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Neutron diffraction 



NEUTRON PROPERTIES

Discovered in 1932 by Chadwick

Daily Telegraph

53rd Erice School

Composed by 3 
quarks 

At least 50% of the
Universe matter

15 min 

0 min 

Is not stable 
outside the 

nucleus



NEUTRON’S GENERATION: THE ILL REACTOR

A neutron source generating 

5 x 1018 fast neutrons/sec 

at a max power of 58 MW



HOW NEUTRONS ARE EXTRACTED AND GUIDED



WHY NEUTRONS? 

Light atoms, as hydrogen or

oxygen, are scattered as much

as heavy atoms

 X-ray scattering is proportional to the number
of electrons (Z2)

 Electron scattering depends on the electric
potential

 Neutron scattering is similar for all atoms with
a non-clear atomic (or isotopic) dependence.



FORM FACTOR

 The nuclear form factor is independent of Q (neutrons)

 The structural form factor is strongly dependent of Q (X-ray)

 High Q’s region is better explored using neutron diffraction

neutrons

X-rays

Bragg law



PENETRATION ON THE MATTER

Neutrons interact with the tiny atomic nuclei

and can localise the atoms more precisely

Atomic number
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They can penetrate deeper than X-rays



Neutrons have no charge, but they do have a magnetic moment.

The magnetic moment is given by the neutron’s spin angular momentum:

Where:

• g is a constant (=1.913)

• is the nuclear magneton

• is the quatum mechanical Pauli spin operator

Normally refer to neutron as a spin-1/2 particle

ˆ
Ng 

ො𝜎
𝜇𝑁

MAGNETIC SCATTERING



MAGNETIC SCATTERING

Neutrons are strongly scattered by
magnetic materials

Ferromagnetic magnetite Fe3O4

and antiferromagnetic

manganese oxide MnO

 Neutrons are like small magnets

 The neutron’s magnetic moment strongly

interacts with the magnetic atomic moments

 Neutrons can determine magnetic structures

and measure the magnetization with high

precision
Arrangement of spins in two 
different types of skyrmions

I. Kezsmarki et al., Nature Materials, 2015, 14, 1116; DOI: 10.1038/nmat4402ptions.



OVERVIEW

 X-rays
 Surface or small samples

 Diffraction power correlated with Z

 Difficult for determine light atoms

 Low contrast for atoms close in the Periodic Table

 High flux

 Small samples
 High resolution

 Neutrons 
 Bulk meausrements

 Diffraction power different for different isotopes

 Can see light atoms (incoherent problem of H)

 Can distinguish neighbors in in the Periodic Table

 Low flux

 Big samples
 Medium resolution

Magnetic Structures!!!

« Magnetic studies »



SCATTERING CONCEPTS

( ' ) hQ k k s  

The prime (’) superscripts stand for final state of the particle

The differential scattering cross section can be defined based on the fraction of neutrons 
scattered into a solid angle d, with an angle . The incident neutrons have an initial wave 
vector k, which change to k’ after the scattering process. The final wave vector, k’, lies within 
the solid angle d. 

Here we will consider only the magnetic interaction between the 
incident neutrons and the target. 
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Where E and E’ denoting the initial and the final kinetic 
energy of the probe and and s and s’ are spin states.
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SCATTERING CONCEPTS

Conservation of the EnergyThe matrix element, which contain most of the physics

The square of the matrix element gives the transition 

probability from the initial to the final state.

This transition probability is related to the probe-target 

interaction through the potential Vm, which is the potential felt 

by the neutron due to the magnetic field created by moving 

electrons of the target.

ˆ·m NV g   B

Where B is the magnetic induction



ELASTIC SCATTERING

If the incident neutron energy = the final neutron energy, the scattering is considered as 
”elastic”.
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If we are using unpolarised neutron scattering we can assume than s = s’.

We can integrate over all volume (r)

' ( )i

m mV V e d  
Qr

k k r M Q

The elastic cross-section is then directly proportional to the Fourier transform squared of the 

potential.

Neutron scattering thus works in Fourier space, otherwise called reciprocal space.
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Plane wave
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MAGNETIC GROUND STATE

The magnetic ground state of a spin system, should provide a magnetic structure compatible
with the minimum energy of the classical spin Hamiltonian

,

,
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Here below we present some 1D magnetic models:



MAGNETIC FIELD EXPERIENCED BY A TRAVELING NEUTRON:
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Magnetism is caused by unpaired electrons or by movement of charges.

The magnetic field felt by the neutron due to the spin (S) and orbital (L) moments of an
electron can be expressed using the following equation:

Spin Orbital/Movement

Where the two term within braces correspond to the magnetic vector potential of a
dipolar field due to the electron spin moment and the second correspond to the Biot-
Savart law for a single electron with linear momentum p.

Dipolar field Biot-Savart law



MAGNETIC FIELD EXPERIENCED BY A TRAVELING NEUTRON:

The evaluation of the spatial part of the transition matrix element for an electron j is
described by the following expression:
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Spin contribution Orbital contribution

Neutrons are only sensible

to the component of the

local magnetization that is

perpendicular to the

scattering vector !!



• The interaction between a body characterized by the magnetic density                 
and a neutron beam provides:  

• Magnetic form factor, f(Q), is the Fourier transform of the magnetic density.

     exp 2  m
S

f i d  Q Qr .r r

 m r

The above formulas are quite general: they  can be  applied to the cases in which (r) represents  the electron 

density of an electron, of an atom, of a molecule, of the unit cell, of the full crystal.

m

m

Q=Q e Only the perpendicular

component of m to Q=2h

contributes to scattering



Diffraction Equations for crystals

The Laue conditions have as a consequence the Bragg Law
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Laue conditions: the scattering vector is a reciprocal lattice vector of the crystal
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From Pecharsky and Zavalij

Detector

Ewald construction

s0L/

sL/

Miller index



Ewald construction: single crystal case
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Ewald Sphere

Laboratory Frame and detector



Four-circle configuration

Normal-beam configuration

http://www.ill.eu/index.php?eID=tx_cms_showpic&file=fileadmin%2Fusers_files%2Fmedia%2Finstruments%2FD9%2Fimg%2FD9-layout-AF11-web.png&md5=ac0fe8e2ba84e82f1f512e8f4e1b46d03e80304c&parameters%5b0%5d=YTo0OntzOjU6IndpZHRoIjtzOjQ6IjgwMG0iO3M6NjoiaGVpZ2h0IjtzOjQ6IjYw&parameters%5b1%5d=MG0iO3M6NzoiYm9keVRhZyI7czo0MToiPGJvZHkgc3R5bGU9Im1hcmdpbjowOyBi&parameters%5b2%5d=YWNrZ3JvdW5kOiNmZmY7Ij4iO3M6NDoid3JhcCI7czozNzoiPGEgaHJlZj0iamF2&parameters%5b3%5d=YXNjcmlwdDpjbG9zZSgpOyI%2BIHwgPC9hPiI7fQ%3D%3D


Diffraction patterns

Single Xtal - 2D image + scan –>  3D  Int vs 2θ
Powder - 2D image –>  1D  Int vs 2θ

Courtesy of Jim 
Britten

nλ=2d(sinθ)

Single Crystal

Powder or 
polycrystalline solid



From Pecharsky and Zavalij Detector

Ewald construction Laue

s0L/

sL/

1/max

1/min



[NH3CH3]N[COII(HCOO)6]N

Cyclops

Cooling down from RT up to 20K

I. Conmensurate structure

II & III. Inconmensurate structures

IV. Conmensurate structure ↔ Twinned crystal



[NH3CH3]N[COII(HCOO)6]N

I. Conmensurate structure

II & III. Inconmensurate structures

IV. Conmensurate structure ↔ Twinned crystal

Cyclops

77K

128K

I

II

III IV



Single Crystal and Powder Diffraction

Single Crystal diffraction allows to get with high precision subtle structural details: 

thermal parameters, anharmonic vibrations.

Drawbacks: big crystals for neutrons, extinction, twinning

Data reduction: Needs only the indexing and integration of Bragg reflection and obtain 

structure factors. List:  h  k  l     F2 σ(F2)

Data Treatment: SHELX, FullProf, JANA, GSAS, …

Powder diffraction no problem with extinction or twinning.

Data reduction: minimalistic, needs only the profile intensities and their standard 

deviations

Data Treatment: FullProf, JANA, GSAS, TOPAS, …



POWDER DIFFRACTOMETER

2 ( )d n sen 



MAGNETIC POWDER DIFFRACTION

Based on the Rietveld Method

 y     I   (   ) D B  i i i iT T     H H

H

   

Where yi is the number of counts, the subscript "i" represents a discrete observation at the 

scattering variable Ti

The T variable to describe either, the scattering angle 2, the time of flight t or the 

scattering vector modulus Q or s. 

H corresponds to Bragg peaks contributing to the channel "i“

IH is the integrated intensity of the reflection H

is the value of the normalised profile function of the Bragg reflection at 

the position Ti due to the reflection H at the position TH

Di is the diffuse scattering due to defects

Bi is the background 

ሻΩ(𝑇𝑖 − 𝑇𝐇



( ) { · · · · · ( ) ( )}MI j L AO E    *

,H Hh M h M h

The intensity of each magnetic reflection is affected by other parameters than should be 

taken into account in the previous equation:

j is the multiplicity of the reflection H. L is the Lorentz factor. A is the absorption 

correction. O is to handle with preferred orientations and E is the primary extinction 

correction. 

MAGNETIC POWDER DIFFRACTION

( )MI ,H hThe                  should be determined experimentally and fitted using theoretical models. 

In order to achieve to measure adequately the intensity of magnetic reflections some 

consideration are needed.



CAGLIOTI’S EQUATION

The Caglioti’s relations is generally used to calculate an approximate resolution function of 

the two axis diffractometer.

2 1/2( tan tan )FWHM U V W   

The full width at half maximum (FWHM) of Bragg reflections varies with the scattering angle.

U, V and W are parameter that the user should be provide to the refinement program (FullProf, Jana, 

Topas, etc…). 

Why does on powder diffractometers

the detector is placed on the positives

values of  (right side from sample to

detector)?



CAGLIOTI’S EQUATION

2 1/2( tan tan )FWHM U V W   

The resolution on powder diffraction is defined as the ability to distinguish between two adjacent 

reflections.

This is correlated with the value of the full width at half maximum (FWHM) at each scattered

position.

U, V and W are parameters can be correlated with angular divergence of the incoming neutrons to

the monochromator, 1, the angular aperture of a monochromator-to-sample collimator, 2, the

collimation between sample and detector, 3, the take-off angle of the monochromator, 2m and the

mosaicity of the monochromator, .



CAGLIOTI-PAOLETTI-RICCI EQUATIONS

The Caglioti-Paoletti-Ricci equations are able to determine U, V and W through angular

divergences 1, 2 and 3, the take-off angle and the mosaicity of the monochromator, .
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For a powder diffractometer used to determine magnetic structures, typically we look for:

- long wavelengths (to separate nuclear and magnetic reflections),

- maximum of resolution on the low angle region (magnetic form factor)

- High flux



CAGLIOTI-PAOLETTI-RICCI EQUATIONS
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Here a comparison of two instrument configuration the blue

one correspond with a instrument configuration dedicated to

magnetism while the green one is dedicated to structural

crystallography.

There is always a price to paid!!



MAGNETIC DIFFRACTION

The integrated intensity of a magnetic Bragg reflections is proportional to the square of 

the so called magnetic interaction vector.

   
2 2

( )MI    h M h M(h) M(h) e e

Magnetic Interaction Vector

Magnetic Structure Factor
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p O f T exp i S


  
  

j :  index running for all magnetic atom sites in the magnetic asymmetric 
unit (j =1,…n )

s :  index running for all atoms of the orbit corresponding to the magnetic site j (s=1,… nj). 
Total number of atoms: N = Σ nj

 t
s

S Symmetry operators of the propagation vector group

1/2·re·g = p =0.2696 10-12 cm/B



Diffraction Patterns of magnetic structures

Magnetic reflections:   indexed  by a set of 

propagation vectors {k}

h    is the scattering vector indexing a magnetic reflection   

H is a reciprocal vector of the crystallographic structure

k is one of the propagation vectors of the magnetic structure 

( k is reduced to the Brillouin zone)

Portion of reciprocal space 

Magnetic reflections

Nuclear reflections

h = H+k



PROPAGATION VECTOR

Nuclear intensities
Nuclear + magnetic intensities

Magnetic intensities

Representation in the Real Space Diffraction pattern Reciprocal Space

Nuclear unit cell

Magnetic unit cells

????



PROPAGATION VECTOR

Commensurate Magnetic structures can be described by 

the periodic repetition of a magnetic unit cell, just as 

crystal structures are described by translation of a nuclear unit 

cell

We are going to use a description based on the nuclear unit cell and 

a 'propagation vector', k, that describes the relation between 

moment orientations of equivalent magnetic atoms in different 

nuclear unit cells



Diffraction Patterns of magnetic structures

Cu2+ ordering

Ho3+ ordering

Notice the decrease of the 
paramagnetic background on Ho3+

ordering

Ho2BaCuO



PROPAGATION VECTOR

The magnetic moment “mlj” associated with the atom “j” at  the unit cell 
with origin in Rl, is determined by the Fourier series:

The summation is taken over a discrete set of wavevectors that are confined 
to the first Brillouin zone of the Bravais lattice of the nuclear cell

Where Skj are the Fourier components (linear combination of Basis vectors 
of irreps) with propagation vector k corresponding to the atom j in the 
zeroth unit cell. 

 2k

k

m S kRlj j lexp i 

For getting mlj as real vectors S*kj = S-kj should be satisfied



PROPAGATION VECTOR

   exp{ 2  }   exp{ 2  }lj j l j lji i     k k

k k

m S k R T k R

The magnetic moment can also be written using the next formulation:

Where:

1 2 3lj l j j j jl l l x y zR  R r  a b c a b c       

With Rl=(l1, l2,l3) being a translation vector and (xj, yj, zj) being the fractional 
coordinates of atom j within the unit cell. 

One can use whatever of the two formulae keeping in mind the relation: Skj= Tkjexp{-2i rj}

The Skj (or Tkj) correspond to the Fourier components of the magnetic moment of atom j.
Skj is a complex vector so 6 components are needed.



PROPAGATION VECTOR

A magnetic structure could be fully described by:

- Wave-vector(s) or propagation vector(s) {k}.

- Fourier components Skj for each magnetic atom j and k-vector Skj is a complex vector.

General expression of the Fourier coefficients (complex vectors)  for an arbitrary site when k and –

k are not equivalent can be written as:

1
( )exp{ 2 }

2
k k k kS R Ii i   

Only six parameters are independent. The writing above is convenient when relations between the 

vectors R and I are established (e.g. when |R|=|I|, or R . I =0). A phase  is also added to handle 

the possible shift among different magnetic sites.  



SIMPLE PROPAGATION VECTOR K = (0, 0, 0)

• Fourier coefficients are real and equal to magnetic moments

• The magnetic cell is identical to the crystallographic unit cell

• Magnetic symmetry: conventional crystallography plus spin reversal operator 

crystallographic magnetic groups 

Single magnetic site Two magnetic sites

 
 

2k k

k

m S kR Slj j l jexp i  
k = (0, 0, 0)



The propagation vector is ½ a vector of the reciprocal space vector

SINGLE PROPAGATION VECTOR K=1/2 H

 
 

 
( )

2k k

k

m S k R S
n l

lj j l jexp i -1  

corresponds, in this case, to the magnetic moment of the atom j within the zeroth (nuclear) cell.

k = (0, 0, 1/2)

• REAL Fourier coefficients  magnetic moments

• The magnetic symmetry may also be described using conventional crystallographic magnetic space groups  

0kS mj j



FOURIER COEFFICIENTS OF SINUSOIDAL STRUCTURES

1
2

2
k kS uj j j jm exp( i )  

- k interior of the Brillouin zone (pair k, -k). In other words k-(-k) 

is not a reciprocal space vector

- Real Sk, or imaginary component in the same direction as the 

real one

2 2k -km S kR S kRlj j l j lexp( i ) exp( i )   

km u kRlj j j l jm cos 2 ( )  

1 1
2 2 2 2

2 2
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2 2
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FOURIER COEFFICIENTS OF HELICAL STRUCTURES

1
2

2
k kS u vj uj j vj j jm im exp( i )     

- k interior of the Brillouin zone

- Real component of  Sk perpendicular to the 

imaginary component

k km u kR v kRlj uj j l j vj j l jm cos2 ( ) m sin2 ( )      



REPRESENTATION ANALYSIS

A reducible representation of the propagation vector group can be constructed by selecting the

atoms of a Wyckoff position and applying the symmetry operators to both positions and axial

vectors (spins).

This gives rise to the so called Magnetic Representation of dimension: 3na (being na the 

number of atoms in the primitive cell) 

The basis functions, for each Irrep and each sublattice of a Wyckoff site, can be 

calculated by using the projection operator formula. The basis functions are constant 

vectors of the form (1,0,0), (0.5, 1,0) … with components referred to the crystallographic 

unitary frame: {a/a, b/b, c/c} attached to each sublattice.



REPRESENTATION ANALYSIS

SARAh (Spin and Representation Analysis How-To) – SARAh is widely used for magnetic

symmetry analysis.

ISODISTORT – Part of the ISOTROPY software suite. ISODISTORT is widely used for

symmetry analysis in structural refinements.

BasIreps – BasIreps is part of the FullProf suite and allows for the calculation of irreducible

representations of space groups for structural and magnetic systems.

Bilbao Crystallographic Server. It provides tools for representation analysis specifically

focused on coupling magnetic symmetry with crystallographic data, useful for magnetic

structure analysis.



Powder Diffractometers:

D1B 2-axis diffractometer (CRG)

D2B high-resolution 2-axis diffractometer

D4 diffractometer for liquids and amorphous substances

D7 diffuse scattering spectrometer (polarized neutrons)

D20 high-flux 2-axis diffractometer

SALSA the strain imager

XtremD diffractometer for extreme conditions experiments (CRG)

SUITE OF DIFFRACTION INSTRUMENTS AT ILL



D1B 2-axis diffractometer



D20 2-axis diffractometer



Single Crystal Diffractometers:

D3 polarised hot-neutron diffractometer

D9 hot neutrons

D10 4-circle & 3-axis

D23 2-axis spectrometer (CRG)

Orient Express Laue diffractometer for align and check samples

SUITE OF DIFFRACTION INSTRUMENTS AT ILL



D9 hot neutron



D10 thermal neutron diffractometer
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Thank you for your kind 

attention


