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OUR WORK

We are the Mosaic (Materials Ordering and Structure : Analysis, Investigation and Characterisation) Group from the
Department of Material Science and Engineering at the University of Sheffield.

The group works on aspects of exploring structure-property links in materials, with a particular focus on local-structur

®  determination and the study of alloy systems. A key component of this is the development of novel methodologies fo.
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Chapter 1

Short-Range Order in alloys



Local Structure in alloy systems i Mos aiC
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Ordered and Random structures
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Models of Short range order MOS aiC

i) Statistical Model ii) Disperse Model iii) Micro-domain Model
Tl et
SL JO16% X i X016
Fig. 6 - Models of the different types of short range order (SRO) that can occur in a system. From left to right they are

the statistical model, the disperse model and the micro-domain model. The blue boxes indicate the small regions of
LRO in the system. All the models are 25% red atoms, 75% white.

"A New Approach to the Analysis of Short-range Order in Alloys using total scattering” - L.R. Owen, HY. Playford, H.J. Stone, M.G. Tucker, Acta Materialia, 115 (2016) 155-166



Original studies of local structure in alloys

PHYSICAL REVIEW VOLUMIEK 77, NUMBER § MARCIH 1, 1950

An Approximate Theory of Order in Alloys*-**

J. M. Cowrey***
Department of Physics, Massachusetls Institute of Technology, Cambridge, Massachusells

(Received Octoher 26, 1949)

Short-range order parameters ay are defined to express the interaction of a given atom in an alloy with
the atoms of the ith shell of atoms surrounding it. From simple thermodynamic reasoning, involving a
certain degree of approximation, equations relating the a; with energy terms and the temperature are
derived. Equations for the long-range order parameter, S, are obtained by considering the limiting case of §
very lafge.. The values of .v.he long- and shol:l-nnge order parameters oblained by solving these equations

v
io
Zeitschrift fur Physik, Bd. 129, S. 219—232 (1951). | 614 H. G. Baer: Uberstruktur und K-Zustand im System Nickel-Chrom Z. Metallkde.
: . . *
. . £ Uberstruktur und K-Zustand im System Nickel-Chrom®*)
Uber Widerstandslegierungen *.
- Von Hans Giinter Baer in Hanau a. M.
on
(Aus dem Laboratorium der Vacuumschmelze AG., Hanau)
Haxs TroMas, Hanau.
I 2 » Cersuchsdurchfithrung — Rontgenographischer Nachweis der Ordnungsphase Ni,Cr —
(Mitteilung avs dem Laboratorium der Vacuumschmelze AG.) Existenzgebiet von Ni,Cr und Bildungskinetik — Neubestimmung der Ldslichkeitslinie Jir
Mit 15 Figuren im Text. Chrom in Nickel — Folgerungen
(Bingpangn avs 18 Dessmier; I00.) Die homogenen Mischkristalle mancher Metalle, gung bei einer Legierung, die 28 At.-cy Cr enthielt
. . . . . . - . z. B. Nickel mit Chrom, Molybdin oder Aluminium. und die nach einer Vorgliihung lingere Zeit in der
Eine R.enbe‘von Legierungen, die aus primaren .\lschknstall.cn bestehen und e | Eisen mit Aluminium, Kupfer mit Nickel, oder terniire  Gegend von 500° getempert worden war, eine Nah-
stens ein Ubergangsmetall als Komponente (.:nthalten, zeigt als Besonderheiten, Legierungen, wie Nickel-Chrom-Eisen, Eisen-Alumi- ordnung nachzuweisen, Sie kommen zu dem Schluf,
daB die Widerstand-Temperaturkurve S-formig gekrimmt ist und daB der Wider- nium-Chrom oder Kupfer-Nickel-Zink, zeigen Ano- daB ein hoher Grad von Nahordnung nicht vorhan-
stand im weichen und im harten Zustand durch Wirmebehandlung bei niedrigen ' malien in ihren physikalischen Eigenschaften, fiir de-  den sein kann,
Temperaturen ansteigt und durch Kaltverformung erniedrigt wird. Dieses Ver- ren Charakterisierung sich nach dem Vorschlag von Die Verkniipfung des K-Zustandes mit einer Xn-
halten 138t sich darauf zuriickfihren, daB sich bei niedrigen Temperaturen ein H. Thomas') der Begriff K-Zustand cingebiirgert derung des Auffiillungsgrades der inneren Elektro-
ganz bestimmter Zustand ausbildet, der sich durch erhohten elektrischen Wider- hat. Nach der von ihm .Sm.l.nlnﬂl.(l(“l‘l .nufﬁ’i‘hrlirllcfn n.z-nsch.zf!cln im Sinne eines Elektronenriicktritts allein




Consequences Mos aic

» Strengthening - variation in dislocation motion due to ordering and lattice distortion
effects combined

* Electrical resistivity

* Magnetic properties
 Thermodynamic discontinuities
 Corrosionresistance

* Radiation damage
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Omni William Penn Hotel, Pittsburgh, Pennsylvania, USA
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Chapter 2

Applying total scattering to
metallurgical systems
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Full length article

A new approach to the analysis of short-range order in alloys using @CmsMark

total scattering

L.R. Owen *", H.Y. Playford *~, HJ. Stone ?, M.G. Tucker ™ <!

* Department of Materials Science and Metallurgy, University of Cambridge, CB3 OFS, UK
b [SIS Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire 0X11 0QX, UK
© Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, Oxfordshire 0X11 ODE, UK
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Article history:

Received 17 March 2016
Received in revised form

17 May 2016

Accepted 18 May 2016
Available online 8 June 2016

Keywords:

Atomic ordering
Diffraction

Pair correlation function
Short-range order
Short-range ordering

ABSTRACT

In spite of its influence on a number of physical properties, short-range order in crystalline alloys has
received little recent attention, largely due to the complexity of the experimental methods involved. In
this work, a novel approach that could be used for the analysis of ordering transitions and short-range
order in crystalline alloys using total scattering and reverse Monte Carlo (RMC) refinements is presented.
Calculated pair distribution functions representative of different types of short-range order are used to
illustrate the level of information contained within these experimentally accessible functions and the
insight into ordering which may be obtained using this new method. Key considerations in the acqui-
sition of data of sufficient quality for successful analysis are also discussed. It is shown that the atomistic
models obtained from RMC refinements may be analysed to identify directly the Clapp configurations
that are present. It is further shown how these configurations can be enhanced compared with a random
structure, and how their degradation pathways and the distribution of Warren-Cowley parameters, can
then be used to obtain a detailed, quantitative structural description of the short-range order occurring
in crystalline alloys.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Mosaic




Models of Short range order

"A New Approach to the Analysis
of Short-range Order in Alloys
using total scattering" - L.R.
Owen, H.Y. Playford, H.J. Stone,
M.G. Tucker, Acta Materialia, 115
(2016) 155-166
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"A New Approach to the Analysis
of Short-range Order in Alloys
using total scattering" - L.R.
Owen, H.Y. Playford, H.J. Stone,
M.G. Tucker, Acta Materialia, 115
(2016) 155-166
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2. Quantification



Ordered and Random structures
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SRO in alloys - Warren-Cowley parameters Mosaic

We define: pas pii
o — 1 _Zlmn _ 1 " Imn
Imn B A

C C

Where cis a concentration of a particular atom type in the alloy and
PBA the probability of finding an A atom (second letter in superscript)
at Imn from a B atom (and vice-versa).

Randoma=0
All like atoms a=1
All dislike atoms a =1- (1/c)



Clapp configurations M-Osaic

TABLE XIIl. PVM parameters for fcc nearest-neighbor cluster. See Fig. 4 for site indices.

Index Sites with Multiplicity Composition First Second Third Fourth
neighbor neighbor neighbor neighbor
k oy=-1 W, W, (o) W,Ci W, Ci LA W,Ci

1(1) aee 1 +1(=1) +1 +1 +1 +1
2(2) 6 12 +10(-10) +8 +8 +8 +8
3(3) 6,7 12 +8(-8) +4 +8 +4 +4
4(4) 5,7 6 +4(=4) +2 +2 +2 +6
5(5) 6,12 24 +16(-16) +8 +8 +12 +8
6(6) 6,11 24 +16(-16) +12 +8 +8 +8
77 5,8,7 12 +6(—6) 0 +8 0 +8
8(8) 5,6,12 24 +12(=12) 0 +8 +8 0
9(9) 1,7,9 8 +4(-4) 0 0 +4 u

10(10) 5,6,11 48 +24(-24) +8 +16 +8

11(11)  4,6,11 48 +24(= 24) +8 0 12

1202)  1,5,11 24 +12(=12) +4 0 /‘l

13(13) 2,6,11 24 +12(-12) +8 +8

1404  1,8,11 24 +12(=12) +8 0 :lﬂ \

15(15)  6,10,11 8 +4(=4) +4 0

16(16) 5,6,7,8 3 +1(=1) -1 +3

1707 4,6,7,9 6 +2(=2) -2 +2

18(18) 5,6,8,11 48 +16(-186) -8 +16 _ 3

19(19)  3,5,6,11 48 +16(=16) -8 0 ‘ |
20(20)  1,5,10,12 48 +16(=186) 0 +16

21(21) 1,6,7,10 24 +8(-8) 0 +8

22(22)  5,6,9,11 12 +4(=4) 0 4

“Atomic Configurations in Binary Alloys” — P.C. Clapp, Physical Review B, 4, 2 (1971), 255-270.



Clapp configurations for some standard LRO structures M()S aiC

Around A atom % Around B atom

"A New Approach to the Analysis of Short-range Order in Alloys using total scattering" - L.R. Owen, HY. Playford, H.J. Stone, M.G. Tucker, Acta Materialia, 115 (2016) 155-166



Clapp configuration - Enhancement factors Mosaic

Pa = Ma[x™(1 —x)7™" + x7(1 — x)"]

p, is the probability of configuration a being occupied, m, the multiplicity of that configuration, x the
concentration of species A, n the number of atoms of type a in the 12 nearest neighbours of the
configuration, N the total number of atoms, and n, and variants therefore the number of atoms in that

configuration.

"A New Approach to the Analysis of Short-range Order in Alloys using total scattering" - L.R. Owen, HY. Playford, H.J. Stone, M.G. Tucker, Acta Materialia, 115 (2016) 155-166



Enhancement factors MOS aiC
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Analysis of short-range order in CusAu using X-ray pair distribution @ o

functions

L.R. Owen *", H.Y. Playford " ", HJ. Stone ?, M.G. Tucker ©

2 Department of Materials Science and Metallurgy, University of Cambridge, CB3 OFS, UK
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ARTICLE INFO

Article history:
Received 6 October 2016
Accepted 20 November 2016

Keywords:

Atomic ordering
Diffraction

Pair correlation function
Short-range order
Short-range ordering

ABSTRACT

CusAu is often cited as a case example of a metallic system exhibiting both short-range order in the solid
solution phase and a long-range order-disorder transition. In this work, X-ray total scattering data ob-
tained from the in situ heating of a gas-atomised powder sample of CuzAu are used to demonstrate the
suitability of total scattering, in conjunction with large-box modelling, for the analysis of short-range
order in alloys. The existence of an ordering transition at c. 400° is confirmed, and the development
of short-range order reminiscent of the L1, long-range ordered structure is observed prior to this
transition. Furthermore, it is found that a degree of short-range order is present even in quenched
samples (usually assumed to be completely random) which throws into question the identification of
short-range order in previous ex situ studies. It is demonstrated that total scattering can be used suc-
cessfully to identify the type and degree of ordering, differences in the bond length distributions in the
first coordination shell and to suggest a likely mechanism for the formation of order in the system.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.




Cu;Au - On cooling _ Mosaic
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Some possible errors ‘ Mosaic

* Incorrect lattice parameter

e Offsetinthe data

* Instrumental resolution function
* Incorrectscaling

 Texture



Fit to simulated data
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Incorrect lattice parameter MOS aiC
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Effects of texture

Effect of crystallographic texture on pair distribution function
analysis in engineering materials
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Running RMC ‘ Mosaic

* Run with multiple starting configurations
* Run multiple times (and compare similarities)
* Testing and simulation
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Simulate - test the concept
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Running RMC ‘ Mosaic

* Run with multiple starting configurations
* Run multiple times (and compare similarities)
* Testing and simulation

* Vary the parameter space
e (particularly the important parameters)
* Look forsigns of issues



Varying the parameters
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Stability to changes in parameters
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Running RMC ‘ Mosaic

* Run with multiple starting configurations
* Run multiple times (and compare similarities)
* Testing and simulation

* Vary the parameter space
e (particularly the important parameters)
* Look forsigns of issues

* Try‘Grey atom’ method



Grey atom refinement MOS aiC
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Running RMC ‘ Mosaic

* Run with multiple starting configurations
* Run multiple times (and compare similarities)
* Testing and simulation

* Vary the parameter space
e (particularly the important parameters)
* Look forsigns of issues

* Try‘Grey atom’ method

* Vary thefitting regime
* Datasets
*  Weightings
* Regions



Fitting regions - preliminary fitting MOS aic
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Fitting regions - Multiple region fit _ MOS aiC
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Running RMC ‘ Mosaic

* Run with multiple starting configurations
* Run multiple times (and compare similarities)

* Vary the parameter space
e (particularly the important parameters)
* Look forsigns of issues

* Try‘Grey atom’ method

* Vary thefitting regime
* Datasets
*  Weightings
* Regions
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Ni,Mo - Following the phase transition
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Multicomponent systems ‘ Mosaic
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To higher order systems - NiCoCr
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To higher order systems - NiCoCr
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Sublattice ordering in L1, alloys ‘ MOS aiC

Crystal structure of y'



Aluminium sublattice _ Mosaic




Nickel sublattice

Ni3

Ni4

Ni5

Ni6é

Ni7

Ni8

Ni9

Ni10

Ni11

Ni12

Ni13

Ni15

Ni17

Ni19

Ni21

Mosaic




Chemical systems
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