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Outline

Brief introduction to
magnetic pair
distribution function
(mPDF) analysis as a
means of studying short-
range magnetic
correlations

MnTe as a Case Study:
Short-range spin
correlations,
magnetostructural
coupling

3D — AmPDF

Overview of diffpy.mpdf
python package—come

to the tutorial for more

information!

from diffpy.mpdf import *

# read in the MCIF
mcif = '1.31_MnO.mcif'
mstruc = create_from_mcif(mcif)

# generate spin arrays
mstruc.makeAll()

# calculate the mPDF
mcalc = MPDFcalculator(mstruc)
rl, gl = mcalc.calc()

# calculate for a finite correlation length
mstruc.corrLength = 10 # Angstroms
r2, g2 = mcalc.calc()
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Part I: Introduction to magnetic pair distribution
function analysis




Local Structure versus Average Structure
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Purpose: Study short-range magnetic order
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Well-defined correlations only
over a finite separation distance,
e.g. a few interatomic spacings
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Short-range magnetic order is ubiquitous in modern magnetism
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Neutron scattering from magnetic short-range order
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Neutron scattering from magnetic short-range order
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Real-space approach: PDF analysis

Scattering from atoms : :
° : Fourier Atomic PDF
and nuclei transform

Scattering from ; .
i Fourier Magnetic PDF
magnetic moments transform

Scattering from nuclei Fourier Combined atomic and
& magnetic moments transform magnetic PDF




Magnetic PDF
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Example: One-dimensional chain
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Example: Simple cubic antiferromagnet
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Part Il: MnTe as a Case Study
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Neutron PDF experiment on MnTe
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No! We just need to include the magnetic PDF in our model.



Combined atomic and magnetic PDF analysis

Diffpy.mpdf fit with atomic and magnetic components:
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Temperature-dependent scattering signal
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Long-range and short-range magnetic order in MnTe
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Characterizing the phase transition with mPDF
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3D-AmPDF study of MnTe
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3D-AmPDF study of MnTe

Single-crystal measurements at CORELLI
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Anisotropic correlation length in MnTe
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Extracting exchange parameters from mPDF data

* Extract magnetic interactions from mPDF data in paramagnetic state
* Fit to correlation length and locally ordered moment or directly to mPDF data
* Onsager reaction field theory or direct Monte Carlo simulations
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Magnetic PDF with polarized neutrons
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Magnetic PDF on D4 (ILL)
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Magnetic PDF on conventional powder diffractometers
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diffpy.mpdf: Open-source mPDF software

from diffpy.mpdf import *

# read in the MCIF
mcif = '1.31 MnO.mcif'

mstruc = create_from mcif(mcif)

# generate spin arrays
mstruc.makeAll()

# calculate the mPDF

mcalc = MPDFcalculator(mstruc)

rl, gl = mcalc.calc()

Gmag(A_z)
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Frandsen et al, J. Appl. Cryst., 55 (2022)

Python package, integrates with
DiffPy suite of PDF/diffraction code
User-friendly methods for creating
models of magnetic structures (e.g.
loading in an MCIF file)

Calculates 1D and 3D mPDF
patterns for given magnetic
structure

Perform highly flexible fits

Free to download and install at
https://github.com/FrandsenGroup
/diffpy.mpdf

Check out the tutorial if you can,
otherwise I’'m very happy to help
you get started!



https://github.com/FrandsenGroup/diffpy.mpdf
https://github.com/FrandsenGroup/diffpy.mpdf

diffpy.mpdf: Open-source mPDF software

In [50]:

Run the refinement

### Run the refinement

# Turn off printout of iteration number.
recipe.clearFitHooks ()

# Initial structural fit
print{"Refine using scipy's least-squares optimizer:")

print(" wvariables:",

recipe.names)

print{" initial walues:", recipe.values)

from scipy.optimize import least squares

least squares(recipe.residual, recipe.values)

print({" final wvalues:", recipe.vali

### Plot the results

fit = mfit.evaluateEgquation( "mpdf")

O mPDF data
= mPDF fit

Frandsen et al, J. Appl. Cryst., 55 (2022)

Python package, integrates with
DiffPy suite of PDF/diffraction code
User-friendly methods for creating
models of magnetic structures (e.g.
loading in an MCIF file)

Calculates 1D and 3D mPDF
patterns for given magnetic
structure

Perform highly flexible fits

Free to download and install at
https://github.com/FrandsenGroup
/diffpy.mpdf

Check out the tutorial if you can,
otherwise I’'m very happy to help
you get started!



https://github.com/FrandsenGroup/diffpy.mpdf
https://github.com/FrandsenGroup/diffpy.mpdf

After all... why.not?

Why shouldn’t I try magnetic PDF?
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