

Combined Use of NMR and SAS for Flexible Systems

Pau Bernadó

pau.bernado@cbs.cnrs.fr

Grenoble 9/2024

The AlphaFold Era

Structural models for all proteins on earth

Functionally tailored protein design

BRCA1

Proteins are Dynamic Molecules

Protein Motions: Conformational Disorder and Time-dependence

Time-Dependence **Dynamics** Conformational plasticity

SAS is sensitive to motions notably changing the size and shape of biomolecules

Time-Dependence can be measured through special setups

SAS in Flexible Proteins

In a flexible Protein a SAXS curve is the average of all conformations coexisting in solution

Assumption of a dynamic system implies the use of the concept of 'ensemble of conformations' to properly describe the data (SAS and others).

No *ab initio* or Rigid-body models of flexible proteins

Reliable and structurally meaningful dynamic information of biomolecules can only be derived from SAXS if the system can be modelled and their form factors calculated

Nuclear Magnetic Resonance (NMR)

NMR, a Versatile Source of Structural Information

Chemical Shifts

Residual Dipolar Couplings (RDCs)

Tjandra, N.; Bax, A. Science, **1997**, 278, 1111-1114.

Residual Dipolar Couplings (RDCs)

$$D_{ij} = -\frac{\gamma_i \gamma_j \mu_0 h}{8\pi^3} \left\langle \frac{P_2(\cos\theta(t))}{r_{ij}^3} \right\rangle$$
$$D_{ij} = -S \frac{\gamma_i \gamma_j \mu_0 h}{16\pi^3 r_{ij}^3} \left(A_a (3\cos^2\theta - 1) + \frac{3}{2} A_r \sin^2\theta \cos 2\varphi \right)$$

Residual dipolar couplings depend on the orientation of internuclear vectors relative to the alignment frame

RDCs are a valuable source of information to study structure and dynamics of biomolecules

RDCs in Flexible Proteins

Paramagnetic Relaxation Enhancement (PREs)

Free electron Radical attached to a Cys mutant

Residues in the proximity experience an enhancement of their R_2 relaxation Effect up to r < 25 Å r^6 dependence

Although it is a relaxation phenomena, in ensembles properties are normally averaged

Protein Dynamics from Relaxation Rates

Close Contacts: ¹ H- ¹ H nOes LR relationship: RDCs, R ₂ /R ₁	Globular Proteins	Overall Shape Validation
Interfaces: ¹ H- ¹ H nOes, CS, PRE Orientation: RDCs, R ₂ /R ₁	Complexes and Rigid Multi-Domain Proteins	Translational Information Overall Shape Validation
Conform. Sampling: CS, RDCs LR Contacts: PREs	Unstructured Proteins	Dimensions of the Ensemble
Time-Scale Information: Spin Relaxation	Flexible Multi-Domain Proteins	Volume Sampled by the Domains

Multiple Constraints are measured (Short and Long Range)

Optimization of a single set of coordinates to simultaneously describe all data

Single Structure

Limited number of degrees of freedom (previous knowledge)

Optimization of an **ensemble of coordinates** to simultaneously describe all data available

(non unique) Ensemble Model

III-defined problem... Data - Information - Model validation and cross-validation

Structural and Forward Models

SAXS:

CRYSOL, AXES, FOXS, AquaSAXS, pepsiSAXS, WAXSIS...

NMR:

CS: Sparta, Sparta+, ShiftX, CamShift... RDCs: PALES, Flexible-Meccano PREs: Flexible-Meccano Hydrodynamics: HydroPro, SOMO

MD-Simulations Ensemble Flexible Meccano MoMA IDPConformerGenerator CG-Simulations Ranch...

Conformation-dependent Property

Structural and Forward Models

SAXS:

CRYSOL, AXES, FOXS, AquaSAXS, pepsiSAXS, WAXSIS...

NMR:

CS: Sparta, Sparta+, ShiftX, CamShift RDCs: PALES, Flexible-Meccano PREs: Flexible-Meccano Hydrodynamics: HydroPro, SOMO

Warning!!!

Not all properties can be averaged Not all properties require the same number of conformations MD-Simulations Ensemble Flexible Meccano MoMA IDPConformerGenerator CG-Simulations Ranch...

Ensemble-Averaged Property Capacity to address complex biological systems Structural models with better resolution More complete models embedding structure and dynamics

Model Validation

Data-Driven Modelling

Combining NMR and SAXS

Capacity to address complex biological systems Structural models with better resolution More complete models embedding structure and dynamics

Model Validation

Data-Driven Modelling

SAXS/NMR as Validation Tools for Ensembles

- SAXS/NMR are used in combination with molecular dynamics simulations or other computational approaches
- Snapshots are collected, their individual SAXS/NMR properties are computed with adapted forward models, averaged and compared with the experimental one... Not fitted
- Therefore is a validation method for a computational model that either works or does not work.
- ► SAS and NMR data can be used to to parametrize force-fields
- In SAS for relatively rigid systems, the effects of moderate dynamics can be 'compensated' with small structural perturbation or changes in the hydration

SAXS as a Validation Tool of Ensemble Models

Cordeiro et al. Structure 2019,27, 1270.

SAXS as a Validation Tool for MD trajectories

N-WASP (70-residue long IDP)

Care must be take to conformational sampling problems

Chan-Yao-Chong et al. BJ 2019, 116, 1216.

Random Chain Generators

Ozenne et al. Bioinformatics 2012, 28, 1463

Realistic Models of IDPs – Tri-peptide Coil Model

Estaña et al. *Structure*, 2019, 27, 381

Application to NMR Residual Dipolar Couplings

RDCs measured for ntail MV

Application to NMR Residual Dipolar Couplings

Application to SAXS curves

The ensembles generated are also in agreement with the SAXS curves

The building strategy based on the tri-peptide database produces realistic ensembles of IDPs that are compatible with NMR and SAXS data

However, long-range contacts are not accounted for...

Combining NMR and SAXS

Capacity to address complex biological systems Structural models with better resolution More complete models embedding structure and dynamics

Model Validation

Data-Driven Modelling

Ensemble Methods: Two Philosophies

Maximum Parsimony

Maximum Entropy

The Ensemble Optimization Method (EOM) MP

Bernadó, Mylonas, Petoukhov, Blackledge, and Svergun. Structural characterization of flexible proteins using small-angle X-ray scattering. *J Am Chem Soc* 2007, **129**:5656-64.

Minimal Ensemble Search (MES) MP

Pelikan, Hura, and Hammel. Structure and flexibility within proteins as identified through small angle X-ray scattering. *Gen Physiol Biophys* 2009, **28**:174–189.

Ensemble Refinement of SAXS (EROS) ME

Rozycki, B., Kim, Y.C., Hummer, G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 2011, **19**:109-116.

Bayesian Maximum Entropy (BME) ME

Bottaro S, Bengtsen T, Lindorff-Larsen K. Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach. *Methods Mol. Biol.* 2020, 2112:219-240.

Pesce F, Lindorff-Larsen K. Refining conformational ensembles of flexible proteins against small-angle x-ray scattering data. *Biophys J.* 2021, 120(22):5124-5135.

Basis-Set Supported SAXS (BSS-SAXS) Bayesian

Yang, Blachowicz, Makowski and Roux. Multidomain assembled states of Hck tyrosine kinase. *PNAS* 2010, **36**:15757-15762.

The Ensemble Optimization Method (EOM) MP

Bernadó, Mylonas, Petoukhov, Blackledge, and Svergun. Structural characterization of flexible proteins using small-angle X-ray scattering. *J Am Chem Soc* 2007, **129**:5656-64.

Minimal Ensemble Search (MES) MP

Pelikan, Hura, and Hammel. Structure and flexibility within proteins as identified through small angle X-ray scattering. *Gen Physiol Biophys* 2009, **28**:174–189.

Ensemble Refinement of SAXS (EROS) ME

Rozycki, B., Kim, Y.C., Hummer, G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 2011, **19**:109-116.

Bayesian Maximum Entropy (BME) ME

Bottaro S, Bengtsen T, Lindorff-Larsen K. Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach . Methods Mol. Biol. 2020, 2112:219-240.

Pesce F, Lindorff-Larsen K. Refining conformational ensembles of flexible proteins against small-angle x-ray scattering data. Biophys J. 2021, 120(22):5124-5135.

Basis-Set Supported SAXS (BSS-SAXS) Bayesian

Yang, Blachowicz, Makowski and Roux. Multidomain assembled states of Hck tyrosine kinase. *PNAS* 2010, **36**:15757-15762.

Bernadó & Svergun MolBioSyst 2011

Denatured Lysozyme as Example

Bernadó et al. JACS 2007, 129, 5656

Chain Compaction as a Proxy for LLPS

Liquid-Liquid Phase Separation is an emerging phenomenon linked to multiple biological functions

LCD of hnRNPA1

MASASSSORG RSGSGNFGGG RGGGFGGNDN FGRGGNFSGR GGFGGSRGGG GYGGSGDGYN GFGNDGSNFG GGGSYNDFGN YNNOSSNFGP MKGGNFGGRS SGPYGGGGQY FAKPRNQGGY GGSSSSSSYG SGRRF

30 R_a (Å)

40

Α

0 10

20

Spacers

This protein is disordered and more compact than a random coil

Martin et al. Science 2020, 367, 694-699

Compacness is governed by the patterning of aromatic residues

Doubly monoubiquitinated p15

Structural Meaning of the Selected Conformations

Disordered proteins sample an astronomical number of conformations... But SAXS data can be fitted with a small ensemble (20-50 conformations). SAXS is a low resolution technique!!!!

You can get more or less the same results with smaller subensembles... These ensembles are just low-resolution representations of reality

Structures collected are simply a TOOL to describe the size and shape distributions

It is tempting to look at the structures at atomic/residue level... Don't do this because (Remember that) SAXS is a low resolution technique and the information content is limited

If certain structure is collected at each run... It does not necessarily mean that it is prevalent in solution

Results are biased by the original structural model used

EOM... Not Always Easy to Interpret

Histatin (24 AA-long peptide)

The unphysical bimodal R_g distributions suggest that EOM is not useful in this case

Fagerberg E. et al. J Chem Theory Comput. 2019, 15:6968-6983.

Histatin is a peptide

Use of MP approach (minimal ensemble size)

Use of a Dummy Residue (DR) Approach

All amino acids are considered equivalent in terms of scattering

EOM... Not Always Easy to Interpret

Coll. C. Jeffries, M. Petoukhov and D.Svergun (EMBL-HH)

RanCh (Dummy Residues)

Flexible-Meccano (Atomistic)

Atomistic Description is not bimodal... even for the MP scenario

Sagar A et al. J Chem Theory Comput. 2021, 17(4):2014-2021.

Protein Length is important (synthetic data)

When using DR fitting, MP approach gives bimodal distributions

For larger peptides fixed-size ensembles are unimodal

Sagar A et al. J Chem Theory Comput. 2021, 17(4):2014-2021.

Use of Amino-Acid specific Form Factors

Sagar A et al. J Chem Theory Comput. 2021, 17(4):2014-2021.

A Frequent Wrong Intuition about EOM

"With EOM you can fit an elephant if you want..." Maria Garcia-Parajo

THIS IS NOT TRUE

GalNAc-T2

Col. Ramón Hurtado (Zaragoza-Spain)

0.3

0.1

0.2

s (Å-1)

GalNAc-T2

Col. Ramón Hurtado (Zaragoza-Spain)

Lira-Navarrete et al. Nat. Comm 2015

Is SANS useful for IDPs?

Jain "Come" (2016)

Huntingtin and Huntington's Disease

Margolis et al. Arch. Gen. Psychiatry 1999, 56, 1019.

Compositional Bias and NMR

¹H (ppm)

Site-Specific Isotopic Labelling

Urbanek et al., *JACS* **2020** Elena-Real et al. *Structure* 2023 Elena-Real et al., *NSMB* **2023**

Compositional Bias and NMR

Urbanek et al. *Angewante Chemie* Urbanek et al. *Structure* Urbanek et al., *ChemBioChem* Morató et al., *Biomolecules* Urbanek et al., *JACS* Elena-Real et al. *Structure*Elena-Real et al., *NSMB*

SANS and Segmental Labelling in Huntingtin

Xamuel Loft Lund

Anne Martel

Frank Gabel

Contrast Matching in SANS

Contrast Variation is Amino Acid Dependent

Each amino acid has a different scattering length depending on the H_2O/D_2O , its composition and the number of exchangeable protons

Jacrot Rep. Prog. Phys. 1976, 39, 911

...and we can modify it by introducing deuterated amino acids

Cell-Free Protein Synthesis

Cell-free contains the transcriptional and translational machineries from *E.coli* to express protein directly in a tube.

Production of complicated proteins (toxic, membrane proteins, aggregation-prone)

Exquisite control of the amino acid mixture. Deuteration of specific amino acids

Amino acid scrambling processes are reduced

Reduced yield

Eight Possible Deuteration Patterns

Protonated Patterns

Deuterated Patterns

Contrast Variation and Segmental Labelling

Random incorporation of H/D in labile positions according to 6 D₂O percentages

Contrast Variation and Segmental Labelling

0.2 0.3 0.4 Q (Å⁻¹)

Contrast Variation and Segmental Labelling

Segmentally labelled samples display a non-homogeneous behaviour along contrast variation experiments

Stronger effects when increasing the number of glutamines in the poly-Q tract

Experimentally Achieved Samples

Sample	% D ₂ O	R _G	Conc.	Exposure time	Experiment
hHtt (16Q)	20% 100%	41.2 Å 35.1 Å	6.0 mg/mL	2 hours 1 hour 25 minutes	Test_8-03-1020 (04/02-21) (Superdex 75, 10/300)
hHtt_D-P (16Q)	100%	26.1 Å	2.3 mg/mL	6 hours	Test_8-03-1020 (04/02-21) (Superdex 75, 10/300)
hHtt_D-QE (16Q)	0% 100%	39.7 Å 30.8 Å	4.6 mg/mL	2 hours 31 minutes 1 hour 5 minutes	Test_9-13-984 (22/06-21) (Superdex 75, 10/300)
dHtt (16Q)	0% 40%	40.2 Å 39.2 Å	4.8 mg/mL	2 hours 5 minutes 1 hour 8 minutes	Test_8-03-1050 (21/09-21) (Superdex 200, 5/150)
dHtt_H-QE (16Q)	0% 40%	38.0 Å 37.3 Å	4.5 mg/mL	1 hour 7 minutes 1 hour 10 minutes	Test_8-03-1050 (21/09-21) (Superdex 200, 5/150)
hHtt (36Q)	100%	32.6 Å	2.3 mg/mL	1 hour 21 minutes	Test_8-03-1050 (21/09-21) (Superdex 200, 5/150)
hHtt_D-QE (36Q)	100%	27.0 Å	1.7 mg/mL	8 hours 3 minutes	Test_8-03-1050 (21/09-21) (Superdex 200, 5/150)

SEC-SANS@ILL

Cross-Validation in SAXS/SANS

Correct simultaneous description of SAXS and 6 SANS datasets

Selection of a subensemble of conformations compatible with all datasets

Equivalent work has to be done with a pathogenic version of Htt with 36 glutamines

• In highly flexible proteins, NMR provides the conformational sampling at residue level. SAXS provides the overall size and shape.

• Synergistic application of NMR and SAXS (with the help of computational tools) provides accurate structural/dynamic models for flexible proteins...

• Discerning between flexible and rigid scenarios is fundamental.

• SAXS provides information about large-amplitude motions in biomolecules and reaches novel and biologically relevant information.

• SANS combined with amino acid specific labelling provides insights into the structure of low-complexity regions in proteins.

• Progress in the structural interpretation of SAXS data (in terms of conformational dynamics) will come from the development of theoretical methods to generate and perturb 3D structures...

Even in the AlphaFold era, there is room for experimental structural biology

Structure and Function of Highly Flexible Proteins

Pau Bernadó (DR2) Nathalie Sibille (CR1) Frédéric Allemand (IR1) Aurelie Fournet (AI)

Aurelien Thureau (Soleil)

Xamuel Lund (PhD) Amin Sagar (Pdoc) Carlos Elena-Real (Pdoc) Assia Mouhand (Pdoc) Alejandro Estaña (PhD) Annika Urbanek (Pdoc) Lucile Senicourt (Pdoc) Matija Popovic (Pdoc) Anna Morató (IR) Tiago Cordeiro (Pdoc)

NEUTRONS FOR SCIENCE

