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Outline

1. Summary of diffraction equations. Single Crystals and 
Powders. Indexing powder patterns. Le Bail fit of powder 
patterns 

2. Live presentation of indexing and Le Bail fits

3. Mathematical modeling of powder diffraction patterns

4. The Voigt approach to peak shapes

5. Live: Coming back to peak fitting in WinPLOTR-2006
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Diffraction Equations for crystals
In a crystal the atoms positions can be decomposed as the vector position of the origin 

of a unit cell plus the vector position with respect to the unit cell
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Diffraction Equations for crystals
The Laue conditions have as a consequence the Bragg Law
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From Pecharsky and Zavalij Detector

Ewald construction

s0L/

sL/
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Diffraction patterns
Single Xtal - 2D image + scan –>  3D  Int vs 2θ
Powder - 2D image –>  1D  Int vs 2θ

Courtesy of Jim Britten

nλ=2d(sinθ)

Single 
Crystal

Powder or 
polycrystalline 
solid
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The indexing problem
❖Single Crystal:

Unit cell and symmetry unambiguous

Each reflection: correct Miller indices hkl

Diffracted intensity (structure amplitude |F|hkl ) accurate

❖Powder:

nothing of all this is known …

Information in a powder pattern:

1:Peak positions determine the unit 

cell dimensions

2: Peak shapes

3: Integrated intensities
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The indexing problem
Prerequisites
1. Good sample — preferably single-phase
2. Best quality powder pattern

❖ Best technique
❖Well-known 2ϴ zero shift
❖ zero point error worse than statistical errors of same magnitude
❖ σ(2ϴ) < 0.02 degrees

3. At least 20 accurate low-angle peak positions
❖ High resolution, e.g. synchrotron XRD and parallel geometry 

optics: high resolution monochromator
❖ Include weak lines
❖ Likely space groups from peaks present and those 

systematically absent
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The indexing problem
“Powder indexing is not like structure analysis, which works 

well on good data, and will usually get by on poor data given 
a little more time and attention. Powder indexing works 
beautifully on good data, but with poor data it will usually 
not work at all”

Shirley, R: “Data accuracy for powder indexing,” Natl. Bur. Stand. (US)
Spec. Publ. 567 (1980) 361-382

For a given wavelength the peak positions are determined by 

the Bragg’s law and the unit cell dimensions
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Indexing = finding the six constants A, B, … F
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Indexing programs
ITO

J.W. Visser, J. Appl. Cryst. 2 (1969) 89.
Good for unit cells of compounds in low symmetry

TREOR
P.E. Werner, Z. Krist. 120 (1964) 375.
Trial- and error method, separately for cubic, hexagonal, tetragonal, orthorhombic, 
monoclinic and triclinic systems

DICVOL
D. Louër, J. Appl. Cryst. 18 (1972) 271. A. Boultif, D. Louër, J. Appl. Cryst. 37 (2004) 724.
Successive dichotomy method, originally not for monoclinic and triclinic lattices.

Other programs: McMaille, TOPAS, Xcell, …
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M20 combines two concepts, forming the denominator if the above formula:

• data accuracy, reflected by the agreement between Qobs and Qcalc (in <Q>)

• the idea of small cell volume V through N20 = number of theoretical lines up 

to the 20th observed line (Ncalc ~4Vtricl/3d3 for a triclinic lattice)

P.M. de Wolff, J. Appl. Cryst. 1 (1968) 108

Typical based upon the first 20 lines:

Criteria for a good indexing

Smith G.S. and Snyder R.L., J. Appl. Cryst. 12 (1979), 60-65


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poss
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F

N
Nposs is the number of theoretically 

possible until the Nth observed reflexion
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Implementation in FullProf suite
• determination of peak positions (using WinPLOTR):

• profile fitting procedure

• automatic peak search

• by hand

• save peaks for indexing programs:

• create input file for DICVOL, TREOR, ITO

• if successful, run the indexing program:

• create input .PCR file for FullProf (Le Bail fit). 

• The agreement of the observed versus calculated pattern is the best criteria 

for a good indexing

• CHECK_group:

• search for a convenient space group  from the extracted intensities 

LIVE demo: Y2O3, PbSO4

Indexing  Le Bail fit  Check group
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Outline
1. Summary of diffraction equations. Single Crystals and 

Powders. Indexing powder patterns. Le Bail fit of powder 
patterns 

2. Live presentation of indexing and Le Bail fits

3. Mathematical modeling of powder diffraction patterns

4. The Voigt approach to peak shapes

5. Live: Coming back to peak fitting in WinPLOTR-2006
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The calculated profile of powder 
diffraction patterns

( )h h

{h}

ci i iy I T T b   

Contains structural information: 

atom positions, magnetic moments, etc h h II I 

( , )h Pix   
Contains micro-structural information: 

instr. resolution, defects, crystallite size…

 Bi ib b  Background: noise, incoherent scattering

diffuse scattering, ...
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The model to calculate a powder diffraction pattern is:

( )h h

h

ci i iy I T T b   

( ) 1x dx



 

Profile function characterized by its 
full width at half maximum (FWHM=H)
and shape parameters (, m, ...)

( ) ( ) ( )x g x f x instrumental intrinsic profile    

( ) ( ) ( )h x g x f x  usual notation in literature
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The calculated profile of powder 
diffraction patterns

( )h h

{h}

ci i iy I T T b   

The symbol {h} means that the sum is extended only to those reflections contributing to 

the channel “i” .

This should be taken into account (resolution function of the diffractometer and sample 

broadening) before doing the actual calculation of the profile intensity.

This is the reason why some Rietveld programs are run in  two steps
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Several phases ( = 1,… n) contributing 
to several (p=1,… np) diffraction patterns

Several phases ( = 1,n) contributing 
to the diffraction pattern
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 2

h h
I S L pOACF

Integrated intensities are proportional to the square of 

the structure factor F. The factors are: 

Scale Factor (S), Lorentz-polarization (Lp), preferred 

orientation (O), absorption (A), other “corrections” (C) 

( )h h

{h}

ci i iy I T T b   
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Crystallographic R-factors used in 
Rietveld Refinement

Provides ‘observed’ 

integrates intensities for 

calculating Bragg R-factor

In some programs the crystallographic 

RF-factor is calculated using just the 

square root of ‘Iobs,k’ 

,

, ,

,

( )( )
' '

( )

i k obs i i

obs k calc k

i calc i i

T T y B
I I

y B

    
  

  


,

,

' '
' '

obs k

obs k

I
F

jLp




23
T H E  E U R O P E A N  N E U T R O N  S O U R C E

Outline
1. Summary of diffraction equations. Single Crystals and 

Powders. Indexing powder patterns. Le Bail Fit of powder 
patterns 

2. Live presentation of indexing and Le Bail Fits

3. Mathematical modeling of powder diffraction patterns

4. The Voigt approach to peak shapes

5. Live: Coming back to peak fitting in WinPLOTR-2006



24
T H E  E U R O P E A N  N E U T R O N  S O U R C E

Fwhm

BG

x0

x

I

Comparison of Gaussian and Lorentzian peak shapes of 
the same peak height “I” and same width “Fwhm”
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Convolution properties of Gaussian

and Lorentzian functions

1 2 1 2

2 2

1 2 1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

L x H L x H L x H H

G x H G x H G x H H

  

  

( , ) ( , ) ( , , )L G L GL x H G x H V x H H 
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( ) ( ) (1 ) ( )pV x L x G x    

The pseudo-Voigt function

( ) ( ) ( ) ( ) ( )V x L x G x L x u G u du



   

( ) ( , , ) ( , , )L G L GV x V x H H V x   

( ) ( , , )pV x pV x H

The Voigt function
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Properties of the Voigt function

1 2( ) ( ) ( )V x V x V x 

1 2

2 2 2

1 2

L L L

G G G

  

  

 

 

Lorentzian breadths simply 
have to be summed

Gaussian breadths have to 
be summed quadratically

2 2 2

fL hL gL

fG hG gG

  

  

 

 
Correction for 
instrumental broadening

The Voigt function has proven to be a very good 
experimental  approximation in many cases
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2 2 2

2
tan
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hG f gG
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
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tan
cos
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hL f gL

Y
H X H


  

Instrument and sample contribution to broadening

Sample Instrument

The Gaussian and 

Lorentzian contributions 

of the instrument must be 

determined 

experimentally with a 

size/strain-free sample
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2 2 2 2

2
( (1 ) ( )) tan tan
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hG g f f fST D g g
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g f f S

hL g f f fST D

Y Y F
H X X D 
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   

Modeling the Gaussian and Lorentzian
components for the general anisotropic case in FullProf

 2 2

2 8

2

180
( ) 10  8Ln2 α

hkl

fST D

hkl

M
D

M





  
  

 

Instrument resolution function characterized by: (U, V, W, X, Y)g
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2 2 2 2 2

2
( (1 ) ( )) tan

cos
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hG f f fST D gG

I
H U D H 


    α

[ ( )]
( ( )) tan

cos

f f S

hL f f fST D gL

Y F
H X D H 




   

α
α

Example: General 2 dependence of 
the instrumental broadening 

(determined by a standard sample)

The Gaussian and Lorentzian components of the instrumental Voigt function are 

interpolated between empirically determined values. 

If needed, axial divergence is convoluted numerically with the resulting profile.
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