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Talk overview

1. ‘Interaction-space’ Monte Carlo-driven big-box modelling of ‘simple’ PBAs
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Negative Thermal Expansion (NTE) in MPt(CN); PBAs
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Pair Distribution Function measurements

Understanding local structure

MnPt(CN),

( PDF measurements can provide an \ |
excellent experimental handle on
local structure

« Conventional PDF refinements using
monotonic r-dependent peak widths
often not suitable for PBAs

Pt—Pt
Pt—Mn
Pt—C
Pt—N
Mn—Mn

* Mixture of broad and sharp features
for different pair correlations at similar

\ separations /
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Constrained big-box modelling

We have developed a modified “interaction-space” PDF refinement approach.

Based on the iterative refinement of parameters of an empirical lattice
dynamical model against the experimental PDF data.

RMC Constrained “RMC”
cf EPSR
Move/swap Change interatomic
atoms potentials
Fit data Calculate atom

positions with MC

1

Fit data (with TOPAS)



MC-driven empirical potential approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling approach
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‘Interaction-space’ MC-driven big-box modelling — MnPt(CN)g
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‘Interaction-space’ MC-driven big-box modelling

A particular advantage of determining effective potentials that govern their lattice

dynamics — we are able to identify directly the likely phonon modes most
important in driving NTE.

Obtain this insight even by fitting data collected at a single (ambient) temperature.
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Lattice dynamical calculations — comparison to DFT ZnPt(CN)g
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Lattice dynamical calculations — comparison to DFT ZnPt(CN)g
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Conclusions

« Simple model — able to describe the key thermal
fluctuations, accounting for both the experimental
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— allows us to interrogate the phonon dispersion
relations implicit in our empirical model. =

 The low-energy modes, which dominate thermal
motion and hence the variation in peak widths in the . -
PDF, are surprisingly well captured. -
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* Able to identify the dominant NTE mechanism —
correlated octahedral tilts.

NTE
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Structural complexity in PBAs

Correlated vacancies Octahedral tilts
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Jahn—Teller
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Cooperative JT order/disorder: LCMO
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PBA K-ion cathode materials
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Solution?

Exploit the interplay of JT concentration, vacancy
concentration, and long-range symmetry breaking

[ | —— |

tetragonal cubic
Cu[Pt(CN)g] Cu[Co(CN)glas3



Phase map — interplay of JT/vacancy concentration
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Phase map — interplay of JT/vacancy concentration
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Phase map — interplay of JT/vacancy concentration
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Phase map — interplay of JT/vacancy concentration
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(Cu,Mn,_)[Pt(CN)s] — no vacancies, vary JT
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Strain coupling in PBASs
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(Cu,Mn,_)[Pt(CN)s] — no vacancies, vary JT
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CS4.3,wacCU[FE(CN)gl1_wac: Max JT, varying vacancies
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Vacancy incorporation
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Vacancy incorporation
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Vacancy incorporation

vacancy relieves all angular strain
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CS4.3,wacCU[FE(CN)gl1_wac: Max JT, varying vacancies
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CS4.3,wacCU[FE(CN)gl1_wac: Max JT, varying vacancies
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Phase map — interplay of JT/vacancy concentration
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(Cu,Mny_)[CO(CN)gly/s: Xyac = 1/3, vary JT
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MC-driven big-box modelling — Cu[Co(CN)g]5/3
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MC-driven big-box modelling — Cu[Co(CN)g]5/3
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MC-driven big-box modelling — Cu[Co(CN)g]5/3
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Single crystal pattern simulation — random vacancies — Cu[Co(CN)¢],/5
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Single crystal pattern simulation — random vacancies — Cu[Co(CN)¢],/5




Single crystal — Cu[Co(CN)gls/3
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strain term « A simple model governing cooperative JT order based
on the competition between strain and crystal-field
stabilisation.

« (Can account for the extent of cooperative JT order,
crystallite strain, and stability measured
experimentally.

« Generic phase map — gives an indication of how
PBA compositions might be tuned to control the
emergence of long-range cooperative JT order.
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Conclusions

PBAs contain a complex interplay of competing effects

Correlated vacancies Octahedral tilts A-site ‘slides’ Cooperative JT
Simonov et al, Bostrom & Brant, Cattermull et al, This work
Nature 2020, J. Mater. Chem. C. JACS 2023, 745, arXiv:2408.13169

578, 256 2022, 10, 13690 24249 2024

Cattermull, Pasta, Goodwin, Mater. Horiz., 2021, 8, 3178
Cattermull, Pasta, Goodwin, J. Am. Chem. Soc. 2023, 145, 24471
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