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Fig. 1. Polymorphism of the rare-earth disilicates as observed during the synthesis at normal
pressure. Seven different structure types, AW, Bo, C+, Dv, E@, F*, G*, were identified by

X-ray work. Arrow on top of each column indicates melting point of the compound.
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Fig. 2. Graphical presentation of the unit-cell geometry of the 7 observed structure types, 4-G,
each represented by data of one disilicate compound from TABLE 1. (Type 4V, Bo,C%, DV,
E @, F*, and G*.)
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Er2Si>0O7 Summary

D-type Er:Si2O7 is an Ising-like antiferromagnet with 4-sublattice k = 0 structure below
Tn =1.85 K with two pairs of collinear antiferromagnetic moments within the unit cell.

For H//a, a narrow and T-sensitive magnetisation plateau exists at 1/3 of saturation value.

The magnetic unit cell undergoes a significant increase within the plateau regime
demonstrated by the appearance of a scattering signal at non-integer positions
described by the propagation vectors (0 1/2 1/2), (0 1/4 1/4), (0 1/3 0).

The intensity, shape, and width of these field-induced features change rapidly with the
applied magnetic field within the magnetisation plateau. The diffraction pattern then
returns to integer peaks at higher fields, upon its entrance into the paramagnetic phase
and out of the plateau.

13



Er2Si>0O7 Summary

D-type Er:Si2O7 is an Ising-like antiferromagnet with 4-sublattice k = 0 structure below
Tn =1.85 K with two pairs of collinear antiferromagnetic moments within the unit cell.

For H//a, a narrow and T-sensitive magnetisation plateau exists at 1/3 of saturation value.

The magnetic unit cell undergoes a significant increase within the plateau regime
demonstrated by the appearance of a scattering signal at non-integer positions
described by the propagation vectors (0 1/2 1/2), (0 1/4 1/4), (0 1/3 0).

The intensity, shape, and width of these field-induced features change rapidly with the
applied magnetic field within the magnetisation plateau. The diffraction pattern then
returns to integer peaks at higher fields, upon its entrance into the paramagnetic phase

and out of the plateau. ——
7 -

PN PN 6%1%- o
N = 1

()}

< o ° MD

~

Field (kOe)

w
T
e

\>~

N AN

(\&
T
L

—
]
®

.
=

S
T
@
1

13 Temperature (K)



dM/dH (HB/ Er3+k0e)

SI‘RE204

(RE= Gd, Ho,

0.8

0.6 .

dM/dH (HB/H03+k0e)

e
a

N
'S

S
(¥}

e

"\\\\\'//7 \\\\\

DYI Nd, Tb)

\\\

.1i

T T T T T ' — : I
a+
SrHo O A ’
2 4 A i
A A
L . !
T=05K s
A
A
L . I
A
_ A * 4
PRRT 22 20 o 6 6 & 0
IS 3¢
i 0‘ A 1
o A
A
L .. I
] 1
., |
_ n -
. n n n
- x‘ IIIIIIIIIIIIII n u

%%‘—H—'—'—H—'—'—'ﬂﬁ%ﬁw

. B Hja
L * A A H”b +

4 ¢ Hjc

A
* 0 A
L A, N 4
A S,A A 1
* . m
o A a —+
*
Lad A
. A
* A

Img ‘0’0‘ Ll ~ A4 ye i1
ool iousuuenpununnkteer 5 2.8 8.8, 0% . 4
0 5 10 15 20 25 30 35 0

H (kOe)

dM/dH (u /Dy"'kOe)

S
N

e
=

e
§}

0.0 L

AAAAAAAAA A
A
A
A
A
A
g 00000000’0’0 *
* n
‘0‘05‘00" .....I.IIII ]
]

*

4
mlllll’v.....

: B Hja
A H|b
: ® Hjc

A
A

N""“N""ﬂ‘ﬂ: LLLy,

15

20 25 30 35
H (kOe)

40



S FE I‘204 Coexistence of the two different magnetic components:

1/3 magnetisation plateaux for H//a.

SciPost Phys. 11, 007 (2021)
single crystal neutron diffraction 19 WISH, ISIS



S FE I‘204 Coexistence of the two different magnetic components:

metamagnetic transition for H//c.

SciPost Phys. 11, 007 (2021)
single crystal neutron diffraction 16 WISH, ISIS
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SrEr04 Summary

For SrEr20a4, single-crystal neutron diffraction reveals the nature of field-induced
transitions.

For H//a, the applied field induces a transition to an extended, but still not fully
long-range ordered UUD state of the Er2 sites.

For H//c, the applied field destroys the long-range antiferromagnetic order of the
Er1 sites and induces a much shorter-range order during the metamagnetic

transition prior to establishing a long-range ferromagnetic-like state of the Er1
moments.
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REB4 (RE = Ho, Tm, Er, Nd)

Shastry-Sutherland lattice REB4 tetraborides
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In-field behaviour
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NdB4

polarised neutron diffraction
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NdBs  Zero-field polarised neutron diffraction
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Summary

e Ground state of NdB4 represents a unique interplay between strongly
anisotropic spins in a frustrated exchange topology and non-magnetic
order parameter

* |t involves coexisting instabilities coupled via an internal field created
by the non-magnetic distortion, undetectable in the present diffraction
data

e One instability is the orthogonal all-in all-out order of the xy-
components of the moments. Another is SDW of the out-of-plane
moments, locked to 5-fold periodicity of the lattice to form 3U2D
structure
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