

Contribution ID: 69 Type: Oral

Al Analysis of Grazing Incidence X-Ray Diffraction

Tuesday, 16 July 2024 12:00 (20 minutes)

In this study, we introduce cutting-edge neural network algorithms that precisely predict crystal unit cell parameters and contact planes from Grazing Incidence X-Ray Diffraction (GIXD) data. Our method processes a list of *q*-positions and delivers predictions of the unit cell with exceptional accuracy—better than 0.1 Angstrom in dimensional precision and sub-degree in angular measurements. It eliminates the necessity to measure the 'missing wedge' in a specular scan, simplifying the experimental setup. Our AI method facilitates the rapid, autonomous processing of complex GIXD patterns without user intervention. It enables a detailed evaluation of the analysis's sensitivity to missing or spurious peaks due to its ability to predict structures for a large number of GIXD patterns quickly. Indeed the analysis copes well with patterns that miss peaks or contain only few peaks in total. These advancements present a substantial improvement in efficiency and reliability for researchers utilizing intricate GIXD patterns in crystallographic surface science studies.

Please select the related topic from the list below

Instrumentation and methods

Primary authors: KOWARIK, Stefan (Universität Graz); Mr PFEILER, Erwin (Universität Graz); Dr SIMBRUN-

 $NER, Josef (TU\ Graz);\ Prof.\ RESEL, Roland\ (TU\ Graz)$

Presenter: KOWARIK, Stefan (Universität Graz)

Session Classification: Instrumentation and methods II