Integrative structural modeling using SAXS data

Dina Schneidman

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Ward A, Sali A, Wilson I. Integrative structural biology. Science 2013. Rout M, Sali A. Principles for Integrative Structural Biology Studies. Cell 2019.

Thanks!

Lab **Edan Patt Tomer Cohen Ben Shor** Alon Aronson Matan Halfon Amir Weinfeld Tanya Hochner Adi Weshler Gal Passi Meitar Sela Danielle Zaccai Merav Braitbard Jerome Tubiana Shon Cohen

BERKELEY LAB

Michal Hammel Greg Hura Rob Rambo Susan Tsutakawa John Tainer

Nanobodies Yufei Xiang Zhe Sang Yi Shi

Medicine at

Mount

Sinai

EGFR antibodies **Arvind Sivasubramanian**

SRAEL

SCIENCE

National Institute of Allergy and Infectious Diseases

What are the modeling tasks to address with SAXS?

validation of protein structure prediction

assembly of multiprotein complexes

structural characterization of protein dynamics

RNA

Scoring: Fast open-source X-ray Scattering

Forward modeling

A rapid method for computing a SAXS profile of a given structure and for matching of the computed and experimental profiles

Schneidman-Duhovny D, Hammel M, Tainer J, Sali A. Biophys J 2013

Scoring: Excluded Volume and Hydration Layer Density

vacuum solvent excluded volume hydration layer $f_i(q) = f_i^v(q) - C_1(q) f_i^s(q) + c_2 s_i f^w(q)$

Increase/decrease atomic radii to obtain the best fit to the experimental profile

5% variance in radius

Add water form factor to solvent accessible atoms (s_i measures solvent accessibility [0-1])

0.32 e/Å³ ≤ ρ ≤0.38 e/Å³

enumeration of 2 fitting parameters: c1, c2

X-ray structure vs. SAXS - good fits -> publish

X-ray structure vs. SAXS - good fits -> publish

14 experimental datasets with x-ray structures

Schneidman-Duhovny D, Hammel M, Tainer J, Sali A. Biophys J 2013

X-ray structure vs. SAXS - they don't fit!

X-ray structure vs. SAXS

- Data quality
- Missing residues/sugars
- Compositional heterogeneity
- Conformational heterogeneity
- both

Fast SAXS Profile Computation with Debye Formula

About FOXS · Web Server · Help · FAQ · Download · Sali Lab · IMP · Links

PDB files	Profile file
3KFO.pdb	23922 merge.dat

Can't see interactive display? Use old interface

LASSA GP1

X-ray structure vs. SAXS

- Data quality
- Missing residues/sugars
- Compositional heterogeneity
- Conformational heterogeneity
- both

AbnA structures vs. SAXS

3 X-ray structures in different conformations do not fit the data

Collaboration with Shifra Lansky and Gil Shoham

Dynamics Comes in Flavors and it is Common

Dynamics and SAXS

- SAXS data can be easily collected for proteins that include disordered regions
- Data interpretation is challenging

while(noSuccess)
{
 tryAgain();
 if(Dead)
 break;
}

Heterogeneous Sample Requires Multi-State Model

Heterogeneous sample

compositional or conformational heterogeneity in the sample used to generate the data

Multi-state model

a model that specifies two or more co-existing structural states and values for any other parameter

Rg (Å)

Schneidman-Duhovny, Hammel, Tainer, Sali. NAR 2016

Conformational sampling

Proteins and robots have similar degrees of freedom

Robotic arm

AbnA protein

We rely on methods for Motion Planning developed in Robotics (La Valle, Latomb, Kavraki, Cortes)

Mapping collision free space with Rapidly exploring Random Tree (RRT)

Collision free space for robot

Collision free space for protein chain

Enumeration of multi-state models

branch & bound deterministic algorithm Multi-state models of size i+1 are generated by extending best K (=10000) multi-state models of size i

best K multi-state models of size 1:

best K multi-state models of size 2:

best K multi-state models of size 3:

Scoring of Multi-State Models

- weights optimization is needed for each set of structural states
- Non-negative least square fitting (NNLS, Lawson & Hanson 1974)

- c_1 (excluded volume), and c_2 (hydration layer) are enumerated
- a single pair of c_1 and c_2 is used for all states in a multi-state model

AbnA structures vs. SAXS

3 X-ray structures in different conformations do not fit the data

Collaboration with Shifra Lansky and Gil Shoham

Multi-state Modeling

Good fit to data obtained with open and closed conformations

Time Player File Edit View	Window Help	🖲 🍓 🕢 🍐 🏛 🔰 🕙 🛞 🎓 🜒 43% 🗊 🗮 U.S. Mon 10:46 PM Dina Schneidman	2 Q
MultiFoXS ×	Sali lab MultiFoXS service: × +		
https://modbase.compbio.ucsf.edu/mul	tifoxs/	✓ C Q Search ★ 自 ♥ ↓ ★ 4 40 - 5 6	ø
isited - 📦 Getting Started 🛛 G Google	Google Scholar 🥂 Google Maps 😕 Home - PubMed	RCSB Protein Dat G MultiFoXS	
Multi-state modeling with	• About MultiFoXS • Web Server • Hel	• FAQ • Download • FoXS • Sali Lab • IMP • Links	
Multi-state modeling with Type PDB code for protein or uplo	SAXS profiles • About MultiFoXS • Web Server • Help ad file in PDB format	・FAQ ・ Download ・ FoXS ・ Sali Lab ・ IMP ・ Links	
Multi-state modeling with Type PRB code for protein or uplo Input protein	SAXS profiles • About MultiFoXS • Web Server • Help ad file in PDB format (PDB:chainId e.g. 2kai:AB)	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb	1
Multi-state modeling with Type PRB code for protein or uplo Input protein Flexible residues	SAXS profiles • <u>About MultiFoXS</u> • <u>Web Server</u> • <u>Help</u> ad file in PDB format (PDB:chainId e.g. 2kai:AB) Browse hinges.dat	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb	
Multi-state modeling with Type PDB code for protein or uplo Input protein Flexible residues SAXS profile	SAXS profiles • <u>About MultiFoXS</u> • <u>Web Server</u> • <u>Help</u> ad file in PDB format (PDB:chainId e.g. 2kai:AB) Browse hinges.dat Browse iq.dat	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb	
Multi-state modeling with Type POB code for protein or uplo Input protein Flexible residues SAXS profile e-mail address	SAXS profiles • About MultiFoXS • Web Server • Help ad file in PDB format (PDB:chainId e.g. 2kai:AB) Browse hinges.dat Browse iq.dat dina@salilab.org	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb (the results are sent to this address)	
Multi-state modeling with Type PDB code for protein or uplo Input protein Flexible residues SAXS profile e-mail address Submit Clear Advanced Parameters	SAXS profiles • <u>About MultiFoXS</u> • <u>Web Server</u> • <u>Help</u> ad file in PDB format (PDB:chainId e.g. 2kai:AB) Browse hinges.dat Browse iq.dat dina@salilab.org	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb (the results are sent to this address)	
Multi-state modeling with Type PDB code for protein or uplo Input protein Flexible residues SAXS profile e-mail address Submit Clear Advanced Parameters Job name	SAXS profiles • <u>About MultiFoXS</u> • <u>Web Server</u> • <u>Help</u> ad file in PDB format (PDB:chainId e.g. 2kai:AB) Browse hinges.dat Browse iq.dat dina@salilab.org	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb (the results are sent to this address)	
Multi-state modeling with Type PDB code for protein or uplo Input protein Flexible residues SAXS profile e-mail address Submit Clear Advanced Parameters Job name Connect rigid bodies	SAXS profiles • About MultiFoXS • Web Server • Help ad file in PDB format (PDB:chainId e.g. 2kai:AB) Browse hinges.dat Browse iq.dat dina@salilab.org	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb (the results are sent to this address)	
Multi-state modeling with Type PDB code for protein or uplo Input protein Flexible residues SAXS profile e-mail address Submit Clear Advanced Parameters Job name Connect rigid bodies Number of conformations	SAXS profiles • About MultiFoXS • Web Server • Help ad file in PDB format (PDB:chainId e.g. 2kai:AB) Browse hinges.dat Browse iq.dat dina@salilab.org	• FAQ • Download • FoXS • Sali Lab • IMP • Links or upload file: Browse input.pdb (the results are sent to this address) Use 100 to test your setup, 10,000 for final calculation	

£

BilboMD: high-temperature MD for linkers

https://bl1231.als.lbl.gov/bilbomd Pelikan M, Hura GL, Hammel M.2009

SAXS profile calculator for RNA structure validation

 RNA binds Mg²⁺ ions that are required for proper folding and charge neutralization

X-ray scattering Length density

SCOPER: Solution Conformation Predictor for RNA

Sampling RNA while preserving base pairing

KGSRNA sampling

Kinematics-based approach to efficiently explore the native ensemble of RNA molecules

Normal mode sampling

- The base pair interactions not preserved
- Oversampling
- Nonrealistic RNA structure

Normal Mode - best-fit conformer w/o Mg²⁺ Overfit the SAXS data with nonrealistic conformers

Fonseca et al. 2015

IonNet: Mg2+ binding site predictor

Using IonNet to predict Mg²⁺ positions for an RNA structure

- RNA 3D structure is covered with probes that are classified by the model
- The probes are added to the RNA, starting with the most likely one
- Fit to the experimental SAXS profile is used to select the optimal number of ions

High-quality benchmark dataset

Size exclusion coupled SAXS (SEC-SAXS) applied for RNAs benchmark of 12 RNA's

High-quality benchmark dataset

Flexibility, Mg²⁺, and multiple states

Flexibility, Mg²⁺, and multiple states

Mg²⁺

- RNA flexibility is responsible for poor SAXS fit
- The addition of Mg²⁺ ions improves the SAXS fit for the best scoring structure
- Multistate models have a minimal impact on the improvement of SAXS fit

SCOPER webserver

https://bilbomd.bl1231.als.lbl.gov

BilboM	Thursday, July 11, 2024 at 9:04 AM
Jobs	
🕀 BilboMD Classi	INSTRUCTIONS
🕀 BilboMD Auto	
🕀 Scoper	SCOPER JOB FORM
♦ ‡ inp Jiffy™	
♦ PAE Jiffy™	Title
Users	
🔥 Admin	Upload your RNA *.pdb file
	Select File
	Upload your experimental SAXS data *.dat file
	Select File
	Submit ►

OPER DETAILS	
areduce 🖉 maview 🖉 kgs 🖉 faxs 🧭 IonNet 🧭 multifaxs	
SS Number of Conformations to Generate	1000
3S Progress	1000
umber of predicted Mg ions	15

Scoper Model - scoper_combined_newpdb_73.pdb - I vs. q

riginal Model - model5.pdb - Chi² residuals 578 Chi2: 6.23 C1: 0.99 C2: -0.03 578 0.0331 0.074 0.1139 0.1558 0.1987 0.2411 0.281 0.3238 0.3693 0.4137 0.4707

Scoper Model - scoper_combined_newpdb_73.pdb - Chi² residuals

Integrative Modeling and SAXS

Schneidman-Duhovny, Pellarin, Sali. COSB 2014

Modeling protein interactions with or without SAXS

AlphaFold2 is effective in predicting complexes

- On typical benchmarks, 40-70% of the complexes are correctly modeled vs. 20-30% for docking algorithms
- Docking methods generate thousands of models including models that are close to the correct complex (PatchDock, ZDock, ClusPro...)
- Additional data, such as SAXS or crosslinks, helps to identify and validate correct models

- success rate = # of benchmark complexes with acceptable or higher accuracy models, usually specified for topN predictions
- accuracy according to the CAPRI criteria (Acceptable, Medium, and High)

BUT...

Large assemblies are still difficult to model with AlphaFold-Multimer:

- GPU memory limitations
- sampling limitations
- out-of-domain inference
- converges to a single minima

Antibody-antigen systems

interactions via highly variable loops

Combinatorial assembly based on AlphaFold2

Shor, Schneidman-Duhovny Nat Methods 2024

Ben Shor

Benchmarking heteromers

- 35 complexes (no overlap with the AFM training set)
- 5-20 chains
- 1,700-8,000 amino acids

Тор-1 Тор-5

- CombFold high
 - CombFold acceptable
 - AFMv2 high
 - AFMv2 acceptable

- High: TM-score > 0.8
- Acceptable: TM-score > 0.7

Modeling subunits that are missing in PDB structures

elF2B:elF2 complex (PDB 6I3M) TM-Score 0.79 4,680 amino acids 6,114 amino acids

 20% increase in structural coverage compared to PDB entries in our Benchmark

Why antibodies?

- A key component of the adaptive immune system
- A rapidly growing class of human therapeutics for a range of diseases, including cancer, autoimmunity, inflammatory diseases, viral infections
- There are over 100 approved antibody-based therapeutics and over 1,000 in clinical studies for a wide range of diseases.
- Nanobodies, heavy chain only antibodies small, stable, highly similar to lgGs
- Accurate high-throughput computational methods have the potential to greatly accelerate the discovery of new therapeutic antibodies

Antibodies have a conserved frame region and variable loops

FR3

CDR2

CDR3

regions (heavy chain)

CDR1

FR2

FR1

Open challenges

Folding

Input: antibody sequence Output: 3D structure

Docking/specificity

<u>Input</u>: structures (or sequences) <u>Output</u>: antibody-antigen complex 3D structure

Design

Input: antigen structure and epitope (in red) Output: antibody sequence/structure that binds to the given epitope

Ruffolo, Jeffrey A., and Jeffrey J. Gray. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies." Biophysical Journal 2022 Yin, Rui, et al. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Science 2022 Watson, Joseph L., et al. De novo design of protein structure and function with RFdiffusion. Nature 2023

Integrative modeling of antibody-antigen complexes

SARS-CoV-2 nanobodies with crosslinks Xiang et al. Science 2020 PCSK9 antibody with 2D EM Schneidman et al. Bioinformatics 2012

EGFR antibodies with SAXS profiles Cohen et al. Meth. Enzymol 2023

Data gaps for ML

		Antibodies	TCRs
	complex structures	~ 10 ³	~ 10 ²
	antigen-specific sequences	~ 10 ⁵	~ 10 ⁵
QLA S VS VK G T T	TCR/antibody sequences	~ 10 ⁹	~ 10 ⁹

NanoNet: end-to-end antibody, nanobody, and TCR modeling without MSA

Tomer Cohen

- Invariance to rotations and translations can be achieved by frame region alignment
- All the structures of the training set were aligned on a randomly selected reference structure

Cohen at al. 2022 Front Immunol.

NanoNet architecture

- Trained on ~1,800 antibody and nanobody structures
- Coordinates MSE as a loss function
- Structure prediction: ~6ms on GPU or ~20ms on a CPU
- ⇒ 1M structures in less than an hour on a CPU!
- https://github.com/dina-lab3D/tutorials/tree/main/NanoNet

NanoNet performance for nanobodies

• Accuracy comparable to AlphaFold2, IgFold, ABLooper...

Antibody folding and docking to antigen

• the main problem is the accuracy of the antibody models

Can we fold & dock simultaneously?

Input: antibody sequence + antigen structure Output: complex structure

Transformational invariance

 Antibody – aligning the training set structures on a single representative structure for the heavy and the light chains

 Antigen – constructing an amino acid reference frame for the antigen (N-CA-C atoms) and transforming it to the global reference frame.

Fold & dock architecture

Designed to simulate the **biological antibody-antigen recognition**

Consists of several layers of Geometric Pair Attention (GPA) each containing four dedicated Distance Transformer modules

Each of the **four Distance Transformers** is responsible for a different aspect of the antibody-antigen interaction

Fold & Dock accuracy

Success rate: fraction of test set complexes with Acceptable or higher quality models, usually specified for topN predictions Quality: High, Medium, Acceptable, and Incorrect

Docking with SAXS profile of the complex

Schneidman-Duhovny D, Hammel M, Sali A. J Struct Biol. 2011 Schneidman-Duhovny D, Hammel M, Tainer J, Sali A. NAR 2016

foxs Dock				
Macromolecular Docking with SAXS Profile				
・ <u>About FOXSDock</u> ・ <u>Web Server</u> ・ <u>Help</u> ・ <u>FAQ</u> ・ <u>Download</u> ・ <u>FoXS</u> ・ <u>Sali Lab</u> ・ <u>IMP</u> ・ <u>Links</u>				
Type PDB codes of receptor and	d ligand molecules or upload files in PDB format	t		
Receptor Molecule:	(PDB:chainId e.g. 2kai:AB)	or upload file:	Browse	
Ligand Molecule:	(PDB:chainId e.g. 2kai:I)	or upload file:	Browse	
Complex SAXS profile:	Browse			
e-mail address:		(the results are	e sent to this address)	
Complex Type:	Default \$	Be sure to give receptor	and ligand in the corresponding order!	
	Submit Form Clear			

Schneidman-Duhovny D, Hammel M, Sali A. Macromolecular docking restrained by a small angle X-ray scattering profile. J Struct Biol. 2010 [Abstract]

Contact: dina@salilab.org

EGFR-antibody complex with SAXS profiles

- SAXS profiles collected for EGFR, antibody, and their complex
- 4 antibodies

EGFR is flexible and glycosylated

Fabs vary their elbow angle

PDB	χ² x-ray Fab	χ ² single- state	χ ² multiple elbow angles
1yy9	27.3	9.6	9.6
3b2u	20.4	11.3	11.3
3c09	19.0	4.9	4.9
Зр0у	9.4	3.5	3.4
3sqo	69.0	6.5	3.6

Let's dock!

 10^{4}

 $\frac{-50}{10^2}$ 10²

- 1. SAXS data collection
- antibody, antigen, complex
- 2. Antibody and antigen modeling
- single- or multi-state
- 3. Docking with all conformations
- 4. Scoring
- SAXS multiple states
- interaction interface

Docking Results

PDB	Rank by SAXS chi ²	Rank by SOAP	Rank (IRMSD) by ContactNet	Rank (IRMSD) by combined score
1yy9	1	30	1	1
3b2u	1	2	13	4
3c09	776	192	2122	178
3р0у	139	1228	45	2
3sqo	1022	38	1	1
				4/5

What are the modeling tasks to address with SAXS?

validation of protein structure prediction

assembly of multidomain proteins

assembly of multiprotein complexes

structural characterization of

protein dynamics

RNA

1

Links

