AI in SAS II

Emre H Brookes

EMBO Practical : Small Angle Neutron and X-ray Scattering from biomacromolecules in solution

19 September 2024

University of Lethbridge

Al

Artificial Intelligence

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472

Perceptron

Neural Networks - Dense 4-6-6-3

Neural Networks - 4-3-3 Recurrent NN (RNN)

Neural Networks - U-Net

Ronneberger et al., 2015. U-net., MICCAI 2015 proceedings, part III 18 (pp. 234-241). Springer

Transformer Network

Vaswani, A., 2017. Attention is all you need. Advances in Neural Information Processing Systems.

Training

- Given:
 - training data
 - test data
- initialize random weights
- optimize the weights:
 - repeat until satisfied:
 - compute loss
 - backpropagate to update weights

Training

Overfitting

ChatGPT (Generalized Pretrained Transformer)

- Multiple transformer blocks
- ChatGPT 3
 - Brown, T.B., 2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
 - 175 billion weights
 - 96 layers
 - The raw training set was 45TB of compressed plaintext. After filtering, it was ~570GB.
- ChatGPT 4
 - estimated 1 2 trillion weights

AI/ML in Facilities

• Synchrotron optimization

- Leemann, S.C., Liu, S., Hexemer, A., Marcus, M.A., Melton, C.N., Nishimura, H. and Sun, C., 2019. Demonstration of machine learning-based model-independent stabilization of source properties in synchrotron light sources. Physical review letters, 123(19), p.194801.
- Beamline optimization
 - Morris, T.W., Rakitin, M., Giles, A., Lynch, J., Walter, A.L., Nash, B., Abell, D., Moeller, P., Pogorelov, I. and Goldring, N., 2022, October. On-the-fly optimization of synchrotron beamlines using machine learning. In Optical System Alignment, Tolerancing, and Verification XIV (Vol. 12222, pp. 171-175). SPIE.

NIST Center for Neutron Research

- Neutron Instrument Control Environment (NICE)
- 15 NICE instruments
- 585 total control parameters
- 818 experiment types
- Trajectory files need to be created to run the instruments
 - instrument-specific details
 - time consuming for users to master
- Given Large amounts of documentation and example Trajectory files:

NIST Center for Neutron Research

User text

e.g.

"Create magik trajectory angleChecks that starts with a time of 10 and loops through sampleAngle from 2 to 10 in steps of 0.25"

Properly formatted trajectory file to control the instrument

```
e.g.
{"filePrefix": "mb111",
"init": [
["counter.countAgainst", "'TIME'"]],
"loops": [{
"vary": [
["sampleAngle", {"range": {"start": 2,
"step": 0.25, "stop": 10}],
]}]
```

NIST Center for Neutron Research

User text

e.g.

"Create magik trajectory angleChecks that starts with a time of 10 and loops through sampleAngle from 2 to 10 in steps of 0.25"

Properly formatted trajectory file to control the instrument

e.g. {"filePrefix": "mb111", "init": [["counter.countAgainst", "'TIME'"]], "loops": [{ "vary": [["sampleAngle", {"range": {"start": 2, "step": 0.25, "stop": 10}}],]}]

Designing and training an LLM for this would be expensive!

Retrieval-Augmented Generation

Brookes - EMBO Practical : SAS - 2024.09.19

Credit: Jack Campbell, NIST, jack.campbell@nist.gov

Retrieval-Augmented Generation

• ~500 lines of code

• Data curation

Brookes - EMBO Practical : SAS - 2024.09.19

Credit: Jack Campbell, NIST, jack.campbell@nist.gov

A Common Science Problem

Relevant description of the data

A Common Science Problem

Relevant description of the data e.g.

- parameters
- models
- categorization

AlphaFold / Google DeepMind

Sequence

Model

- v2 Evoformer
- v3 Pairformer

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2	John Jumper ¹⁴ , Richard Evans ¹⁴ , Alexander Pritzel ¹⁴ , Tim Green ¹⁴ , Michael Figurnov ¹⁴ ,		
Received: 11 May 2021	Olaf Ronneberger ^{1,4} , Kathryn Tunyasuvunakool ^{1,4} , Russ Bates ^{1,4} , Augustin Židek ^{1,4} , Anna Potanenko ^{1,4} , Alex Bridgiand ^{1,4} , Clemens Mayer ^{1,4} , Simon A, A, Kobl ^{1,4}		
Accepted: 12 July 2021	Andrew J. Ballard ^{1,4} , Andrew Cowie ^{1,4} , Bernardino Romera-Paredes ^{1,4} , Stanislav Nikolov ^{1,4} ,		
Published online: 15 July 2021	Rishub Jaim ¹⁴ , Jonas Adler ¹ , Trevor Back ¹ , Stig Petersen ¹ , David Reiman ¹ , Ellen Clancy ¹ , Michal Zielinski ¹ , Martin Steinegger ²² , Michalina Pacholska ¹ , Tamas Berghammer ¹ , Sebastian Bodenstein ¹ , David Silver ¹ , Oriol Vinyals ¹ , Andrew W. Senior ¹ , Koray Kavukcuoglu Pushmeet Kohli ¹ & Demis Hassabis ^{14,22}		
Open access			

Vol 596 26 August 2021 | 583 Nature

Article

Highly accurate protein structure prediction for the human proteome

https://doi.org/10.1038/s41586-021-03828-1 Received: 11 May 2021 Accepted: 16 July 2021 Published online: 22 July 2021 Open access

Kathryn Tunyasuvunakool¹²², Jonas Adler¹, Zachary Wu¹, Tim Green¹, Michal Zielinski¹, Augustin Žídek¹, Alex Bridgland¹, Andrew Cowie¹, Clemens Meyer¹, Agata Laydon¹, Sameer Velankar², Gerard J. Kleywegt², Alex Bateman², Richard Evans¹, Alexander Pritzel¹ Michael Figurnov¹, Olaf Ronneberger¹, Russ Bates¹, Simon A. A. Kohl¹, Anna Potapenko¹, Andrew J. Ballard¹, Bernardino Romera-Paredes¹, Stanislav Nikolov¹, Rishub Jain¹ Ellen Clancy¹, David Reiman¹, Stig Petersen¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Ewan Birney², Pushmeet Kohli¹, John Jumper^{1,3}[™] & Demis Hassabis^{1,3}[™]

Vol 596 | 26 August 2021 | 590 Nature |

Biological SAS I(q)

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

Biological SAS I(q)

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

Machine Learning (ML) vs "Classical"

- ML typically requires good training & test data
 - and potentially large amounts
- ML can be fast
- If the data is outside of the range of the training & test data, results will likely be wrong
- Confidence of ML results is apparently still an open question
 - Papadopoulos, G., Edwards, P.J. and Murray, A.F., 2001. Confidence estimation methods for neural networks: A practical comparison. IEEE transactions on neural networks, 12(6), pp.1278-1287.
- ML can be a "black-box"

Machine Learning vs "Classical" - ChatGPT 40

Tradeoffs for using machine learning vs classical approaches for modeling

Category	Machine Learning Classical Approach				
Data Requirements	Requires large datasets Works with limited data				
Interpretability	Less interpretable (black-box)	nterpretable (black-box) Highly interpretable			
Generalization	Good at interpolation Good for extrapolation				
Computational Complexity	Computationally intensive Less computationally demanding				
Flexibility	Highly flexible Less flexible				
Model Robustness	Can be less robust More robust				
Development Time	Longer development time Faster development time				
Scalability	Highly scalable Less scalable across domains				
Handling Nonlinearity	Great for handling nonlinearity	Limited handling of nonlinearity			

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

Prof. André Guinier 1911-2000 Orsay, France

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

- Glatter, O. (1977) J. Appl. Cryst. 10, 415-421.
- GNOM Svergun D.I. (1992) J. Appl. Cryst. 25, 495-503.
- Bayesian Fitting Hansen, S. (2000) J. Appl. Cryst. 33, 1415-1421

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

SAS I(q) - Shape Classification

• Classical:

- P(r)
- Kratky
- Normalized Kratky

 Pérez, J., Vachette, P., Russo, D., Desmadril, M. and Durand, D., 2001. J. Mol. Bio., 308(4), pp.721-743.

• ML:

• Franke, D., Jeffries, C.M. and Svergun, D.I., 2018. Machine learning methods for X-ray scattering data analysis from biomacromolecular solutions. Biophys. J. 114(11), pp.2485-2492.

3D feature vector space used for classification

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

Information content in SAS curves

Svergun, D.I. & Koch, M.H.J. (2003) Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 66 1735-82

- Shannon channels = $D_{max} \cdot q$ -range / π
- "the number of [obtainable parameters] typically does not exceed 10-15"

Lyzosyme $D_{max} \sim 48$ Angstroms

Shannon channels = $48 * 0.5 / \pi \sim 8$

Brookes, E., Parsimonious Spatial Models from Small Angle Scattering of Biological Macromolecules, SAS 2012, Sydney

PDB	MW in Daltons	Description
8RAT.PDB	13,683.87	CRYSTALLOGRAPHIC STUDIES OF THE PROTEIN RIBONUCLEASE-A
1A4V.PDB	14,152.00	ALPHA-LACTALBUMIN
1DWR.PDB	17,682.20	MYOGLOBIN (HORSE HEART) WILD-TYPE COMPLEXED WITH CO
1HCO.PDB	32,279.78	HUMAN CARBONMONOXY HAEMOGLOBIN
1BEB.PDB	35,305.26	BOVINE BETA-LACTOGLOBULIN
1CTS.PDB	49,129.58	CITRATE SYNTHASE
2CGA.PDB	51,318.72	BOVINE CHYMOTRYPSINOGEN
1GZX.PDB	64,575.52	OXY T STATE HAEMOGLOBIN: OXYGEN BOUND AT ALL FOUR HAEMS
5LDH.PDB	74,917.32	ACTIVE TERNARY COMPLEX OF PIG HEART LACTATE DEHYDROGENASE WITH S-LAC-NAD
2GD1.PDB	144,427.77	OXIDOREDUCTASE(ALDEHYDE(D)-NAD(A))
1GD1.PDB	147,077.69	HOLO-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM BACILLUS STEAROTHERMOPHILUS
1ADO.PDB	157,287.20	FRUCTOSE 1,6-BISPHOSPHATE ALDOLASE FROM RABBIT MUSCLE
10VA.PDB	169,965.56	UNCLEAVED OVALBUMIN

Brookes - EMBO Practical : SAS - 2024.09.19

Brookes, E., Parsimonious Spatial Models from Small Angle Scattering of Biological Macromolecules, SAS 2012, Sydney

1A4V - 1 sphere

Brookes, E., Parsimonious Spatial Models from Small Angle Scattering of Biological Macromolecules, SAS 2012, Sydney

1A4V - 7 spheres

Model name	D(tr) [cm/sec^2]	Rg [nm]	Max extensions X [nm]	Y [nm]	Z [nm]	Axial ratios X:Z	X:Y	Y:Z
1A4V_1-db_1sa-10_1	1.210e-06	1.37	3.54	3.54	3.54	1.00	1.00	1.00
1A4V_1-db_2sa-10_1	1.200e-06	1.45	4.74	3.15	3.15	1.50	1.50	1.00
1A4V_1-db_3sa-10_1	1.140e-06	1.52	4.69	3.50	2.94	1.60	1.34	1.19
1A4V_1-db_4sa-10_1	1.170e-06	1.48	4.67	3.15	3.08	1.51	1.48	1.02
1A4V_1-db_5sa-10_1	1.140e-06	1.51	4.70	4.01	3.23	1.46	1.17	1.24
1A4V_1-db_6sa-10_1	1.140e-06	1.50	4.87	3.69	3.28	1.49	1.32	1.12
1A4V_1-db_7sa-10_1	1.160e-06	1.49	4.74	3.21	3.21	1.48	1.48	1.00
1A4V_1-so	1.137e-06	1.48	5.67	3.54	3.36	1.69	1.60	1.05

Brookes, E., Parsimonious Spatial Models from Small Angle Scattering of Biological Macromolecules, SAS 2012, Sydney

Parsimonious Modeling

Brookes, E., Progress in Parsimonious Spatial Modeling of Biological SAS Experimental Data, ACA 2014, Albuquerque

Parsimonious Modeling

Brookes - EMBO Practical : SAS - 2024.09.19

Biological SAS Experimental Data, ACA 2014, Albuquerque

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

Ab Initio Models

DAMMIN D. I. Svergun (1999) Biophys J. 2879-2886.

DAMMIF

Franke, D. and Svergun, D.I. (2009) J. Appl. Cryst., 42, 342-346.

Ab Initio Models

DENSS T. D. Grant (2018) Nat. Meth. 15:3 191-193

- Quality assessment
- Rg, I(0)
- Dmax, P(r)
- Shape classification
- Ab initio model
- Informed model

GASBOR

Svergun, D.I. et al. (2001) Biophys. J., 80, 2946-2953.

ab initio reconstruction of protein structure by a chain-like ensemble of dummy residues

Various views of the ab initio 3D models obtained using GASBOR and by averaging ten single models for each sample by using DAMAVER for rSdrFB1-4 at different temperatures.

Dipoto, Antonella et al., (2015). Appl. Microbiology and Biotech.

Information Content Revisited

Jochen S Hub. Curr. Op. in Struct. Bio. 2018, 49:18-26

"the interpretation of solution scattering data by computational methods is complicated by <u>the low</u> <u>information content of the data</u>, by scattering contributions from the hydration layer, and by unknown systematic errors."

"<u>The physical information in atomistic force fields complements the low-information SWAXS</u> <u>data</u>; explicit-solvent MD may be used to predict solvent scattering, and the MD-related sampling methods may guide the structure refinement against SWAXS data."

"Because SWAXS curves are smooth and one-dimensional (1D), they contain quite a limited amount of information. How the information is distributed over the q-range is a matter of ongoing research, but <u>it is generally accepted that experimental SWAXS curves do not contain more than 10–30</u> <u>independent data points</u>. Hence, <u>the number of backbone angles of biomolecules exceeds the</u> <u>number of independent data points of SWAXS curves by roughly two orders of magnitude</u>. This precludes any straightforward fitting of protein structures against SWAXS data, but instead it leads to a <u>high risk of overfitting</u>."

Starting Structure + Experimental Data \rightarrow Representative structure(s) that are Consistent with the Experimental Data

- Create a pool of structures from the starting structure
 - Molecular Dynamics
 - Monte Carlo
 - etc.
- Compute simulated data on each structure
- Compare the simulated data with the experimental data to choose representative structures
 - Best Fit
 - Least Squares
 - etc.

Starting Structure + Experimental Data → Representative structure(s) that are Consistent with the Experimental Data

- Create a pool of structures from the starting structure
 - Molecular Dynamics
 - Monte Carlo
 - etc.
- Compute simulated data on each structure
- Compare the simulated data with the experimental data to choose representative structures
 - Best Fit
 - Least Squares
 - etc.

The resulting representative structures can only be said to be consistent with the data.

AlphaFold / Google DeepMind

Sequence

Model

- v2 Evoformer
- v3 Pairformer

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2	John Jumper ¹⁴ , Richard Evans ¹⁴ , Alexander Pritzel ¹⁴ , Tim Green ¹⁴ , Michael Figurnov ¹⁴ ,
Received: 11 May 2021	Olaf Ronneberger ^{1,4} , Kathryn Tunyasuvunakool ^{1,4} , Russ Bates ^{1,4} , Augustin Židek ^{1,4} , Anna Potanenko ^{1,4} , Alex Bridgland ^{1,4} , Clemens Meyer ^{1,4} , Simon A, A, Kohl ^{1,4}
Accepted: 12 July 2021	Andrew J. Ballard ^{1,4} , Andrew Cowie ^{1,4} , Bernardino Romera-Paredes ^{1,4} , Stanislav Nikolov ^{1,4} ,
Published online: 15 July 2021	Rishub Jain ¹⁴ , Jonas Adler ¹ , Trevor Back ¹ , Stig Petersen ¹ , David Reiman ¹ , Ellen Clancy ¹ , Michal Zielinski ¹ , Martin Steinegge ²² , Michalina Pacholska ¹ , Tamas Berghammer ¹ , Sebastian Bodenstein ¹ , David Silver ¹ , Oriol Vinyals ¹ , Andrew W. Senior ¹ , Koray Kavukcuoglu Pushmeet Kohli ¹ & Demis Hassabis ¹⁴
Open access	

Vol 596 26 August 2021 | 583 Nature

Article

Highly accurate protein structure prediction for the human proteome

https://doi.org/10.1038/s41586-021-03828-1 Received: 11 May 2021 Accepted: 16 July 2021 Published online: 22 July 2021 Open access

Kathryn Tunyasuvunakool¹²², Jonas Adler¹, Zachary Wu¹, Tim Green¹, Michal Zielinski¹, Augustin Žídek¹, Alex Bridgland¹, Andrew Cowie¹, Clemens Meyer¹, Agata Laydon¹, Sameer Velankar², Gerard J. Kleywegt², Alex Bateman², Richard Evans¹, Alexander Pritzel¹ Michael Figurnov¹, Olaf Ronneberger¹, Russ Bates¹, Simon A. A. Kohl¹, Anna Potapenko¹, Andrew J. Ballard¹, Bernardino Romera-Paredes¹, Stanislav Nikolov¹, Rishub Jain¹ Ellen Clancy¹, David Reiman¹, Stig Petersen¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Ewan Birney², Pushmeet Kohli¹, John Jumper^{1,3}[™] & Demis Hassabis^{1,3}[™]

Vol 596 | 26 August 2021 | 590 Nature |

US-SOMO AlphaFold Database

- The AlphaFold structures were predicted directly from the UniProt sequences, without any curing regarding post-translational modifications
 - Based on the UniProt annotations, removed the Initiator Methionine, Signal Peptide, and Transit Peptide(s) from the AlphaFold structures. Permuted structures with & without Propeptide(s) were also generated
- Post-translationally modified the entire AlphaFold v2 database & computed hydrodynamic, structural incl. SAXS P(r), & circular dichroism calculations, (~1M structures)
- https://somo.genapp.rocks

ACCESS Jetstream?

US-SOMO AlphaFold Database

US-SOMO AlphaFold Database

Volume 56 | Part 4 | August 2023 | Pages 910-926 https://doi.org/10.1107/S1600576723005344 OPEN OPEN ACCESS CON

ISSN: 1600-5767

AlphaFold-predicted protein structures and small-angle Xray scattering: insights from an extended examination of selected data in the Small-Angle Scattering Biological Data Bank

Emre Brookes,^{a*} Mattia Rocco,^b Patrice Vachette^c and Jill Trewhella^{d*}

A Fast Ensemble Modeling Method Optimizing the Fit of Protein Structures with Flexible Regions to SAXS Data

- E Brookes, M Rocco, P Vachette, J Trewella
- Inputs Experimental data & a predicted structure, e.g. AlphaFold etc.
- Outputs A representative ensemble
- "FAST" NNLS fits on P(r) from MC derived pool
 - J Curtis et al. Monomer & Complex Monte Carlo
 - Currently identifying regions of flexibility by confidence levels or user supplied
- Eventually refined in I(q) space (e.g. WAXSiS)

Volume 56 | Part 4 | August 2023 | Pages 910-926 https://doi.org/10.1107/S1600576723005344 OPEN OPEN ACCESS CON Cited by 8

ISSN: 1600-5767

AlphaFold-predicted protein structures and small-angle Xray scattering: insights from an extended examination of selected data in the Small-Angle Scattering Biological Data Bank

Emre Brookes,^{a*} Mattia Rocco,^b Patrice Vachette^c and Jill Trewhella^{d*}

A Fast Ensemble Modeling Method Optimizing the Fit of Protein Structures with Flexible Regions to SAXS Data

- Create a pool of structures from the starting AlphaFold (or other) structure
 - User selects flexible regions, possibly informed from AlphaFold confidence levels
 - Torsion Angle Monte Carlo
- Compute simulated data on pool of structures
 - CRYSOL
 - on selected structures WAXSiS
 - Knight, C.J. and Hub, J.S., 2015. WAXSiS., Nucleic acids research, 43(W1), pp.W225-W230.
- Compare the simulated data with the experimental data to choose representative structures
 - Non-negatively constrained Least Squares (NNLS)

Torsion Angle Monte Carlo on AF-Q15113

Curtis et al., 2012. SASSIE, Comp. Phy. Comm., 183(2), pp.382-389. Perkins et al., 2016. J. App. Cryst., 49(6), pp.1861-1875.

Brookes - EMBO Practical : SAS - 2024.09.19

Brookes et al., 2023. J Appl Cryst, 56(4), pp.910-926.

Brookes - EMBO Practical : SAS - 2024.09.19

Brookes et al., 2023. J Appl Cryst, 56(4), pp.910-926.

Brookes - EMBO Practical : SAS - 2024.09.19

Brookes et al., 2023. J Appl Cryst, 56(4), pp.910-926.

Conclusions

- AI is a powerful tool for modeling, but is not always the best choice
 - Maslow's law of the instrument:
 - "If the only tool you have is a hammer, you tend to see every problem as a nail."
- SAS I(q) data has limited information content, so, IMO, not likely a useful direct target for AI
- AI can be helpful for managing the beamline and providing user help
- AI derived structural models can provide starting structures for comparison with experimental data
- AlphaFold predicted structures do not always match solution SAS experimental data

Acknowledgments

Special Thanks!

Frank Gabel •

Discussions

- Jesse Hopkins •
- **Robert Rambo** •
- Tim Snow •

Collaborators

- Joseph Curtis ٠
- Susan Krueger •
- Andreas Larsen •
- Javier Pérez •
- Mattia Rocco •
- Jill Trewhella •

letstream2

Patrice Vachette •

Infrastructure Support

- Brian Beck •
- Jeremy Fischer
- Zach Graber
- **Danny Havert**
- Mike Lowe •
- Suresh Marru
- Mark Perri
- George Turner

Funding

- NIH K25GM090154, GM120600
- NSF CHE-1265817, OAC-1740097, OAC-1912444
- NSF XSEDE TG-MCB140255, TG-MCB170057
- NSF ACCESS MCB170057

Funded by a grant from the National Institute of General Medical Sciences of the National Institutes of Health

SASB**B**B Small Angle Scattering Biological Data Bank

XSEDE

Extreme Science and Engineering Discovery Environment

Thank you for listening!

Questions?

Publications

- Wright DW, Nan R, Hui G, Curtis JE, Brookes EH, Perkins SJ. CCP-SAS Novel Approaches for the Atomistic Modeling of Small Angle Scattering Data in Biology. Biophysical journal. 2015 January 27; 108(2):191a.
- Brookes E, Rocco M. A database of calculated solution parameters for the AlphaFold predicted protein structures. Scientific reports. 2022 May 5;12(1):7349.
- Brookes EH, Rocco M. Beyond the US-SOMO-AF database: a new website for hydrodynamic, structural, and circular dichroism calculations on user-supplied structures. European Biophysics Journal. 2023 Jul;52(4):225-32.
- Brookes, E., Rocco, M., Vachette, P. and Trewhella, J., 2023. AlphaFold-predicted protein structures and small-angle X-ray scattering: insights from an extended examination of selected data in the Small-Angle Scattering Biological Data Bank. Journal of Applied Crystallography, 56(4), pp.910-926.