

SANS bridges the gap between atomic resolution (NMR and crystallography)

and the light microscope

Typical lengthscales

NMR crystallograpy

right © Pearson Education, Inc., publishing as Benjamin Cumming:

Scattering basics: Huygens-Fresnel principle

Frank Gabel: EMBO course Sep. 2024

Reciprocal relationship between real space and the diffraction pattern

Information obtained by SANS:

- 1) Oligomeric state of macromolecules
- 2) Shape or conformation (globular, stick etc…)
- 3) Interaction of different macromolecules
- 4) Variation of points (1)-(3) as a function of pH, salt, ligands, T, p, ...
- **5) Contrast variation**: visualisation of individual sub-units *in situ*

Frank Gabel: EMBO course Sep. 2024

Modeling techniques using SAS in structural biology

Putnam et al. (2007) *Q. Rev. Biophys.* **40**(3), 191-285

What can SANS provide that is different from SAXS?

and study internal structure! lg \overline{c} $\overline{1}$ o -1 $\mathbf{0}$ 6 s. nm

SANS allows to go beyond the global shape

Often problematic to position/orient subunits in a larger complex using SAXS alone…

Internal structure: contrast variation and SANS!

Frank Gabel: EMBO course Sep. 2024

Idea of contrast variation

Vary scattering behaviour of (parts of) solutes with respect to solvent

Ideal solutions: no inter-particle effects, only form-factors

Scattering densities in biological samples

Destructive interference in SANS

Frank Gabel: EMBO course Sep. 2024

In practice, all biomacromolecules can be matched in SANS, i.e. made invisible!!! Not so easy with SAXS…

An analogon in optics: refractive index

Frank Gabel: EMBO course Sep. 2024

SAXS and contrast variation?

- **Contrast agents (salt, sugar…) need to be added**
	- **at high molarities and may not be inert to biomolecules**
- **Electron density of biomolecules cannot be modified globally**

Mahieu, E. & Gabel, F. (2018). *Acta Cryst. D74(Pt 8), 715-726*.

Contrast variation in SANS: natural contrast

Proteins and RNAs have different proton densities

100% H 58% H2O, 42% D2O 30% H2O, 70% D2O ²O

Also possible for protein-protein complexes (deuteration)!

Frank Gabel: EMBO course Sep. 2024

Artificial contrast using deuteration

Careful at **high D2O** levels in the solvent: favours **oligomerisation/aggregation**!

Measure *I*(0) experimentally (Guinier!) and trace the following expression as a function of H₂O/D₂O:

Frank Gabel: EMBO course Sep. 2024

Guinier approximation and radius of gyration

"See-saw analogy"

For a given molecular weight, a sphere has the smallest *R*^g , *i.e.* it is the most compact object

Protein-protein complexes

Frank Gabel: EMBO course Sep. 2024

Negative radii of gyration!?

- Scattering in forward direction, *I*(0), can be weak (or zero)
- Scattering can **get stronger going to higher angles**
- Result: "apparent" negative radius of gyration

Can proteins be considered as homogeneous particles?

Frank Gabel: EMBO course Sep. 2024

Summary: homogeneity of biomacromolecules in SANS experiments

- Proteins can be considered as homogeneous if the scattering density fluctuations are **not ordered** (*e.g.* core vs. outer shell) and/or if they occur on a **length-scale much smaller** than the overall protein dimension and/or the molecules of interest to be studied in a complex
- RNA and DNA are **more homogeneous** than proteins regarding the scattering density fluctuations
- Lipids are in general **heterogeneous** (head *vs.* tail) but can be made homogeneous using **deuteration**
- The approximation of homogeneous particles improves at **smaller angles**
- **Careful** with *ab initio* techniques in SANS!

Practical aspects

Frank Gabel: EMBO course Sep. 2024

SAXS *vs* SANS: some practical aspects

SANS *vs* SAXS instruments

BM29 (ESRF): SAXS

- multi-sample holder
- no radiation damage!

Quartz cuvette (SANS)

Exposure times:

- \sim 1-60 minutes (D22)
- ~ 1-10 seconds (BM29)

Including sample change:

- ~ 1-60 minutes (D22)
- ~ 2-3 minutes (BM29)

Frank Gabel: EMBO course Sep. 2024

Historical example 1: **Chromatin**

The chromatin structure

Frank Gabel: EMBO course Sep. 2024

Contrast variation: relative arrangement of DNA and protein

Figure 2: Examples of uniter plots obtained from chromatin particles (a) Particles in D.O (b) in H3O. Semi-log plot of interior interior in the interior interior interior in the straight line by variance-weighted least a

Relative topology of DNA and protein at low resolution **before** availability of high-resolution models!

Pardon et al. (1975) *Nucl. Acids Res.* **2**(11) 2163-2176

<u>Figure 5</u>: Two possible kinds of structure for the chromatin
particle containing 140 base pairs of DEVA and eight histones.
(a) A spherical particle with overall diameter $a_c = 53\hat{k}$, derived
from $R_1 = 41.1$, in which

Historical example 2: **The ribosome**

Frank Gabel: EMBO course Sep. 2024

The ribosome structure

The "glassy" ribosome

Nierhaus et al. (1983) *Proc. Natl. Acad. Sci. USA* **80**, 2889-2893

Frank Gabel: EMBO course Sep. 2024

The distance between two components of a complex can be extracted from the scattering curve

courtesy Roland May

3 distances define a triangle (a), another 3 a tetrahedron of undefined handedness (b). Each further 4 distances add another component in space (c).

courtesy Roland May

Frank Gabel: EMBO course Sep. 2024

Ribosome at low resolution

M.S. Capel, D.M. Engelman, B.R. Freeborn, M. Kjeldgaard, J.A. Langer, V. Ramakrishnan, D.G. Schindler, D.K. Schneider, B.P. Schoenborn, I.-Y. Sillers, S. Yabuki, P.B. Moore (1987) *Science* **238**, 1403-1406

Map of the 30S ribosomal subunit from E. coli. Each protein is represented by a sphere whose volume is the same as that of the protein. The maximum linear dimension of the array is about 190 Å.

courtesy Roland May

EXAMPLE 3: Membrane proteins

Frank Gabel: EMBO course Sep. 2024

Membrane proteins and lipids/detergents

Johs et al. (2006) *J. Biol. Chem.* **281**, 19732-19739

Frank Gabel: EMBO course Sep. 2024

Scattering contrast of lipids: heterogeneity

H-lipid headgroup 'denser' D-lipid

A KcsA full length $\ddot{\mathbf{0}}$ 0.0 \overline{a} $1E-3$ $1E-4$ $1E-5$ 0.00 0.15 0.20 0.25 0.30 0.10 q [1/Å] A 0.025 KcsA full length 0.020 0.015 D(r) 0.010 0.005 0.000 $\overline{20}$ 40 60 80 100 120 140

r [Å]

pH-induced transition in KcsA

concentration. On the basis of published detergent scattering
match points, we estimated the detergent scattering match
point for decyl- β -D-mattopyramoside ($C_2H_{2\text{-}}Q_{11}$) at $\sim 22\%$
D-O solvent concentration (24 ed neutron scattering. However, the fluctuation of so ng length of the DM detergent molecule must be stresse ñ This is due to the individual scattering match control the polar matterial content
matterial concentration for the hydrophobic decyls $\sim 3\%$ D₂O solvent
concentration for the hydrophobic decyl side chain. The over-
al

Zimmer et al. (2006) *Biophys. J.* **90**, 1752-1766

Frank Gabel: EMBO course Sep. 2024

EXAMPLE 4:

Sophisticated approaches using SANS (SAXS) and NMR:

a « tour d'horizon » using a recent example: the BOX C/D complex

Gabel (2015) Small-angle neutron scattering for structural biology of protein-RNA complexes. *Methods in Enzymology* **558**, 391-415.

Combining NMR with SAS

Frank Gabel: EMBO course Sep. 2024

(e)

rRNA modifications and function

Dozens of modifications in structurally
and functionally important (and and functionally important (and conserved) regions; their number increases with "complexity" of organism.

Single mutations can be tolerated, absence of all modifications is lethal.

Decatur, W.A. and Fournier, M.J. (2002) rRNA modifications and ribosome function *TIBS* **27**(7), 344-351.

Number of modifications: bacteria < archaea < eukarya

Frank Gabel: EMBO course Sep. 2024

22

SANS (D22) and SAXS (BM29) data

Frank Gabel: EMBO course Sep. 2024

Relative positions of FIB proteins within the complex from SANS data

Important restraints for the atomic models!

Lapinaite, A., Simon, B., Skjaerven, L., Rakwalska-Bange, M., Gabel, F. and Carlomagno T. (2013) The structure of the box C/D enzyme reveals regulation of RNA methylation. *Nature* **502**(7472), 519-523.

Frank Gabel: EMBO course Sep. 2024

Large conformational change upon substrate binding!

The holo complex

Large conformational change upon substrate (RNA) binding to an elongated form (SAXS/SANS+ 257 PRE distance restraints)

Frank Gabel: EMBO course Sep. 2024

Proposed model for the sequential methylation and conformational changes

The structural model of the holo-enzyme, together with the NMR assays, suggests that methylation at the two sites occurs in a sequential, well-defined order!

Implications on folding pathways for ribosome…

A novel mechanism for translational regulation in *Drosophila melanogaster*

Hennig J, Militti C, Popowicz G, Wang I, Sonntag M, Geerlof A, Gabel F, Gebauer F, and Sattler M (2014). Structural basis for the assembly of the SXL-UNR translation regulatory complex. *Nature* 515(7526), 287-290.

Frank Gabel: EMBO course Sep. 2024

Dosage compensation

Human (male) karyotype

XIST gene silencing system in female mammals

Unequal proteins amounts from XX and XY pairs: needs compensation mechanisms

(Klinefelder syndrome in humans: XXY)

Dosage compensation in *D. melanogaster*

- **Up-regulated by " DCC" (Dosage compensation complex) constituted of 5 proteins and 2 non-coding RNAs**
- **Female-specific protein "SXL" (sex-lethal) silences the expression of a protein of the DCC complex in females by binding to its mRNA transcript and inhibiting its interaction with the ribosome**

SANS-specific information

Svergun DI, Richard S, Koch MH, Sayers Z, Kuprin S, Zaccai G. (1998) Protein hydration in solution: experimental observation by x-ray and neutron scattering. *Proc Natl Acad Sci U S A.* **95**(5):2267-2272.

Jochen Hub's talk

Residue-specific densities! Denser around acidic residues

 10^7 $\overset{\scriptscriptstyle{10}^{^{^\dagger}}}{\mathsf{C}}$

 $\frac{1}{10}$ 10^{-1} $10¹$ 10

 $10^{\frac{1}{3}}$

A

uns

10 $10¹$ $\overline{10}$ 10°

Pyrococcus horizontal

d-SANS(

 $\frac{1}{200}$

 $\frac{1}{04}$

 $O(K^2)$

 $O(\text{A}^2)$

GFP (+36)

Frank Gabel: EMBO course Sep. 2024

Kim, H.S., Martel, A., Girard, E., Moulin, M., Härtlein, M., Madern, D., Blackledge, M., Franzetti[,] B. and Gabel[,] F. (2016) Solution scattering of X-rays and neutrons on supercharged proteins reveals residue-specific modifications of the hydration shell. *Biophys. J.* 110(10), 2185-2194.

Ibrahim, Z., Martel, A., Moulin, M., Kim, H.S., Härtlein, M., Franzetti, B. and Gabel, F. (2017) *Sci. Rep.* **7**, 40948.

And in the presence of the proteolytic core particle 20S?

Example 7: segmental labeling

Williams et al. (2016) *PLoS ONE* 11(4):e0154607

Sonntag et al. (2017) *Angew. Chem. Intl. Ed.* 56(32):9322-9325

More detailed insight into multi-domain proteins

Courtesy Anne Martel (ILL D22)

Practical aspects: doing SANS experiments

- use SAXS for **homogeneous** systems composed of a **single** body
- neutrons only possible at **large facilities** (no "home sources" for the moment!)
- request for measurement time is generally *via* an **electronic proposal system**
- deadlines are usually twice a year, beamtime is attributed about **6 months** later
- BAG ("Block allocation group") systems allow more flexible access
- for continuation proposals, **reports** need to be submitted regularly
- **experiments need to be prepared with great care** (i.e. isotopic effect of D₂O)!!
- "local contacts", often beamline responsibles, **assist** during experiments
- access (for non-industrial use) is in general **free**
- **no maintenance**, user friendly (software etc…)

Frank Gabel: EMBO course Sep. 2024

Summary

- **1) Low-resolution** information in solution
- **2) Non-destructive** technique, easy to use
- 3) Possibility to use **contrast** and focus on **subsystems** within complexes
- 4) Special applications: protein/DNA-RNA complexes, membrane systems
- 5) Doing biochemistry on samples *in situ* during measurement
- **6) Complementary** information to SAXS

Literature

Basics (scattering, quantum mechanics):

- The Feynman lectures on Physics, Volume 3: Quantum mechanics (Addison Wesley, 2006)
- Cohen-Tannoudji et al.: Mécanique Quantique, Vol. 2. Chapter on diffusion. (Hermann, 1997)

General books on neutron scattering:

- Lovesey: Theory of Neutron Scattering from Condensed Matter (Clarendon, 1986)
- Geissler et al.: Structure and dynamics of biomolecules (Oxford University Press, 2000)

Books on small angle (neutron) scattering:

- Svergun: Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum, 1987)
- Guinier/Fournet: Small angle scattering of X-rays (John Wiley & Sons, 1955)
- Serdyuk, Zaccai, Zaccai: Methods in molecular biophysics (Cambridge University Press, 2007)

Reviews on SAXS/SANS:

- Jacrot, B. (1976) The Study of biological structures by neutron scattering from solution. *Rep. Prog. Phys.* **39**, 911-953.
- Putnam et al. (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. *Q. Rev. Biophys.* **40**(3):191-285.

The "BDCS" group (Biology, Deuteration, Chemistry and Soft Matter) at ILL: getting the best from your neutron experiment!

Joint SAXS/SANS contrast variation project: Postdoc position available (december call)**!**

