Second FullProf School 2023:

Diffraction data analysis of energy materials

Solving structures in real space: Simulated Annealing

Juan Rodríguez-Carvajal

Institut Laue Langevin

THE EUROPEAN NEUTRON SOURCE

- 1. Ab initio crystal structure determination from powder diffraction
- 2. Introduction to the program GLOpSAnn

Elementary Description of a Crystal Structure

The crystal structure is completely determined by the knowledge of the unit cell the space group the asymmetric unit To solve a crystal structure, these three components must be determined

Diffracted Intensity

The diffracted intensity is the quantity accessible in a diffraction experiment (proportional to the number of diffracted particles reaching the detector) In the kinematic approximation (neglecting multiple scattering), one has:

$$S: \text{ scale factor} \\ C_{hkl}: \text{ experimental corrections} \\ \text{ instrument (Lorentz, polarization, diffraction geometry...)} \\ \text{ sample (multiplicity, absorption, preferred orientation, extinction...)} \\ \hline F_{hkl} = \sum_{j \in cell} f_j T_j \exp(2i\pi(hx_j + ky_j + lz_j)) \\ \hline \end{cases}$$

 F_{hkl} : complex number \rightarrow the **phase of** F_{hkl} **is not measured**. The information is incomplete. To solve the structure, one must retrieve the phases of F_{hkl} ,

Diffracted Intensity

The diffracted intensity is the quantity accessible in a diffraction experiment (proportional to the number of diffracted particles reaching the detector) In the kinematic approximation (neglecting multiple scattering), one has:

$$\rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{h}} F(\mathbf{h}) \exp\{-2\pi i \mathbf{h} \mathbf{r}\} = \frac{1}{V} \sum_{\mathbf{h}} |F(\mathbf{h})| \exp\{-2\pi i (\mathbf{h} \mathbf{r} + \phi_{\mathbf{h}})\}$$
For centrosymmetric structures $\phi_{\mathbf{h}} = 0, \frac{1}{2} \rightarrow only need the sign (positive or negative)$

$$s_{\mathbf{h}} = 1, -1 \rightarrow \rho(\mathbf{r}) = \frac{1}{V} \sum_{\mathbf{h}} s_{\mathbf{h}} |F(\mathbf{h})| \exp\{-2\pi i \mathbf{h} \mathbf{r}\}$$

 F_{hkl} : complex number \rightarrow the **phase of** F_{hkl} **is not measured**. The information is incomplete. To solve the structure, one must retrieve the phases of F_{hkl} ,

Ab initio determination of crystal structures using powder diffraction and the *FullProf Suite*

- 1: One needs a high quality sample already well characterized (composition, density)
- 2: Carry out one or more *well adapted* diffraction experiments (x-ray and/or neutrons and/or electrons, choice of resolution, wavelength, etc...)
- 3: Find the unit cell and index Bragg reflections Using WinPLOTR + Dicvol04, Treor, Ito, etc...
- 4: Obtain the intensities of Bragg reflections and determine the space group Using FullProf in Le Bail mode + CheckGroup
- 5: Find an approximate starting structural model of the atomic motif *ab initio* Using Direct methods (e.g. EXPO), simulated annealing (FullProf, GLOpSAnn), Charge flipping (Superflip), or in simple cases, chemical knowledge
- 6: Refinement and Fourier recycling to obtain a complete and accurate structure Rietveld Refinement using FullProf, Fourier Using GFourier Source

What is Simulated Annealing?

Simulated Annealing:

The SA method is a general purpose optimisation technique for large combinatorial problems introduced by:

Kirpatrick, Gelatt and Vecchi, Science 220, 671-680 (1983).

Minimize a cost function, energy $E(\omega)$, with respect to the configuration vector ω .

Origin: Monte Carlo methods for simulating properties of liquids (Metropolis algorithm)

Algorithm trying to mimic the process of annealing a sample to obtain a good crystalline state (ground state):

A temperature schedule (starting high temperature + cooling rate) is needed. Procedure to generate new configurations (Markov chains) and a Boltzmann probability to explore the phase space (importance sampling)

Simulated Annealing for magnetic structures

The Simulated Annealing method applied to magnetic structural problems from experimental data was treated for the first time in 1993 J. Rodríguez-Carvajal, Physica B **192**, 55-69 (1993) (program MAGSAN)

Recent advances in magnetic structure determination by neutron powder diffraction

Juan Rodríguez-Carvajal

Laboratoire Léon Brillouin (CEA-CNRS), Centre d'Etudes de Saclay, Gif sur Yvette, France and Institut Laue-Langevin, Grenoble, France

Simulated Annealing for Crystal And Magnetic Structures

Minimize a reliability factor with respect to the "configuration vector"

$$\boldsymbol{\omega} = \left| C_1, C_2, C_3, C_4, C_5, \dots C_m \right\rangle$$

$$R_{m}(\boldsymbol{\omega}) = c \sum_{r=1}^{N} \left| G_{obs}^{2}(\mathbf{h}_{r}) - G_{calc}^{2}(\mathbf{h}_{r}, \boldsymbol{\omega}) \right|$$

The "configuration vector" is formed by the free parameters of the structure that may be: (1)atom positions, (2) occupation factors, (3) thermal parameters, (4) magnetic moments, (5) amplitudes of symmetry modes, (6) rigid body parameters, (7) amplitude of modulation functions, (8) coefficients of the linear combination of basis functions of irreducible representations, etc.

The Simulated Annealing Algorithm

begin

end

Initialise (set to zero useful quantities, do preliminary calculations) $\tau = 1$ do do **Perturb the system:** $\omega_{\text{old}} \rightarrow \omega_{\text{new}}, \Delta = E(\omega_{\text{new}}) - E(\omega_{\text{old}})$ if $\Delta \leq 0$ then accept, else if $\exp(-\Delta/T_{\tau}) > random[0,1]$ then accept if accept then Update (replace ω_{old} by ω_{new}) until equilibrium is approached closely enough (Ncyc) $T_{\tau+1} = f(T_{\tau})$ (decrease temperature, usually $T_{\tau+1} = q T_{\tau}, q \approx 0.9$) $\tau = \tau + 1$ until stop criterion is true (maximum τ , convergence, low % accepted...)

Interests of simulated annealing

May not be necessary to know the space group (may work in P1, but it is still better to know it) May not be necessary to know the composition (atoms may move on top of each other and merge, but no new atom can be created, so it is still better to know it)

- Flexibility to define the parameters in the minimization process (not necessarily atomic positions)
- \Rightarrow Reduction of the number of parameters
- \Rightarrow More stable minimization procedure
- \Rightarrow Adapted to the geometrical/crystal-chemical specificities of a given problem

Preparing your data file in FullProf:

Do a Le Bail fit with **More=1**, **Jvi=11**. Produces the *_ctrl.int* file containing single crystal-like intensities If **Ipr=-1** (line 2) a pseudo-profile data file *.spr* is produced for using pseudo-profiles in the SAnn search.

Then use these data for the SAnn search with a single crystal structure description in the .pcr file. **Cry=3**, **Nre**=number of variables, **Ipr=-1** if you want to use profile data, 0 if not, **Irf=4**

Simulated annealing can be used directly in FullProf : for solving crystal and magnetic structures

on integrated intensities or profile data

COMM Ab initio structure solution of PbSO4 (Simulated Annealing, data D1A-ILL) ! Files => DAT-file: pb san, PCR-file: pb san					Nre=nb of parameters									
Job Npi 1 0	r Nph Nba Ne 1 0 0	x Nsc Nor Dum 0 0 0	Iwg Ilo Ias R 0 0 0	es Ste <mark>Nre Cry</mark> 0 0 12 3	Uni Cor Opt A 0 0 0	ut 1	Cry=	=3:	5	single	crystal dat	a		
Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana							Ipr=0 :		1	no profile (spr) used				
U U U U U U U U U U U U U U U U U U U							Ipr=-1 :		I	profile (spr) used, generated				
1 0.10 1.00 1.00 1.00 1.00 15.0000 0.020000 120.0400 0.000 0.000 !								with previous LeBail with Ipr=-1 and Cry=0						
! 12 !Number of refined parameters ! ! Data for PHASE number: 1 ==> Current R_Bragg for Pattern# 1: 36.73							Irf-A powder treated as single crystal							
							ni-+ powder ireated as single crystar							
! PbSO4	 1						Ls2=	=5 &	Jvi=	=3 :	real time v	iew of st	ructure i	n fp-studio
!Nat 5 !	Dis Ang 0 0	g Pr1 Pr2 0.0 0.0	Pr3 Jbt 1 1.0 0	rf Isy St 4 0 0	r Furth 0 0	ATZ 2426.00	Nv] 60 0	k Np 7	r Moi 1	re				
! Jvi 3 !	Jdi Hel 0 0	L Sol Mom 0 0	Ter Brir 0 1.00	nd RMua 000 1.000	RMub 00 0.0000	RMuc 0.0000	Jtyp 1	Nsp 0	_Ref 0	Ph_Sh 0	ift			
Ρn	m a		<sp< td=""><td>bace group</td><td>symbol</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></sp<>	bace group	symbol									
!Ato	om Typ	Х	Y	Z	Biso	Occ	In I	Fin 3	N_t S	Spc /C	odes			
Pb	PB	0.31294 11.00	0.25806 21.00	0.82424 31.00	1.42124 0.00	0.50000	0	0	0	0				
S	S	0.28429	0.25806	0.89134	0.41603	0.50000	0	0	0	0				
01	0	0.59101	0.25806	0.40489	1.99182	0.50000	0	0	0	0				
02	0	0.81205	0.25806	0.03500	1.47906	0.50000	0	0	0	0				
		81.00	21.00	91.00	0.00	0.00								
03	0	0.58159 101.00	0.95861 111.00	0.77608 121.00	1.33000 0.00	1.00000 0.00	OT H	HEO E	EU ()RC	PEOAN	NEUTRO	N SOUR	CE	NEUTRONS FOR SOCIETY

÷	SCALE I	actors							
!	Sc1	Sc2	Sc3	Sc4	Sc5	Sc6			
	1.354	.0000	.0000	.0000	.0000	.0000	Simul	lated in J	ullProf
	0.00	0.00	0.00	0.00	0.00	0.00			
!	Extinct	cion Parar	neters						
!	Ext1	Ext2	Ext3	Ext4	Ext5	Ext6	Ext7 E	xt-Model	
	.0000	.0000	.0000	.0000	.0000	.0000 .	0000	0	
	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
!	a	b	С	alpha	beta	gamma	#Cell I	nfo	
	8.48513	30 5.402	6.964059	90.000000	90.000000	90.000000			
	0.0000	0.00	0.0000 0.00000	0.0000	0.0000	0.00000			
!	x-Lambda	a/2 +	Not yet	used parame	ters				
	0.0000	0.0	0.000 0.000	0.00	000 0.00	000			
	0.0	0	0.00 0.	0 00	.00 0	.00			
!	Limits f	for select	ed parameters	(+ steps & 3	BoundCond fo	r SA):			
	1	0.0000	1.0000	0.0033	1 X_Pb				
	2	0.0000	1.0000	0.0064	1 Y_Pb				
			•						
	11	0.0000	1.0000	0.0084	1 Y_03				
	12	0.0000	1.0000	0.0042	1 z_03				
!	T_ini	Anneal A	Accept NumTemps	NumThCyc I	nitConf				
	6.000	0.950	0.003 80	0	0				
!	NCyclM	Nsolu Nu	m_Ref Nscalef	NAlgor					
	240	1	71 1	0					
!	ISwap	Var-Rea	al/Imag						
	0	0							

I Caple Epsters

1. Live presentation: The programs WinPLOTR and WinPLOTR-2006 for visualizing powder diffraction patterns, peak search, background determination, peak fitting, etc.

2. Indexing powder patterns. Le Bail Fit of powder patterns.

3. Ab initio crystal structure determination from powder diffraction

4. Introduction to the program GLOpSAnn

GLOpSAnn Simulated Annealing to solve crystal structures with CrysFML

Similar to SAnn in FullProf + large choice of cost functions and combinations of them. Magnetic structure and rigid groups are not yet available (but can use dist+angle restraints).

"F2obs-F2cal"	Cost(F2obs-F2cal)	:	Optimization	of	C0	=Sum F2obs-F2cal /Sum F2obs
"Fobs-Fcal"	Cost(Fobs-Fcal)	:	Optimization	of	C1	=Sum Fobs-Fcal /Sum Fobs
"dis-restr"	Cost(dis-restr)	:	Optimization	of	C2	$=Sum\{w(dobs-dcal)^2\}, w=1/var(d)$
"Ang-restr"	Cost(Ang-restr)	:	Optimization	of	С3	=Sum{w(Ang_obs-Ang_cal)^2}, w=1/var(Ang)
"Tor-restr"	Cost(Tor-restr)	:	Optimization	of	C4	=Sum{w(Tor_obs-Tor_cal)^2}, w=1/var(Tor)
"bond-valence"	Cost(bond-valence)	:	Optimization	of	C5	=Sum{ q-BVS /tot_Atoms}
"bvs_coulomb"	C5 + Cost(Coulomb)	:	Optimization	of	C6	=Sum{qi qj/dij}
"FoFc-Powder"	Cost(FoFc-Powder)	:	Optimization	of	C7	=Sum Gobs-Sum(Fcal) /Sum Gobs
"Coordination"	Cost(Coordination)	:	Optimization	of	C8	=Sum Coord-Efcn /Sum Coord
"Anti_Bump"	Cost(Anti_Bump)	:	Optimization	of	С9	=Sum{ (dmin/d) **power}
"Powder_Profile"	Cost(Powder_Profile)	:	Optimization	of	C10	0=Sum{ yiobs-yicalc / yiobs }
"Powder_WProfile"	Cost(Powder_WProfile)	:	Optimization	of	C11	1=Sum{w{yiobs-yicalc}^2/(N-P)} Similar to Chi2

Works with Le Bail extracted single crystal-like data (*.int*) or pseudo-profile data (*.spr*), as for simulated annealing in FullProf.
Need to create a *.cfl* control file with starting structure and minimization commands

Input .cfl file for GLOpSAnn

Title PbSO4 (experimental Jvi=-11 |F|) Neutrons b alpha beta а gamma С 90.000 Cell 8.485454 5.402319 6.964360 90.000 90.000 Spgr Pnma Spin Charge У в occ х z 0.18797 0.25000 0.16754 0.50000 0.0 2.0 1.35290 #color 0 0 1 1 Atom Pb PB Atom S S 0.06467 0.25000 0.68300 0.89361 0.50000 0.0 6.0 #color 1 1 0 1 Atom 01 0 0.90712 0.25000 0.59675 0.57221 0.50000 0.0 -2.0#color 0 1 1 1 Atom 02 0.18635 0.25000 0.54278 0.99996 0.50000 0.0 -2.0#color 1 0 1 1 0 Atom 03 0.08021 0.02965 0.81211 1.07399 1.00000 -2.0#color 1 0 0 1 0 0.0 ! Codes for refinement Vary xyz 0 1 0 1 HKL-OBS pb neu.int MIN-DSPACING 1.5 WAVE 1.912 RADIATION NEUTRONS FST CMD conn S O 0.0 1.8 OPTIMIZE bond-valence 0.15 FoFc-Powder 0.85 LOCAL OPTIMIZATION SIM ANN ! Simulated Annealing conditions CostNam FoFc Pow+BVS 3.0 80 TemParM 0.95 ! T ini anneal num temps ! Nalgor Nconf nm cycl Algor T 0 6 120 0 10.0 num therm accept% SeedVAL 0 25.0 Threshold InitCON RAN

Live presentation of GLOpSAnn

THE EUROPEAN NEUTRON SOURCE