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Disordered Materials

= Show predominantly local ordering (i.e. on the scale of atoms or molecules)
= Show primarily diffuse scattering (“soft” features in measured data)

= Are typically dynamic (e.g. liquids) — average structural picture is obtained

= May show long-range order (i.e. Bragg scattering)

= May contain large length-scale correlations (e.g. micelles, lamellae)

Liquids Glasses Solutions Condensed phases
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Total Scattering Instruments @ ISIS

Small Angle Neutron Diffractometer for
Amorphous and Liquid Samples

3<20<38°0.1<Q<50 A hE— J

t4

Sample position

Near and InterMediate Range Order Diffractometer
0.5<20<45°0.01<Q<50A"

General Materials Diffractometer
1.21<20<171.4°,0.04 < Q< 50 A~ _ _
Science and All three instruments exist to probe and understand
El Facilties Council material structure
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Total Structure Factor F(Q)
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= (Contains all correlation
iInformation between all
“objects” in the system

= Also includes Bragg scattering
= Also includes any SANS

“A single dataset encompassing
structural information on the target
sample, no matter the phase,
complexity, or composition of the
system.”



Interpreting F(Q)

Can Fourier transform data from Q-space (instrument) to r-space (real)

Measured / Experimental

Measured / Experimental
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Non-trivial to analyse by inspection. Angular correlations? 3D structure?

Science and
Technology
Facilities Council

ISIS Neutron and
Muon Source



Simulating F(Q)

Atomistic simulation — molecular dynamics, Monte Carlo — using off-the-shelf forcefield or ab initio.
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Can calculate any correlation | want from a simulation, but does it reflect reality?
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Simulation vs Reality

Pure simulations can give results close to experiment, but are not guaranteed to
reproduce the details of the experiment.

I T Simulation

0.1 Experiment - - - -

" Forcefields parameterised against phase data
etc. rarely against bulk structure

-1

Solution?

= Modify the forcefield to improve it

= By hand? Tedious, impractical...

= Automatically, using the data”? How?
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Empirical Potential
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The Goal

= Make a simulation of a system of arbitrary complexity
= Compare available experimental F(Q) with simulated F(Q)

= Adjust the underlying forcefield to get good / better / acceptable
agreement with the experimental measurements

= Calculate structural properties of interest
= Write a paper
= Go home
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The Target: Pair Potentials

= Describes the interactions between atoms “through space”

= Parameters from:

» Existing forcefields (LJ+q)
= (Calculated via QM / DFT (q)

Coulomb:
1 .(] -
U= CILCZI]
4mreg rij
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Atom Types

* A specific kind of atom in the simulation
= Depends at least on the element. Can be split by chemical environment.

* Does not depend on isotope...
Argon Water &, Formaldehydez Methanol YJ
/ /

/

Ar (0) I H C o H C O H1 H2
g CEEE  EsEs
,. o e e
I o e
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L
N=1 N=3 N=6 N=10

Also N5, O.,... Also benzene, silica...

Techolon F(Q) = Z(Z — 5ij)CiCjbibj5ij(Q)
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Constructing the F(Q)

Total Structure Factor

F(Q) = 2(2 — 5ij)CiCjbibjSij(Q) (Experimental Observable)
L,j

n.
C; = Nl b; = scattering length
5 sin Qr |
Si;(Q) =p | 4nreg;;i(r) or dr Partial Structure Factor

o
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So...

Simulation Potentials U(r) Simulated g(r) Simulated S(Q) Simulated F(Q)
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Using Neutrons? Isotopic Substitution!
x-ray : : v

Al

F(Q) = 2(2 811)cic;bib S (Q)

Scatterlng Lengths

= Partial S(Q) weighted by coherent scattering length, b

= For neutrons, b is dependent on isotope
= e.g.2H for H, N for N, 6Li for Li

» Key assumption: structure is independent of isotopes used

» Perform multiple measurements on the same system, with different
Isotopic substitutions
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Isotopic Water

. Swapping H for ?H (D) we can get

three distinct datasets (i.e. three
different measurements of the same
structure): oo
. H,0 £

- D,0O “r

- 50:50 mix of H,O and D,0O

N.B. Swapping isotopes always needs
to involve enough atoms to produce a
noticeable change in the F(Q)

- EE&E%UMH
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Great! So what?

Experimental F(Q) Experimental S(Q)

Wij
Fy,0(Q) 0.0374 —0.0964 0.0622 1[So0(Q)
HDO Fp,0(@] = 10.0374 0.1722 0.1980 || Sou(Q)
Frpo(Q) 0.0374 0.0378 0.0096 || Suu(Q)
) 'Invert
£
‘T‘f L oo Experimental S(Q) Wi;'l Experimental F(Q)
z S00(Q) 4.8238 —2.7037 24.6061][Fr,0(Q)
g Sou(Q)] = |-5.8227 1.6265 4.1962 || Fp,0(Q)
T 02 i Sun(Q) 41525 4.1525 -8.3050] | Fupo(Q)
hizS 'FT—1
Experimental g(r)
“Real” Potentials U(r) |

. Science and ]00 i 20
Technology QA
Facilities Council

ISIS Neutron and
Muon Source



The General Case

= For an “ideal” system such as H,O where enough isotopic substitutions can be
made, direct matrix inversion is possible

= What about cases where one or more partials only contribute weakly?
= What about cases where not enough isotopic substitutions can be made?

For example, silica: 50 (0) ]
ol

[Fsio,(@ ] =[ 00191 01070 01497 || S¢;0(0)

I'I__:> ,, | S00(Q) |
X

Invert
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The Augmented Scattering Matrix

= We have a simulation which we assume gives us a good “guess” of the F(Q)
and hence a good guess for the partial S(Q)

= Define a feedback factor, 0 < f < 1, and write new weighting factors

Wij = fCiCjbibj
Fsi0,(Q) 0.0172 0.0963 0.1347 s ()]
. Seics
SSIm(Q) 0.1 0.0 0.0 sisitd
SSIm(Q) i 0.0 0.1 0.0 Ss10(Q)
>t ' | | S00(Q)
So0 (Q) 0.0 0.0 0.1 . d
Wij = (1—1)

= Now we have an overdetermined matrix for which we can find a pseudoinverse
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The EPSR Method

1) Take differences between experimental and simulated F(Q) to get AF(Q)
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The EPSR Method

1) Take differences between experimental and simulated F(Q) to get AF(Q)
2) Enterthese AF(Q) into the inverse scattering matrix to generate AS(Q)

ASpo(Q)] [ 48238 27037 246061 | [ AFy (Q)
AS,,(Q)|= | 58227 16265  4.1962 AFp, 0 (Q)
ASup(Q)] | 41525 41525 83050 | | AF,p0(Q)

Science and
Technology
Facilities Council

ISIS Neutron and
Muon Source



The EPSR Method

1) Take differences between experimental and simulated F(Q) to get AF(Q)
2) Enterthese AF(Q) into the inverse scattering matrix to generate AS(Q)

[ AFy,0(Q) |

(AS00(Q) ]

ASon (Q)

|ASyu(Q) |

4.8238

—5.8227

4.1525

—2.7037

1.6265

4.1525

24.6061
4.1962

—8.3050

| AFypo(Q)]

AFp,0(Q)

3) Transform the AS(Q) into Ag(r) and use these to form an additional, empirical

potential for each atom type pair ,__
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The EPSR Method

1) Take differences between experimental and simulated F(Q) to get AF(Q)
2) Enterthese AF(Q) into the inverse scattering matrix to generate AS(Q)

ASpo(Q)] [ 48238 27037 246061 | [ AFy (Q)
AS,,(Q)|= | 58227 16265  4.1962 AFp, 0 (Q)
ASup(Q)] | 41525 41525 83050 | | AF,p0(Q)

3) Transform the AS(Q) into Ag(r) and use these to form an additional, empirical
potential for each atom type pair

4) Repeatedly run the simulation and refine additional potentials until the
experimental and simulated F(Q) ‘match’
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Potential Refinement: EPSR results
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Nanotubide solutions: NT solvation

Di Mino (Oxford), Skipper/Howard/Clancy (UCL), Headen (ISIS)
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Confined Molecular Liquids

Falkowska/Hardacre (Manchester/ISIS), Hughes/Youngs/Bowron (ISIS)

Measurement of confined structure of

F(Q) / barns sr'" atom™

" Layering across pore

®  Molecules closest to wall are ‘canted
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Biomolecule structure and hydration

Dougan/Laurent (Leeds), Headen (ISIS)
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Peptide Solvation

pNAS RESEARCH ARTICLE BIOPHYSICS AND COMPUTATIONAL BIOLOGY al' OPEN ACCESS

Trimethylamine-N-oxide depletes urea in a peptide solvation
shell

Mazin Nasralla® ), Harrisen Laurent*@), Oliver L G. Alderman®, Thomas F. Headen® (), and Loma Dougan®'

Edited by Valeria Molinero, The University of Utah, Salt Lake City, UT; received October 13, 2023; accepted February 15, 2024 - T : - > g et e
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* Urea an osmolyte allowing sharks to live in saline environment

* But urea denatures proteins
» Sharks have adapted to produce TMAO to counteract this
» This work demonstrated the how TMAOQO depletes urea from a peptide

surface, allowing it to renature
- V\F HD-GPG,HD-urea,Null water
555
IS
220 &/\,
« Two ternary + one quaternary solution o ik
« 18 H-D isotopologues in total §1 e
5 H-GPG, H-urea, H.0
Nasralla, M., et al., Proc. Natl. Acad. Sci. USA, 2024. sl
121(14): €2317825121. o,oM\\/\/\———
D-GPG,D-urea,D,0O
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Zwitterionic Osmolytes

' ™ ROvAL SOCIETY
(Siggrr?é(e:al « OF CHEMISTRY
ERGEARTICES
) Check for updates | Specific ion effects enhance local structure in

- , zwitterionic osmolyte solutionst

Cite this: Chem. Sci., 2025, 16, 6770

& All publication charges for thisarticle  Kieran J. Agg, © 2 Timothy S. Groves, ©2 Shurui Miao, @2 Y. K. Catherine Fung, ©°2
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Current Capability

= |nvestigating pure liquids and solvated species (at decent concentration) with
these techniques essentially “standard practice”

= Tertiary etc. systems possible, but need judicious use of isotopes
= Confined liquid structure accessible with TNS (+NMR)
= Process kinetics of confined system accessible with TNS

= “Static” reactions (vapour deposition followed by exposure to reactant gas)
= “Flow” reactions (continual vapour deposition with carrier gas)

= (Gas uptake (low pressure surface adsorption)
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Limitations / Caveats

Theory can link measured scattering intensities to real-space
simulation data — but is idealised.

Must have good data (reduction): It's just a simulation:

+  Quantified composition . Pairwise interactions and

- Quantified isotopic levels potential forms
Backgrounds removed + Finite system size (coarse-
Multiple scattering / attenuation graining would be nice)
Remove self-scattering — - Heterogeneity of e.g. porous
interference scattering only systems?
Remove inelastic scattering - All standard limitations of
?esguce to normalised intensity classical simulation apply!
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