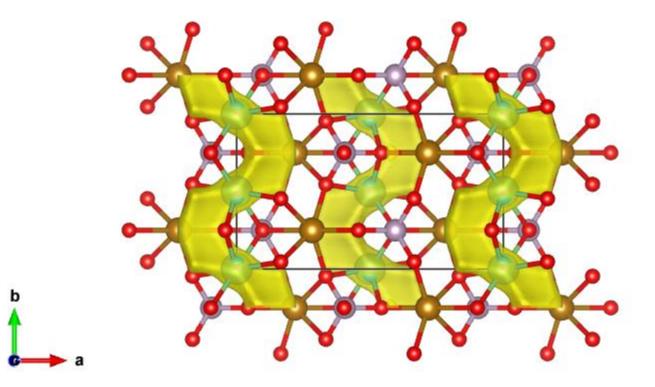

Iso-surface at energy: -3.69 eV

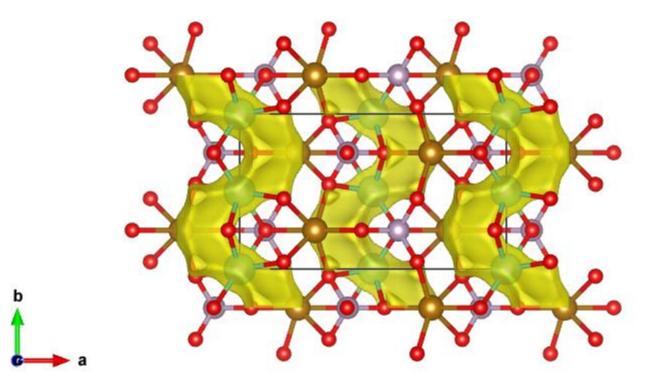

Iso-surface at energy: -3.60 eV


Iso-surface at energy: -3.50 eV


Iso-surface at energy: -3.40 eV


Iso-surface at energy: -3.30 eV


Iso-surface at energy: -3.20 eV


Iso-surface at energy: -3.00 eV

Iso-surface at energy: -2.00 eV

Iso-surface at energy: -1.00 eV

Examples of the BVEL isosurfaces

Cathodes for Li-ion batteries

1D	2D	3D
Li _x FePO ₄ olivine	Li _x CoO ₂ distorted rock-salt	LiMn ₂ O ₄ spinel

Examples of the BVEL isosurfaces

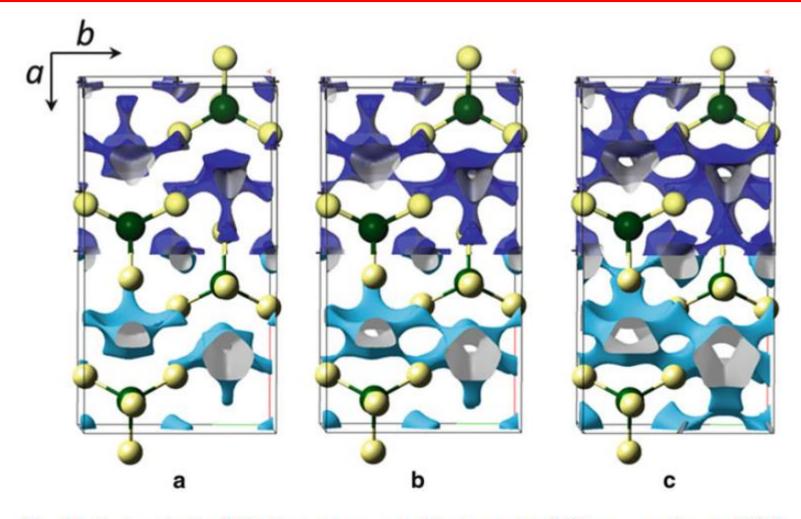


Fig. 12 Regions in the Li₄GeS₄ structure accessible to moving Li⁺ ions according to BVSE energy calculations (*top half* of the unit cell) for ΔE_{BVSE} of (a) 0.95 eV, (b) 1.1 eV and (c) 1.35 eV and the procrystal analysis (*bottom half* of the unit cell) showing paths with electron density isovalues of 0.0016 au, 0.0018 au, and 0.0024 au, respectively

Summary

- Bond-Valence Energy maps/isosurfaces give a clear evidence (first approximation) for the ionic diffusion pathways in the material
- BVEL Model has a high predictive potential and is adapted for studying whatever ionic diffusion species
 - the cation conductors, e.g. sodium or magnesium
 - the anion conductors, e.g. oxygen or hydrogen ...
 - This model is now used to predict percolation energies and conduction paths systematically on databases (i.e. ICSD)
- The BVEL Model is restricted to compounds close to ionic character; e.g. it does not, in general, apply to metals or organic compounds
- The program **Bond_Str** together with a GUI is distributed within the **FullProf Suite**. The source code is freely available within the repository of the CrysFML library:

https://forge.epn-campus.eu/projects/crysfml/repository

Some representative references

Long-range Coulomb forces and localized bonds Christoph Preiser, Jens Loesel, I. David Brown, Martin Kunz and Aniceta Skowron Acta Cryst. **B55**, 698-711 (1999)

Recent Developments in the Methods and Applications of the Bond Valence Model Ian David Brown Chem. Rev.**109**, 6858–6919 (2009)

High power lithium ion battery materials by computational design Stefan Adams and R. Prasada Rao Phys. Status Solidi **A 208**, No. 8, 1746–1753 (2011)

3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes Matthew Sale and Maxim Avdeev, Journal of Applied Crystallography **45**, 1054–1056 (2012)

Practical Considerations in Determining Bond Valence Parameters Stefan Adams Structure and Bonding **158**, 91–128 (2014)

Understanding Ionic Conduction and Energy Storage Materials with Bond-Valence-Based Methods Stefan Adams and R.Prasada Rao Structure and Bonding **158**, 91–128 (2014)