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Hidden local symmetry breaking in Kagome-lattice Co;Sn,S,
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Magnetic Transition Pathway for Co,Sn,S,

phase separation;
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Polarized Neutron Data
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Average Structure
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Local Structure Data

POWGEN @ SNS, ORNL
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Local Structure Modeling

Metropolis RMC
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Local Structure Modeling
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Local Structure Modeling
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Impact of Local Symmetry Breaking on Magnetic Ordering & Weyl Points
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Take-Away

% Magnetic transition induces LSB

% LSB further induces FM ordering instability

% FM instability then possibly accounts for the emergence of the spin glass behavior
% LSB has impacts upon the Weyl points due to losing mirror planes

% Further Weyl properties studies need to take the LSB into account
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Magnetic Phase Switching in Quantum Spin Liquid Pyrochlore Yb,(Ti,_,Sn,),0-

» Error-proof quantum computation

HT superconductivity

In 2020, A. Scheie, et al. showed
the continuum excitation as
originated from FM+AFM
competition rather than QSL

%OAK RIDGE Y. P.Zhang, et al. Phys. Rev. B. 109, 144407 (2024)
National Laborzory A Scheie, et al. PNAS. 117 (44) 27245-27254, 2020.



AC Susceptibility
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AC Susceptibility
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Magnetic Phase Switching

Transition temperature versus DC field Magnetic phase diagram
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Magnetic Phase Switching
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Magnetic Phase Switching in Quantum Spin Liquid Pyrochlore Yb,(Ti,_,Sn,),0-
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Take-Away

% Chemical pressure induced FM-AFM switching
% Phenomenal link with strong local variation in Ti-O-Ti chain

% Local structure should be considered for future QSL candidate system studies
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Local Magnetic Ordering with Total Scattering — with RMC (here, RMCProfile)
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Local Magnetic Ordering with Total Scattering — with RMC (here, RMCProfile)
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Local Magnetic Ordering with Total Scattering
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Real & Reciprocal Space Calculation
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The Self-Scattering Term

Reciprocal space [1]:
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[1] Refer to RMCProfile manual section-2.10.2.
[2] B. A. Frandsen, et al., Acta Cryst. (2014). A70, 3-11.
¥ OAK RIDGE ([3]B_a_ Frandsen, et al., Phys. Rev. Lett. (2016),116,197204.
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Dealing with the Form Factor

%

OAK RIDGE

National Laboratory

Neutron Scattering Length (fm)

11.0
10.5
10.0

9.5

Neutron Scattering Length .
—— X-ray Form Factor

—— Magnetic Form Factor .

9.0 1

8.5

8.0 1

10 20 30 | 40
QA"

F[nucleus, electron cloud, unpaired electrons]

25

- - N
o (3] o

X-ray Form Factor

a

o o o
+ » (=]

Magnetic Form Factor

o
X



Dealing with the Form Factor
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Dealing with the Form Factor
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Meaning, if we cannot separate nuc and mag contribution, it does not
make sense to do the normalization over the magnetic form factor

» Option-1: Stay in Q-space = currently what we do

> Option-2: F | [Fuuc(Q) + Smag(Q) — Smag(Q)1/(b)? | = planned
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A Little Trick at This Moment — Combine mPDF with RMCProfile

Nuc & Mag co-refinement
U

Subtract mag part

U
Clean nuc PDF Nuc + Mag F(Q)
' 74
Nuc-only model Nuc + Mag model
' 74
RMCProfile

%OAK RIDGE

National Laboratory



Inelastic Scattering Effect
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» Mainly in the low-Q region

» Mainly with light elements
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Local Magnetic Clustering in Spin Glass Sn Fe,_ N
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Sn,Fe,_.N — The Underlying Structure

® Fe
| @N
.,,T ¢ Sn/Fe

Substitution happens on the 1a Wyckoff site only

%OAK RIDGE [1]1T. Scholz, et al. AIP Adyv., 6, 055107, 2016.
National Laboratory  [2]Y. P. Zhang, et al. 100, 014419 (2019).
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PDF Fitting in Real Space
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mPDF Fitting in Real Space

SniFe3 S(Q) data ° SniFe3 S(Q) data

e SniFe3 S(Q) RMC - NoMag 0 Sn2Fe2 S(Q) RMC - Mag
wg, Diff —— . Diff ——
% Baseline ----- . Baseline -----

1 L 1 L | L 1
Sn2Fe2 S(Q) data ° 0 Sn2Fe2 S(Q) data

G Sn2Fe2 S(Q) RMC - NoMag Sn2Fe2 S(Q) RMC - Mag
%, Diff —— Diff ——
&P

s
Baseline ----- ? Baseline

$(Q) (a.u.)

1 ) 1 L ] L 1
Sn3Fel S(Q) data ° 0 Sn3Fel S(Q) data

e Sn3Fel S(Q) RMC - NoMag Sn3Fel S(Q) RMC - Mag
Diff —— Diff ——
Baseline ----- k Baseline -----

e ——

0.0 4.0 8.0 0.0 4.0 8.0 10.0
-1
Q (&)

RMCProfile fitting in Q-space with (left) and
without (right) magnetic contribution.

%OAK RIDGE

National Laboratory



Local Correlation in Spin Glass

g = (5iS;)i=j - Local magnetic order
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