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Talk overview

1. ‘Interaction-space’ Monte Carlo-driven big-box modelling of ‘simple’ PBAs 

2. Rules governing Jahn–Teller order in PBAs and the interplay of JT/vacancies
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Pair Distribution Function measurements 

Understanding local structure

K. W. Chapman, P. J. Chupas, C. J. Kepert, J. Am. Chem. Soc., 2005, 

127, 11232—11233

• PDF measurements can provide an 

excellent experimental handle on 

local structure 

N. Ma, R. Ohtani, H. M. Le, S. S. Sørensen, R. Ishikawa, S. Kawata, S. 

Bureekaew, S. Kosasang, Y. Kawazoe, K. Ohara, M. M. Smedskjaer, S. 
Horike, Nat. Commun., 2022, 13, 4023

• Mixture of broad and sharp features 

for different pair correlations at similar 

separations

• Conventional PDF refinements using 

monotonic r-dependent peak widths 

often not suitable for PBAs

E. A. Harbourne, H. Barker, Q. Guéroult, J. Cattermull, L. A. V. Nagle-Cocco, 

N. Roth, J. S. O. Evans, D. A. Keen, A. L. Goodwin, Chem. Mater., 2024, 36, 5796



Constrained big-box modelling

RMC

Move/swap 
atoms

Fit data

Constrained “RMC”
cf EPSR

Change interatomic 
potentials

Calculate atom 
positions with MC

Fit data (with TOPAS)

We have developed a modified “interaction-space” PDF refinement approach. 

Based on the iterative refinement of parameters of an empirical lattice 
dynamical model against the experimental PDF data.



Average 

position

‘True’ bond 

lengthDistribution 

of positions

MC-driven empirical potential approach

A. L. Goodwin, K. W. Chapman, C. J. Kepert, J. Am. Chem. Soc., 2005, 127, 17980

K. W. Chapman, P. J. Chupas, C. J. Kepert, J. Am. Chem. Soc., 2006, 128, 7009—7014

Sharpe, A. G. The Chemistry of Cyano 

Complexes of the Transition Metals; 

Academic Press: London, 1976.

Relatively high bending 

force-constants observed 

amongst 

hexacyanoplatinates
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‘Interaction-space’ MC-driven big-box modelling – MnPt(CN)6

Clear why conventional PDF 

refinements using monotonic 

r-dependent peak widths fail:

• The distributions around Mn 

and Pt are very tightly 

bunched. 

The corresponding PDF 

peaks will be narrow.

• The C/N distributions are 

very diffuse.

Any C/N – C/N peaks will 

be broader. 



‘Interaction-space’ MC-driven big-box modelling

A particular advantage of determining effective potentials that govern their lattice 
dynamics – we are able to identify directly the likely phonon modes most 

important in driving NTE.  

Obtain this insight even by fitting data collected at a single (ambient) temperature.
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Lattice dynamical calculations – comparison to DFT ZnPt(CN)6

DFT calculations 

ZnPt(CN)6

Empirical calculations 

MnPt(CN)6

Dispersionless 

branch 

k = [00𝜉] direction 

from Γ to X

Correlated 

octahedral tilts



Conclusions

• Simple model — able to describe the key thermal 

fluctuations, accounting for both the experimental 

PDF and the intensities of Bragg reflections in the 

X-ray diffraction pattern.
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fluctuations, accounting for both the experimental 

PDF and the intensities of Bragg reflections in the 

X-ray diffraction pattern.

• Sensitivity to pairwise correlations in these fluctuations 

— allows us to interrogate the phonon dispersion 

relations implicit in our empirical model.

• The low-energy modes, which dominate thermal 

motion and hence the variation in peak widths in the 

PDF, are surprisingly well captured.

• Able to identify the dominant NTE mechanism – 

correlated octahedral tilts.
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Jahn–Teller

Y. Tokura & N. Nagaosa,

Science 2000, 288, 462

Jahn & Teller,

Proc. R. Soc. Lond. A., 

1937, 161, 220



Jahn–Teller

Woidy, Meng & Kraus, Z. Naturforsch B. 2014, 69, 1

Okazaki & Suemune, J. Phys. Soc. Jpn. 1961, 16, 176

[Cu(NH3)6]
2+ KCuF3



Cooperative JT order/disorder: LCMO

Thygesen, Young, Beake, Romero, Connor, Proffen, Phillips, Tucker, Hayward, Keen and Goodwin, Phys. Rev. B 2017, 95, 174107

Jin, Tiefel, McCormack, Fastnacht, Ramesh and Chen, Science 1994, 264, 413



PBA K-ion cathode materials

Cattermull, Jagger, 

Cassidy, Dhir, Allan, 

Pasta, Goodwin, 

arXiv: 2509.04587

Wessells, Huggins, Cui, 

Nat. Commun., 2011, 2, 550

Deng, Qu, Niu, Liu, Zhang, Hong, 

Feng, Wang, Hu, Zeng, Zhang, 

Guo, Zhu, 

Nat. Commun., 2021, 12, 2167



Solution?

Exploit the interplay of JT concentration, vacancy 
concentration, and long-range symmetry breaking

tetragonal cubic

Cu[Pt(CN)6] Cu[Co(CN)6]2/3



Phase map – interplay of JT/vacancy concentration
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(CuxMn1-x)[Pt(CN)6] – no vacancies, vary JT 

(CuxMn1-x)[Pt(CN)6]

vary 𝑥JT , 𝑥vac = 0

max JT: Cu[Pt(CN)6] is 

tetragonal

min JT: Mn[Pt(CN)6] 

is cubic



Strain coupling in PBAs

Cu[Pt(CN)6]Mn[Pt(CN)6]

angle strain

Monte Carlo



(CuxMn1-x)[Pt(CN)6] – no vacancies, vary JT

(CuxMn1-x)[Pt(CN)6]

vary 𝑥JT , 𝑥vac = 0

𝑥JT = 1 𝑥JT = 0.5𝑥JT = 0.3𝑥JT = 0.2

𝑥
𝑦

𝑧

J captures strain 
energy scale 

~ 5 kJ mol-1



Cs1-3xvacCu[Fe(CN)6]1-xvac: max JT, varying vacancies

Cs1-3xvacCu[Fe(CN)6]1-xvac

vary 𝑥vac, 𝑥JT = 1

Vacancy-driven cooperative JT melting

{220} position

vacancy-free 

CsCu[Fe(CN)6] is 

tetragonal

Limiting composition 

Cu[Fe(CN)6]2/3 is 

cubic

increasing 

[Fe(CN)6]
3- 

vacancy 

fraction critical
𝑥vac ≃ 0.2



Vacancy incorporation

vacancy relieves all angular strain



Vacancy incorporation

vacancy relieves all angular strain

JT-distortion prefers 

to point towards a 

vacancy/be capped 

with OH2

DFT study of copper 

hexacyanoferrates: 

X. Wang, A. T. Ta, S. Quemerais, A. 

Grandjean, H.-C. zur Loye, S. R. 
Phillpot, Chem. Mater., 2024, 36, 6731



Vacancy incorporation
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crystal-field preference
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Vacancy incorporation

crystal-field preference

J’ = J

strain crystal field

J’ different for 
different systems

vacancy relieves all angular strain

JT-distortion prefers 

to point towards a 

vacancy/be capped 

with OH2

DFT study of copper 

hexacyanoferrates: 

X. Wang, A. T. Ta, S. Quemerais, A. 

Grandjean, H.-C. zur Loye, S. R. 
Phillpot, Chem. Mater., 2024, 36, 6731



Cs1-3xvacCu[Fe(CN)6]1-xvac: max JT, varying vacancies
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critical (MC) 
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only

strain + 
crystal field
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only
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strain 
only

strain + 
crystal field

𝑥
𝑦

𝑧

critical 
(experiment)
𝑥vac ≃ 0.2J’ = J

strain crystal field

J’ different for 
different systems



Cs1-3xvacCu[Fe(CN)6]1-xvac: max JT, varying vacancies

𝑥vac = 0.4𝑥vac = 0.2𝑥vac = 0

critical
𝑥vac ≃ 0.25

Cu[Fe(CN)6]2/3 
(𝑥vac = 0.33) 
is cubic

strain 
only

strain + 
crystal field

strain 
only

strain + 
crystal field

strain 
only

strain + 
crystal field

𝑥
𝑦

𝑧

strain: JT coalignment 

crystal-field: reorientation of 

JT axes towards vacancies

J’ = J

strain crystal field

J’ different for 
different systems



Rules

crystal-field

strain: 

vacancies

strain



Phase map – interplay of JT/vacancy concentration

𝑥
𝑦

𝑧

𝑥JT = 0.5

𝑥JT = 0.3

𝑥JT = 0.2
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𝑥vac = 0 Cu[Co(CN)6]2/3

𝑥JT = 1

𝑥vac = 1/3



Phase map – interplay of JT/vacancy concentration

𝑥
𝑦

𝑧

𝑥JT = 0.5

𝑥JT = 0.3

𝑥JT = 0.2

𝑥vac = 0.4
𝑥vac = 0.2

𝑥vac = 0 Cu[Co(CN)6]2/3

𝑥JT = 1

𝑥vac = 1/3



(CuxMn1-x)[Co(CN)6]2/3: 𝑥vac = 1/3, vary JT

Cu[Co(CN)6]2/3

𝑥JT = 1

𝑥vac = 1/3

Isotropic crystal strain: 

asymmetric dependence on xJT

non-random JT

      orientations/local JT order?

Solid-solutions, all cubic



MC-driven big-box modelling – Cu[Co(CN)6]2/3
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MC-driven big-box modelling – Cu[Co(CN)6]2/3Single crystal pattern simulation – random vacancies – Cu[Co(CN)6]2/3
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Single crystal pattern simulation – random vacancies – Cu[Co(CN)6]2/3



MC-driven big-box modelling – Cu[Co(CN)6]2/3Single crystal – Cu[Co(CN)6]2/3

J’ = 1
Simulated Experiment

Random vacancies Correlated vacancies
Simonov et al, Nature 2020, 

578, 256 
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Conclusions

• A simple model governing cooperative JT order based 
on the competition between strain and crystal-field 

stabilisation.

• Can account for the extent of cooperative JT order, 
crystallite strain, and stability measured 

experimentally.

• Generic phase map – gives an indication of how 
PBA compositions might be tuned to control the 

emergence of long-range cooperative JT order.

strain term

crystal-field term



Conclusions

PBAs contain a complex interplay of competing effects

Correlated vacancies
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