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High energy scattering
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High energy X-ray scattering

Transmission geometry
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Detector Stag o *values @ 101 keV

SAXS XRD TS
sdd = 4000 mm Sdd =1000 mm sdd = 400 mm
9 ... =23A1 Ad/qg=(2.5-0.38)x10* Ag/q= (3.6 —0.86)x10"
Omax = 10.4 A'l Omax = 24 A-l

Sample
tower

4500 mm

Perkin ElImer XRD1621
area: 410 x 410 mm?, speed: 15 Hz K ‘
: g ) _ —
e 200X 200 kM Pilatus3 X 2M CdTe S

(PETRA 1l shared device) o
area: 253.7 x 288.8 mm?, speed: 250 Hz
pixel size: 172 x 172 pm?
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Grazing incidence total
scattering



Grazing incidence scattering
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Grazing incidence scattering

Transmission

50 nm HfO, film on
100 pm fused
silica substrate

thin film | y
sample *’-e
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Grazing incidence

50 nm HfO, film on
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thin film y )
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Grazing incidence scattering

Ideal surface (flat):

Real surface (rough):

—> Horizon o ocl
Beamstop T E

—> Sample holder a-(@ 101keV) = (10 — 50)x103°

== [ilm + substrate

- /\q = Sybstrate
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Amorphous vs. single crystalline substrates

Fused silica (amorphous) Silicon (single crystalline)
 |sotropic « Low background signal
v/ Straightforward v In line with application
v/ Universal v/ High quality
® Large background ® Anisotropic (diffuse)
® Mostly not ) External background

representative of
application cases

does not reproduce
background signal

1

Random azimuthal
orientation
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Grazing incidence total
scattering In single-crystalline
substrates



Al-native oxide pdf from Al single crystalline background

Outlet

Pt counter- ,\0\6‘
electrode

Thermocouple
sleeve

> & Top-hat-shaped
Al single crystal

=

gh-ener, 9Y X-rays

Anodization
|

Electrochemical flow cell

> Att =0, there is significant diffraction from the single crystalline Al substrate

A : : _
A 20 » Masking the Bragg spots enables to process the film scattering into pdf

G(r) [arb .units]

L) | » The retrieved pdf in consistent with the Al native oxide structure

8
r (A Magnard, N. P., Igoa Saldafa, F., Dippel, A.-C., et al. (2025). ACS Applied Materials & Interfaces.
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Measurement conditions
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Sample courtesy of Alexander Rettie

2D background subtraction
Li2-75/\|1P1-25()5-1

15m” 15 m°, zs up
'\\,\’ \ Subtraction
'\'\, Unsuccessful subtraction, pure substrate

25 mm 25 mm and film background not matching
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A closer look to the subtraction problem
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A closer look to the subtraction problem

15 m®, zs up

rett_2_15mdeg_zsup-00020 e

rett 2 15mdeg_zsup-00020

=)
‘un -qJe / AJIsuaiu]

-5.0

103

Linecut from (-4.708, 11.185) to (-5.096, 12.07°

T
20 {ft__ll.()
10° >
o
10.5
10 _
-
(=g
[ 10.0
b |
- o,
-+
o <
S~ 0 ~
> Q -7.5 -7.0 —-6.5 —-6.0 -5.5
S 10* = -
s Ax /A?
{ ot Linecut from (-6.322, 10.198) to (-6.764, 10.89:
=
-10
6x10%
6x10%
£ ax10* 2
-20 5 5 ax10*
2 3% 10t 2
T T T T T 103 2 3% 10 E
=20 -10 0 10 20 g g’ 1ot
-1 = =
ax / A
2x10f 2x10%

12.2 12.4 12.6
lal (A=)

DESY.

12.4 12.6 12.8

af (A=)



A closer look to the subtraction problem

Subtraction
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A closer look to the subtraction problem

Different mean origins give different
sample-to-detector distances

12.5 mm

A broad distribution of sample-to-
detector distances causes broad
scattering profiles, irreproducible in
grazing incidence

25 mm
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A closer look to the subtraction problem

Reducing the sample dimensions 25 mm
could minimize the sample-to-
detector differences?

5 mm
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Cut sample to 5 mm
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Cut sample to 5 mm

Liz.75A11P1.2505.1 15 m°, zs up

5mm
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Cut sample to 5 mm
I—i2-75/A\|1P1-25C)5-1

Subtraction
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Sample courtesy of Jorden de Bolle

Is the problem really gone?

T1,S1,,0, 66.6 nm on Si T1,S1,,0,33.2 nm on Si Ti,Si,,0, 16.7 nm on Si
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TiISIO, 16.7 nm on Si

Thin film Substrate
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Background sample-to-detector distance correction

Parameters:

* 3 distances in meters: dist, ponil, poni2
* 3 rotations in radians; rot,, rot,, rot,
+ wavelength || energy

} PONIile

From the sample's point of view,
looking towards the detector :

2 rot.: moves detector — to the right
2 rot: moves detector | downwards

A rotg: moves detector ~ clockwise

C

Detector's origin: Oriéih.;.\ Incon..
looking from sample ‘){“?*?"\E

lower left,

the sample

Detector calibration parameters are
used standardly to reconstruct/integrate
detector images

The distance parameter can be
manipulated to account for the intrinsic
distance change when measuring the

background

Kieffer, J., Valls, V., Blanc, N., & Hennig, C. (2020). New tools for calibrating diffraction
pesy.  Setups. Synchrotron Radiation, 27(2), 558-566.



Background sample-to-detector distance correction

h = » Sample-to-detector
distance discrepancies can

SDDgckground = 300.82 mm SDDgckground = 301.82 mm _be accounted for in the 2D
images
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Background sample-to-detector distance correction

Reciprocal space Real space

100,
Ti,Si; O, thin film 16.7 nm — not corrected

e ——

> Ti, Si; , O, thin film 16.7 nm - corrected
corrected 4 . o
Ti,Si; O, thin film 33.2 nm
3-
Ti,Si; O, thin film 66.6 nm
—————————— [\ Anatase simulation
qj{Ail 1;\_\_\~—\—J5
Rutile simulation
» The corrected data shows a smooth
0_

scattering decay in g-space

10—1_

Intensity / arb. un.

not corrected

g(r) / arb. un.

2 4 6 8 10 12 14
r/A

» The corrected data presents similar features in real-space to the thicker and more

crystalline counterparts. Reliable correlation peaks can be observed up to 5 A
DESY.



Validation in crystalline material

mes L aMNO;, thin film

w= LaMnO,; model
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Summary

» Scattering in grazing incidence conditions highly enhances the signal

» Substrate background is always present: isotropic for amorphous and anisotropic for single crystalline

» To subtract the background in a single crystalline substrate, a small (5 mm) length has to be kept

» Discrepancies between substrate and film background become more notorious the less the sample scatters
» The geometrical discrepancies can be corrected for by 2D g-space reconstruction prior subtraction

» The recovered pattern fits with powder and modelled data for a crystalline sample

fernando.igoa@desy.de
Beamlines PO7(DESY) & P21.1 @ PETRA



2D subtraction method
validation



Sample courtesy of Xiao Sun

Measurement conditions

Sample-detector = 400 mm
Energy = 101.45 keV

20 m°
Grazing incidence angle = 20 mdeg
Detector = Perkin Elmer \
Sample = LaMnO; thin film on Si (111) substrate '\,\
Focused beam dimensions = 2.6 x 200 pym 5 mm

5 Background subtraction strategies were considered:

Om® 20 m®, zs up 20 m®, Si substrate

PRV v ®
v v v

1D subtraction



In the Si substrate background, Bragg

2D b aC kg roun d S: S| Su b si{rate (al on e) and diffuse scattering differ significantly

from the thin film measurement

20 m° 20 m°, Si substrate

20652.45 5199.004

10000

2148.409 1121.03



The 0 m° background strategy leaves a
. O +: )
2D backgrounds: 0 m® tilt background resembling much more the
thin film, but with remaining thin film
o scattering data (ring at low q for
20 m instance)

20652.45 54882.45

10000

e 10000

6795.268

2148.409



The zs up strategy gives a similar

2D backgrounds: 20 m° tilt and zs lifted up background than the previous but

without thin film scattering signal

20 m®, zs up

20652.45 98014.2

2148.409 6311.755



In both former cases, 2D subtractioncompletely eliminates the

2 D b acC kg roun d Su btracti ons diffuse scattering and leaves only concentrated intensities

around some Bragg positions. In both cases the subtraction
20 m°, zs up required scaling

18986.79 . 18986.79

10000

1000

684.1926 684.1926




These remaining background

2D background subtractions and masking intensities can be masked

20 m®°, zs up

18986.79 . 18986.79

684.1926 684.1926



Si substrate background masking

DESY.

9933.464

20 m°, Si substrate

*

Masking of the Si substrate alone
background for integration and
posterior 1D subtraction. Only the
regions in Bragg condition (or
approximately) were masked



1D backgrounds

Raw integrated data normalized for exposure time

250 -

—— Background 0 m°

—— Background 20 m°®, zs up
Background substrate
—— Film on sample

—

(9)]

o

1
:zg

Intensity / a.u.

wl |/
50_' IE’OUULJ

-

20/ °
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20000 -

The 1D backgrounds are obtained from integrating
the 2D backgrounds shown before with their
corresponding masks.

Scaled integrated backgrounds

” —— Background 0 m°

—— Background 20 m°®, zs up
—— Background substrate
—— Film on sample




F(g) for each background subtraction

10

] —— 1D subt. Si substrate
3 —— 1D subt. film 0 mdeg
—— 1D subt. film 20 mdeg, zs up
——— 2D subt. film 0 mdeg
——— 2D subt. film 20 mdeg, zs up

)

When the 5 background strategies are compared
in F(q), they all seem similar except for the Si
substrate strategy

F)

WA

20 25

O =
-
o
-
(@)

DESY.



g(r) for each background subtraction

—— 1D subt. film 0 mdeg

The pdfs of the 4 named strategies are 1D subt. film 20 mdeg, zs up

indistinguishable between each other 0.6 - —— 2D subt. film 0 mdeg
—— 2D subt. film 20 mdeg, zs up

2 0.4 -

| o

| ol

:0 | w M
M| 1

-0.6 -

-2 T T " 1 T T " T T T T T y T y T y 1

20 40 40 45 50 55 60 65 70 75
rl A ri A
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g(r) vs LaMnO, reference

And match very well to a calculated pdf from

reference LaMnO,

0.6

20
ri A

—— 1D subt. film 0 mdeg

—— 1D subt. film 20 mdeg, zs up
——— 2D subt. film 0 mdeg

——— 2D subt. film 20 mdeg, zs up
——— LMO3_R-3cH_96038_gr

L J l‘ Jl v‘ ‘ & ;|
I ”V' ‘(“.MJ




g(r) vs Si substrate (alone) background

—— 1D subt. Si substrate

If all previous are compared to the Si substrate — 1D subt. film 0 mdeg

background strategy, large discrepancies arg :
observed 06 - —— 1D subt. f!lm 20 mdeg, zs up
—— 2D subt. film 0 mdeg
04 —— 2D subt. film 20 mdeg, zs up
024 W
il » | |
A * 0.0 -
-0.2 -}
{
-0.6 -
2I0 | 410 40 | 4|5 | 5|0 | 5|5 | 6|0 | 6I5 | 7|0 | 7|5

ri A ri A
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g(r) vs Si substrate (alone) background

Including inexistent peaks, for which this strategy
ﬂ is discarded

DESY.



g(r) vs powder measurement

Finally, the thin film pdfs also match very well to
experimental LaMnO,; powder pdf measurement

—— LaMnO; thin film
—— LaMnO, powder

DESY.

ri A

0.5~

0.0 -

—— LaMnQO; thin film
—— LaMnO, powder

-0.5

40 45 50 55 60

' 1
65 70 75 80 85 90 95 100
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