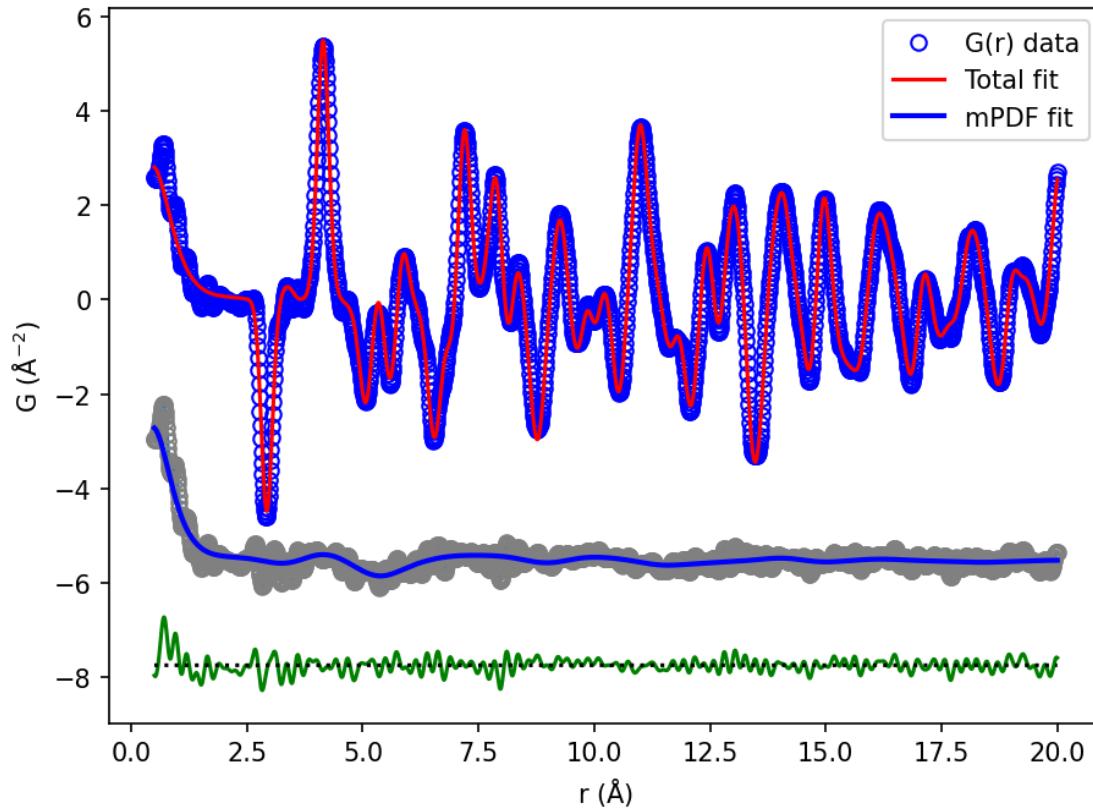
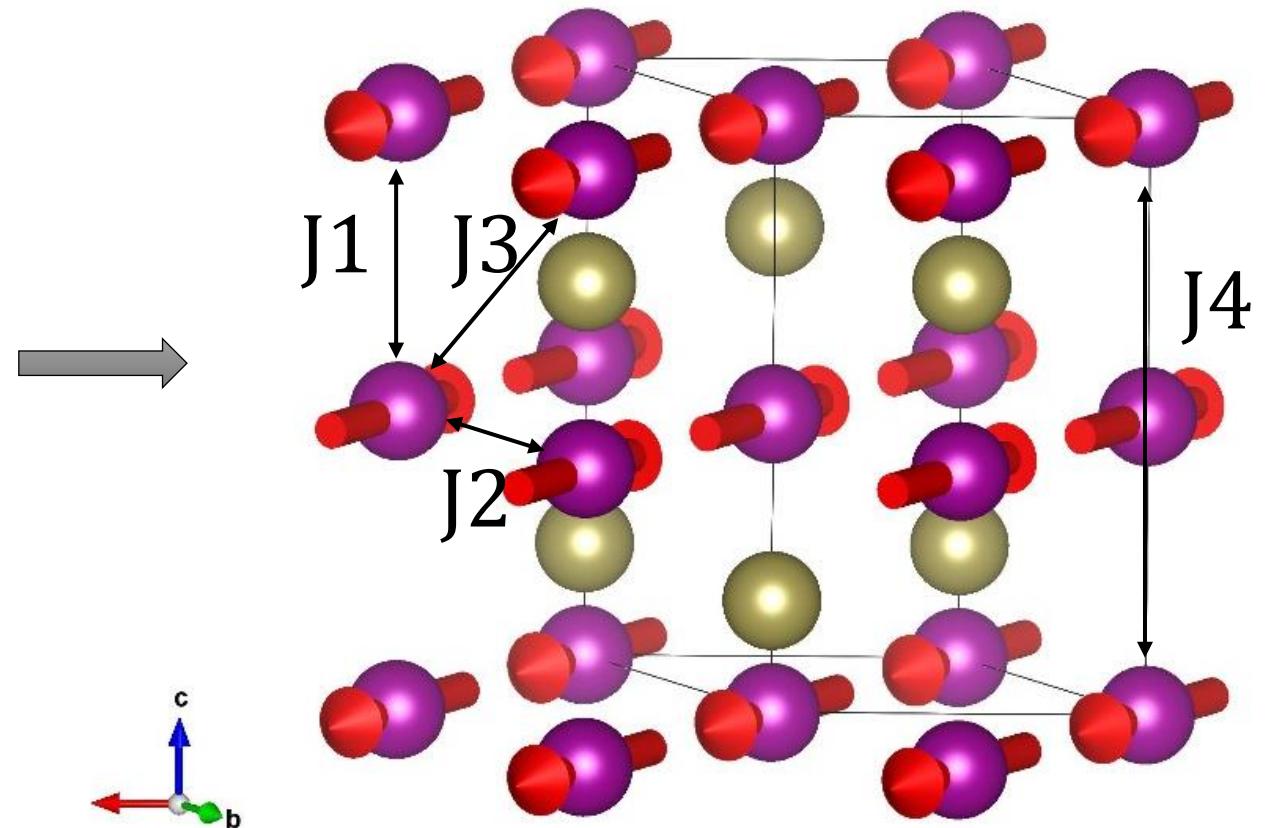


Using mPDF to probe magnetic exchange interactions



Edison Carlisle, Brigham Young University
ADD2026

Acknowledgments

BYU:

Advisor: Benjamin Frandsen,

mPDF analysis: Sabrina Hatt, Raju Baral (now at ORNL)

ORNL beamline scientists: Stuart Calder, Michelle Everett, Jue Liu, and Jorg Neufeld

Funding: US Department of Energy
DE-SC0021134

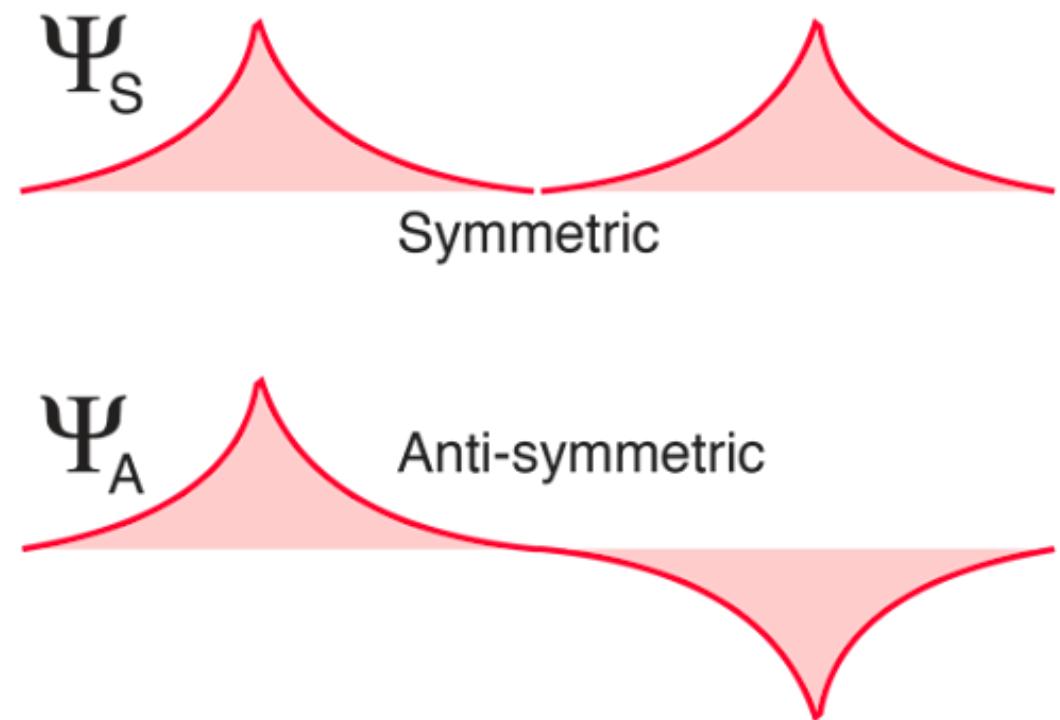
Understanding magnetic properties

- Conventional magnetic diffraction studies focus on:
 - Spin orientation, propagation vectors, ordered moment magnitude, etc
- We can also study interactions between spins
 - Understand magnetic Hamiltonian
 - Directly impacts material properties
- E.g. MnTe: exchange interactions directly influence
 - **Altermagnetism** (influence magnetic order)
 - **Thermoelectric properties** (thermopower influenced by paramagnon drag)
 - **Magnetostructural properties** (magnetism coupled to lattice parameters)

Magnetic Exchange Interaction

Consider a quantum system with two spin $\frac{1}{2}$ electrons bound to two atoms

- **Fermions:** must be in anti-symmetric state
- If system is in Ψ_S , spins must be anti-aligned ($S_1 \cdot S_2 < 0$)
- If system is in Ψ_A , spins must be aligned ($S_1 \cdot S_2 > 0$)



<http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/hmol.html>

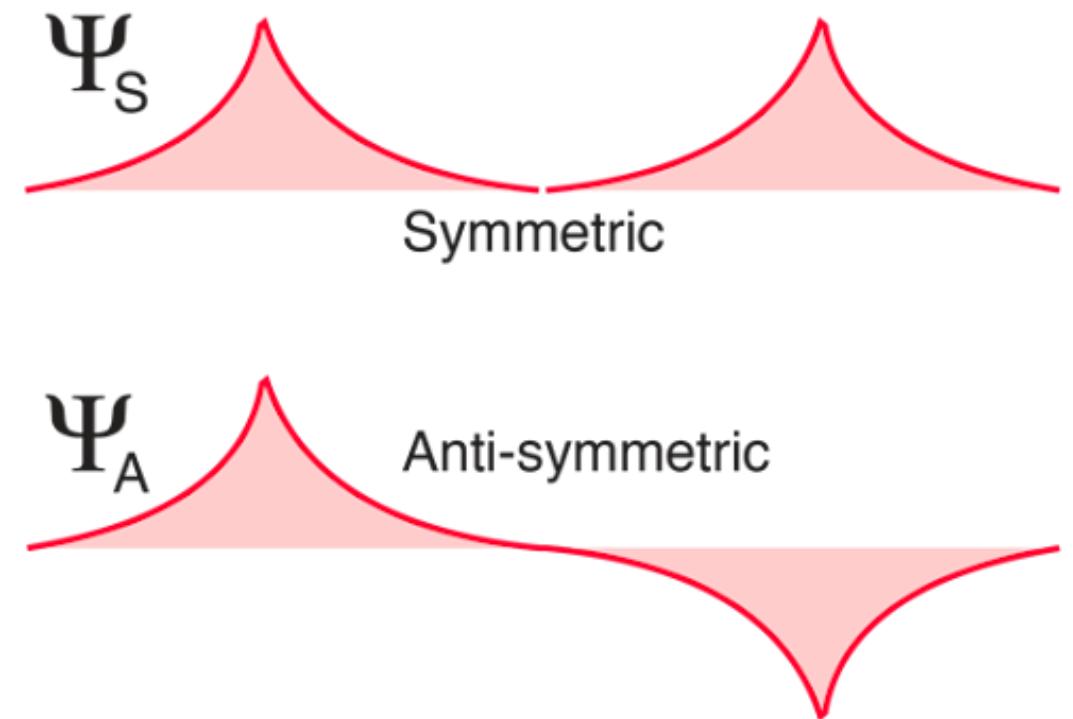
Magnetic Exchange Interaction

2-particle Fermionic wave function and energy:

$$\Psi_{S/A} = \frac{1}{\sqrt{2}} [\psi_a(\mathbf{r}_1)\psi_b(\mathbf{r}_2) \pm \psi_a(\mathbf{r}_2)\psi_b(\mathbf{r}_1)] \chi_{S/A}$$

$$E = E_1 + E_2 + C \pm X$$

- E_i is the energy of particle i ,
- $C = \frac{e^2}{|\mathbf{r}_{12}|}$ is the coulomb energy of the two particles,
- and $X = \int d\mathbf{r}_1 d\mathbf{r}_2 \psi_a(\mathbf{r}_1)\psi_b(\mathbf{r}_2) \frac{e^2}{|\mathbf{r}_{12}|} \psi_a^*(\mathbf{r}_2)\psi_b^*(\mathbf{r}_1)$ is the energy of exchanging the two particles
- + is for symmetric states and – is for antisymmetric states



<http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/hmol.html>

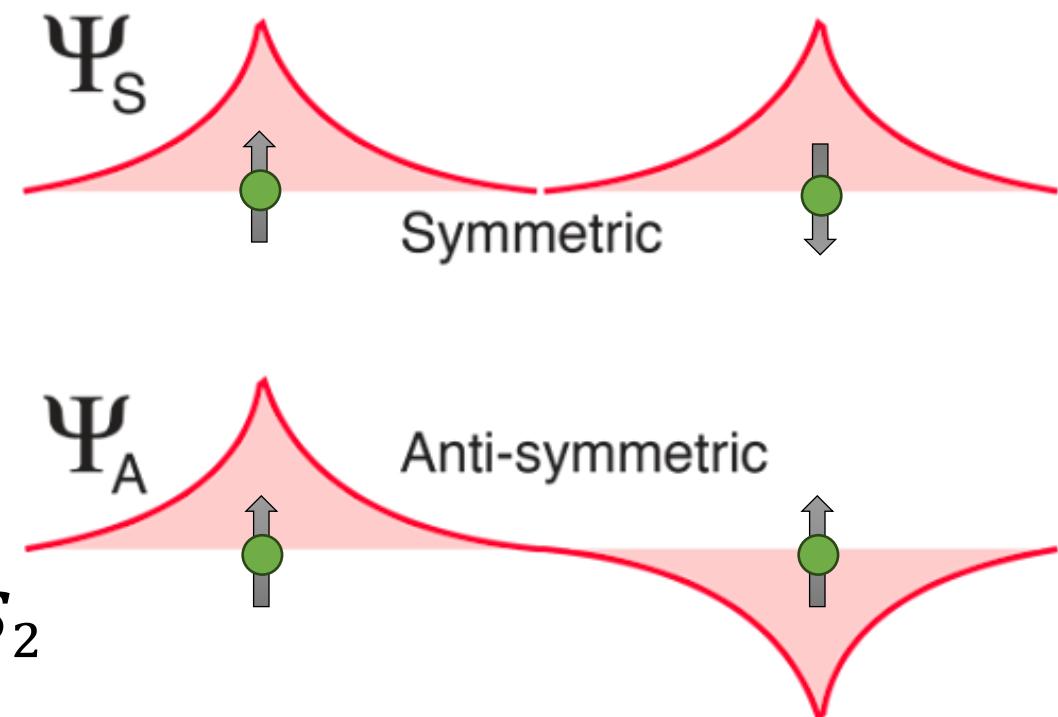
Magnetic Exchange Interaction

Put in terms of spin instead!

- $\Psi_S: \mathbf{S}_1 \cdot \mathbf{S}_2 < 0$
- $\Psi_A: \mathbf{S}_1 \cdot \mathbf{S}_2 > 0$
- $\mathbf{S}_1 \cdot \mathbf{S}_2 = \frac{1}{2}(\mathbf{S}_{tot}^2 - \mathbf{S}_1^2 - \mathbf{S}_2^2)$
 - $= \frac{1}{2} [s(s+1) - \frac{3}{4} - \frac{3}{4}]$
 - $= -\frac{3}{4}$ for $s = 0$ (symmetric)
 - $= \frac{1}{4}$ for $s = 1$ (antisymmetric)

$$E = \frac{1}{4} (E_S + 3E_A) - \underbrace{(E_S - E_A) \mathbf{S}_1 \cdot \mathbf{S}_2}_{J_{12}}$$

J_{12} : Exchange
interaction strength!

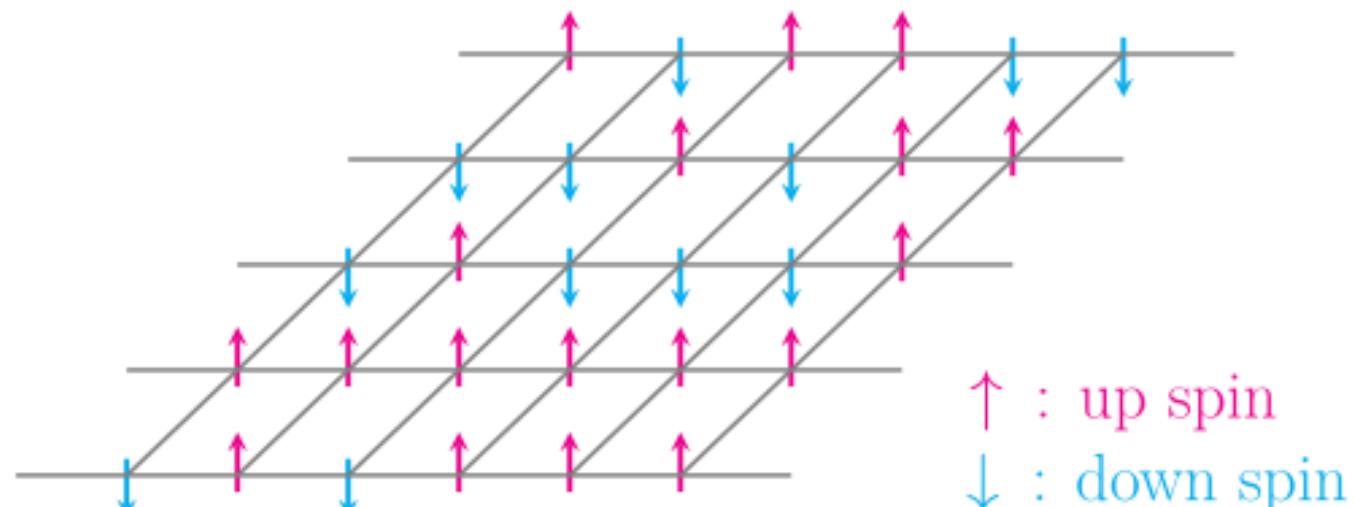


<http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/hmol.html>

Magnetic Exchange Interaction

Ignore parts independent of spin
("constant" energy)

- $E = -J_{12} \mathbf{S}_1 \cdot \mathbf{S}_2$
- $J_{12} > 0$: **ferromagnetism**
favorable
- $J_{12} < 0$: **antiferromagnetism**
favorable
- Expand to solid state systems:
 - $E = -\frac{1}{2} \sum_{ij} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$ (Heisenberg)

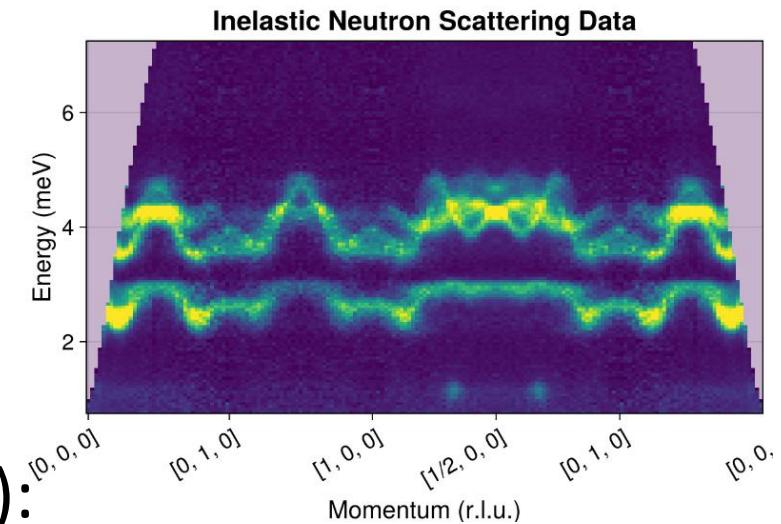


Ta2o, CC BY 4.0 <https://creativecommons.org/licenses/by/4.0>, via Wikimedia Commons

Magnetic Exchange Interactions

How do we find exchange interaction values?

- **Ordered state** (common approach):
 - Inelastic neutron scattering of single-crystal data
 - Fit linear spin-wave model to observed magnon modes
 - Requires ordered state (no spin glasses or spin liquids)
- **Disordered state** (newer approach, e.g. Spinteract*):
 - Diffuse magnetic scattering
 - Models scattering with mean field theory
 - Requires paramagnetic state (above magnetic ordering temp)



Bai et al., Nature Physics, 17 (4), 467–472 (2021)

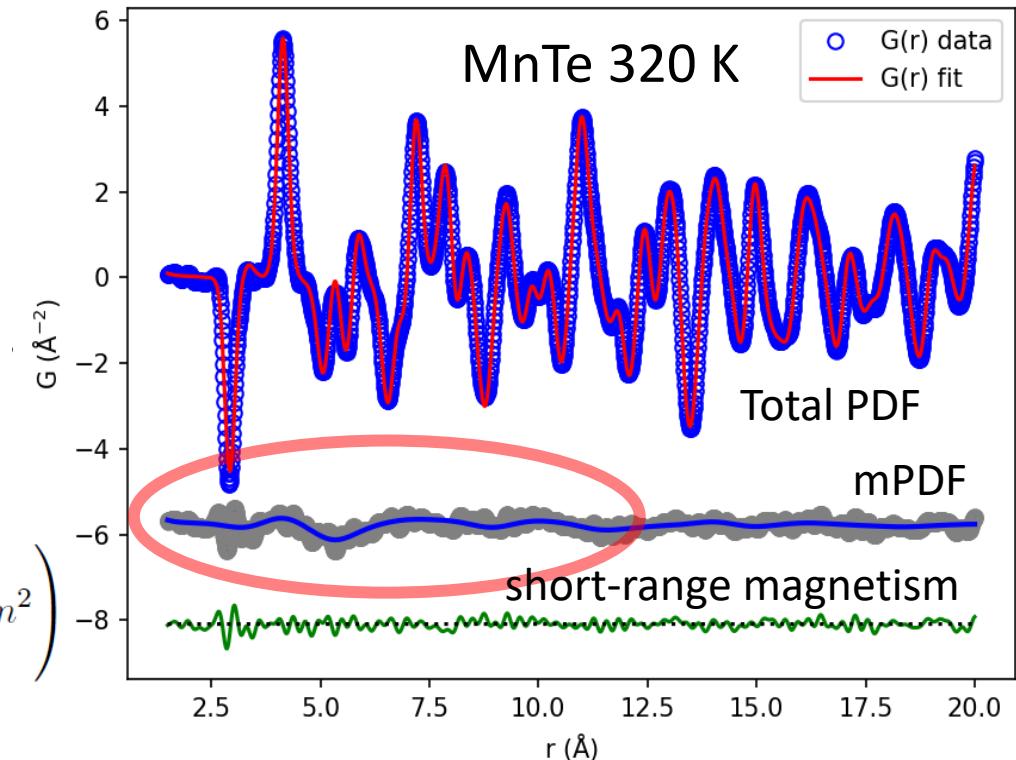
*Joseph A M Paddison 2023 *J. Phys.: Condens. Matter* **35** 495802

Exchange Interactions + mPDF

Finding exchange interactions from diffuse scattering?

- Requires short-range magnetic order!
- **mPDF**: a natural way to study short-range magnetism

$$G_{\text{mag}}(r) = \frac{3}{2\langle g\sqrt{J(J+1)} \rangle^2} \left(\frac{1}{N_s} \sum_{i \neq j} g_i g_j \left[\frac{A_{ij}}{r} \delta(r - r_{ij}) + B_{ij} \frac{r}{r_{ij}^3} \Theta(r_{ij} - r) \right] - 4\pi r \rho_0 \frac{2}{3} m^2 \right)$$



$$T_N = 307 \text{ K}$$

Road map

- Math ahead!
- Fun examples and results coming soon

How to find exchange interactions from mPDF?

Start with Hamiltonian

$$-\frac{1}{2} \sum_{ij} \sum_{\mathbf{R}, \mathbf{R}'} J_{ij}(\mathbf{R} - \mathbf{R}') \mathbf{S}_i(\mathbf{R}) \cdot \mathbf{S}_j(\mathbf{R}') - \sum_{i, \mathbf{R}} \mathbf{H}_i(\mathbf{R}) \cdot \mathbf{S}_i(\mathbf{R})$$

Same as before, but now with dependence on \mathbf{R} (unit cell position) and i, j index spins w/in UC

Site-dependent magnetic field, will set to 0 later

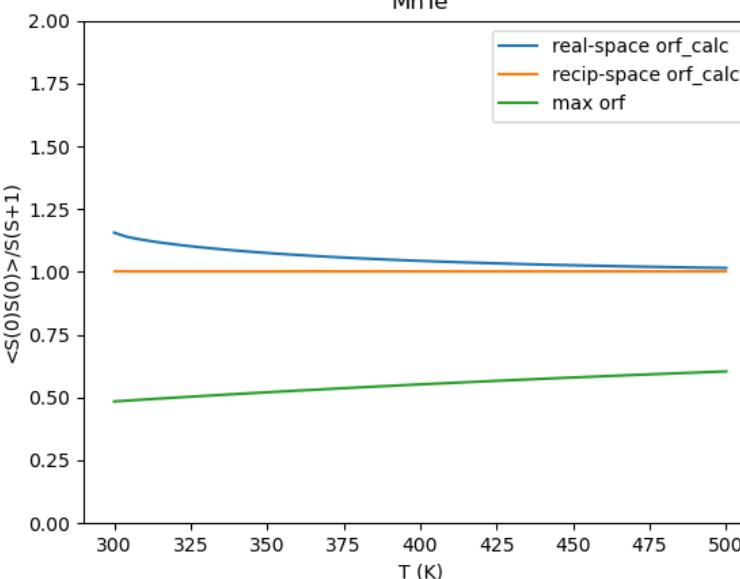
Define mean field on site \mathbf{R}, i

$$\mathbf{H}_{mf,i}(\mathbf{R}) = \mathbf{H}_i(\mathbf{R}) - \underbrace{\lambda \langle \mathbf{S}_i(\mathbf{R}) \rangle}_{\text{Onsager Reaction Field}} + \frac{1}{2} \sum_{j, \mathbf{R}'} J_{ij}(\mathbf{R} - \mathbf{R}') \langle \mathbf{S}_j(\mathbf{R}') \rangle$$

How to find exchange interactions from mPDF?

Onsager Reaction Field (ORF):

- Removes influence of spin on mean field the spin feels
- $\lambda = \sum_{j,R'} J_{ij}(\mathbf{R} - \mathbf{R}') \langle \mathbf{S}_i(\mathbf{R}) \cdot \mathbf{S}_j(\mathbf{R}') \rangle / |\mathbf{S}|^2$
- Usually found through reciprocal space sum rule
 - $\sum_{\mathbf{q}} \langle \mathbf{S}(\mathbf{q}) \cdot \mathbf{S}(-\mathbf{q}) \rangle(\lambda) = N_{\mathbf{q}} S(S+1)$
- However, ORF is defined by real-space correlations
 - Can instead find $\langle \mathbf{S}_i(\mathbf{R}) \cdot \mathbf{S}_j(\mathbf{R}') \rangle(\lambda)$ and solve eq. above as transcendental eq.



How to find exchange interactions from mPDF?

Next, find \mathbf{q} -dependent magnetic susceptibility

- Remember, $\chi_{ij}^{\alpha\beta}(\mathbf{q}) = \langle S_i^\alpha(\mathbf{q}) \rangle / H_j^\beta(\mathbf{q}) = \frac{1}{T} \langle S_i^\alpha(\mathbf{q}) S_j^\beta(-\mathbf{q}) \rangle$
 - Gives us a correlation function!
- For paramagnetic spin in magnetic field $\langle \mathbf{S}_i(\mathbf{R}) \rangle = \frac{|\mathbf{S}|^2}{3T} \mathbf{H}_i(\mathbf{R})$

$\underbrace{\phantom{\frac{|\mathbf{S}|^2}{3T}}}_{\text{Curie Susceptibility } \chi_0}$
- Replace magnetic field with mean field used earlier:
 - $\langle \mathbf{S}_i(\mathbf{R}) \rangle = \chi_0 [\mathbf{H}_i(\mathbf{R}) - \lambda \langle \mathbf{S}_i(\mathbf{R}) \rangle + \frac{1}{2} \sum_{j, \mathbf{R}'} J_{ij}(\mathbf{R} - \mathbf{R}') \langle \mathbf{S}_j(\mathbf{R}') \rangle]$

How to find exchange interactions from mPDF?

Simplify the problem! Fourier transform ($R \rightarrow \mathbf{q}$) and diagonalize ($\alpha, \beta, i, j \rightarrow \mu$) then rearrange to solve for $\langle S_\mu(\mathbf{q}) \rangle$

$$\langle S_\mu(\mathbf{q}) \rangle = \frac{\chi_0}{1 - \chi_0(J_\mu(\mathbf{q}) - \lambda)} H_\mu(\mathbf{q})$$

or equivalently,

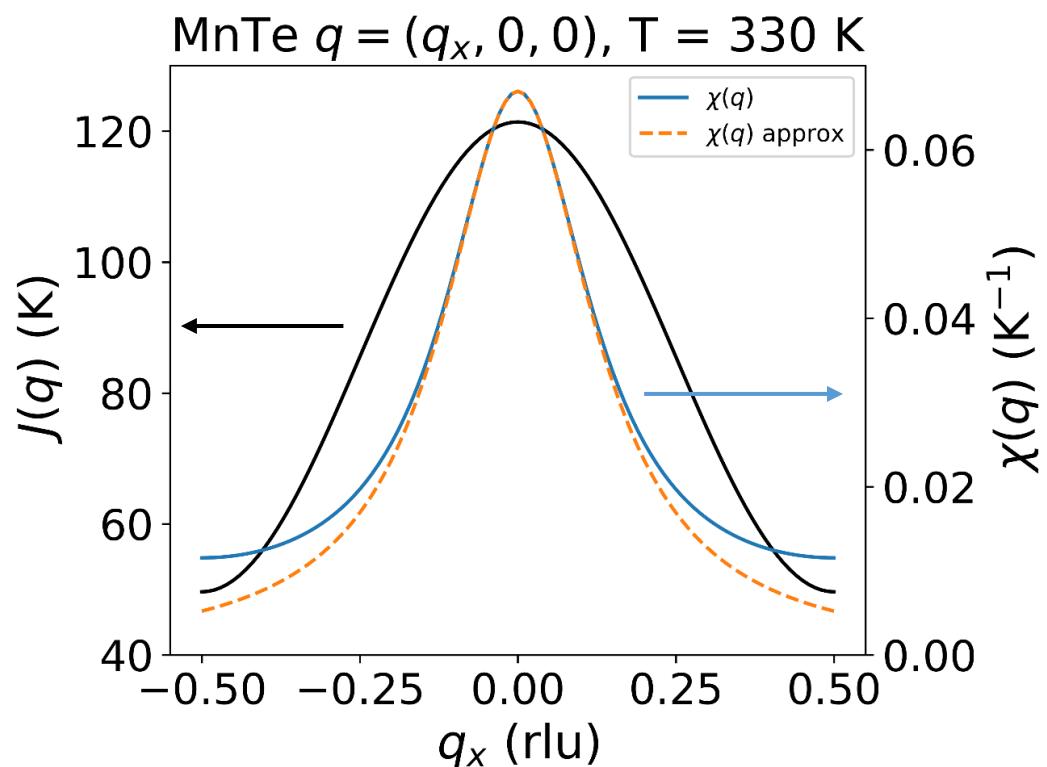
$$\chi_\mu(\mathbf{q}) = \frac{\chi_0}{1 - \chi_0(J_\mu(\mathbf{q}) - \lambda)}$$

So, our correlation function becomes

$$\langle S_\mu(\mathbf{q}) S_\mu(-\mathbf{q}) \rangle = T \frac{\chi_0}{1 - \chi_0(J_\mu(\mathbf{q}) - \lambda)}$$

This is how Spinteract connects exchange interactions and diffuse scattering

How to find exchange interactions from mPDF?



Time to transform back to real space!
Doing a general transform is hard, so
let's Taylor expand $J_\mu(\mathbf{q})$.

- If we expand around a peak in $J_\mu(\mathbf{q})$ (call its position \mathbf{q}_0), then $\chi_\mu(\mathbf{q})$ becomes Lorentzian-like
- $$J_\mu(\mathbf{q}) \approx J_\mu(\mathbf{q}_0) + \frac{1}{2} \sum_{\alpha\beta} \partial_{q_\alpha} \partial_{q_\beta} J(\mathbf{q}_0) (q_\alpha - q_{0,\alpha})(q_\beta - q_{0,\beta})$$

How to find exchange interactions from mPDF?

What do our correlation functions look like in real space?

- 1D: $\langle S_\mu(0)S_\mu(r) \rangle \approx \frac{\pi\sqrt{2}T}{L_{BZ}} \sum_{q_0} \frac{e^{-iq_0 r}}{\sqrt{-\partial q^2 J_\mu(q_0)}} \frac{\exp(-r\sqrt{D})}{\sqrt{\frac{1}{\chi_0} + \lambda - J_\mu(q_0)}}$
- 2D: $\langle S_\mu(0)S_\mu(\mathbf{r}) \rangle \approx \frac{2\sqrt{2\pi}T}{A_{BZ}} \sum_{\mathbf{q}_0} \frac{e^{-i\mathbf{q}_0 \cdot \mathbf{r}}}{\sqrt{\det C}} K_0(\sqrt{\mathbf{r}^T D \mathbf{r}})$
- 3D: $\langle S_\mu(0)S_\mu(\mathbf{r}) \rangle \approx \frac{(2\pi)^2 T}{V_{BZ}} \sum_{\mathbf{q}_0} \frac{e^{-i\mathbf{q}_0 \cdot \mathbf{r}}}{\sqrt{-\det C}} \frac{\exp(-\sqrt{\mathbf{r}^T D \mathbf{r}})}{\sqrt{\mathbf{r}^T C^{-1} \mathbf{r}}}$

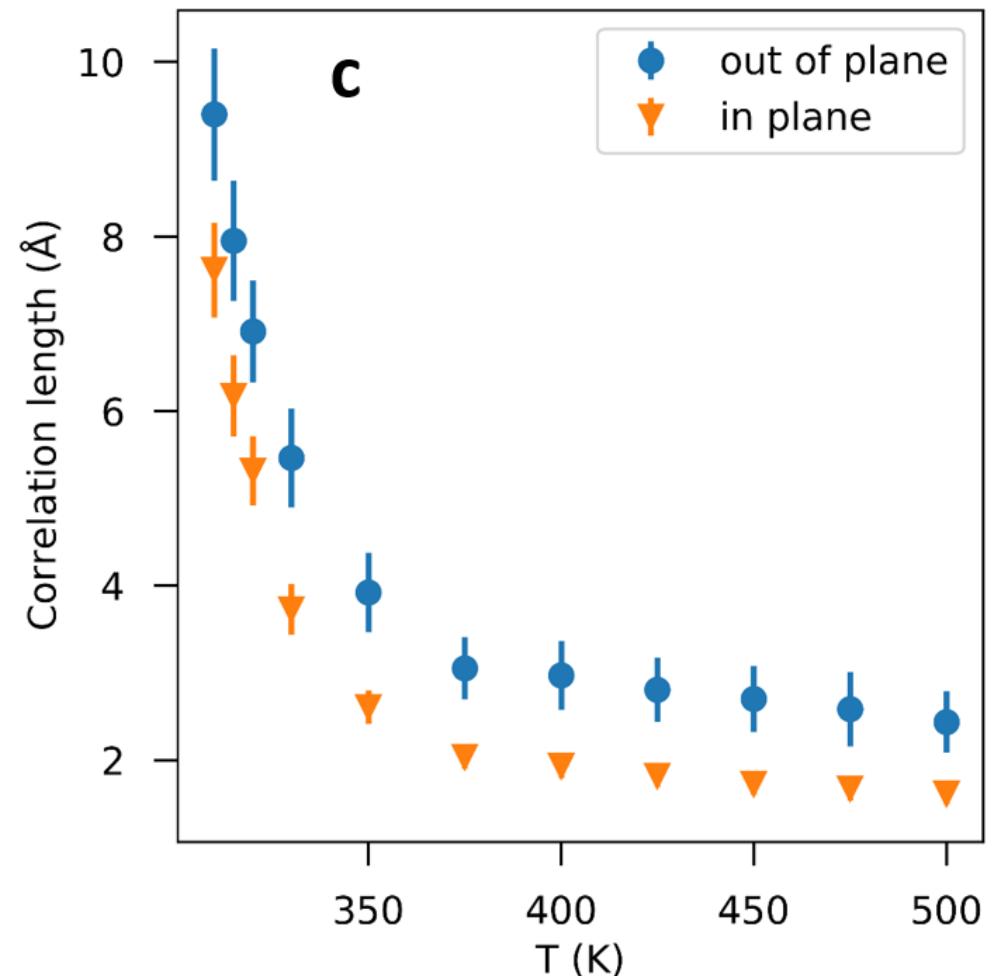
where $C_{\alpha\beta} = \partial_{q_\alpha} \partial_{q_\beta} J(\mathbf{q}_0)$ and $[D^{-1}]_{\alpha\beta} = \frac{-\frac{1}{2} \partial_{q_\alpha} \partial_{q_\beta} J_\mu(q_0)}{1/\chi_0 + \lambda - J_\mu(q_0)}$

D is called the
damping matrix

How to find exchange interactions from mPDF?

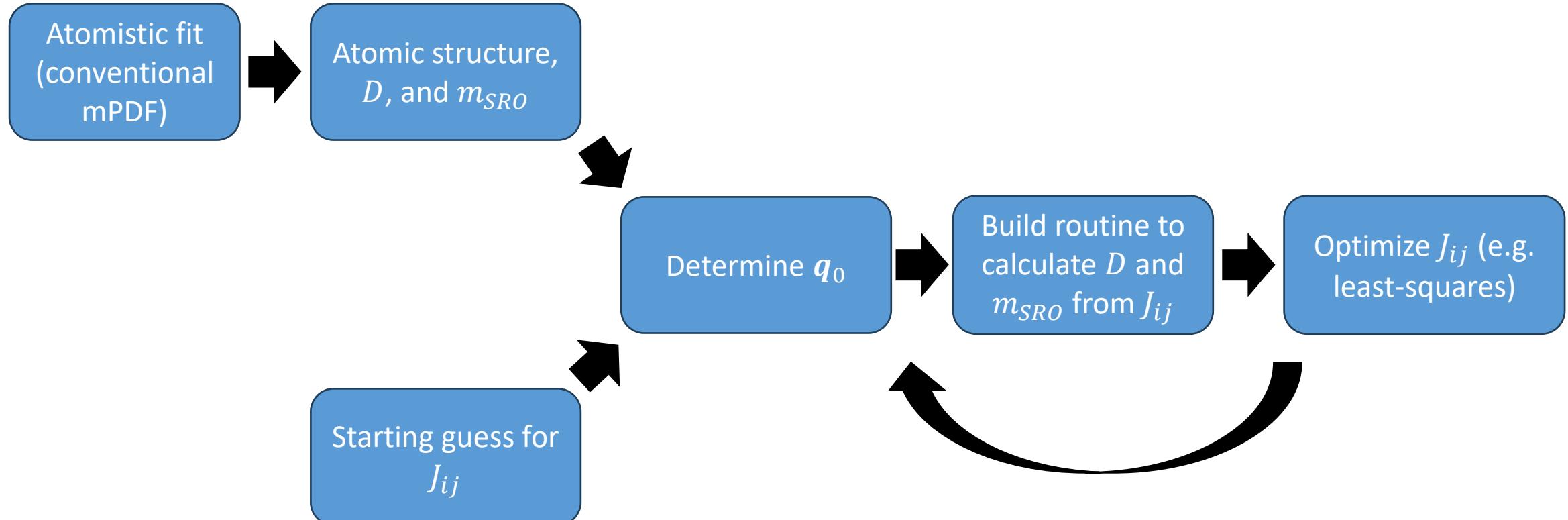
How do we relate these correlation functions to mPDF?

- \mathbf{q}_0 is the magnetic ordering vector!
- Use eigenvectors $U_{i\mu}(\mathbf{q}_0)$ to determine relative spin directions w/in UC
- Compare $m_{SRO} = g\sqrt{|\langle \mathbf{S}(0) \cdot \mathbf{S}(\mathbf{r}_{NN}) \rangle|}$ from mPDF and magnetic interactions
- Compare damping matrices from mPDF and magnetic interactions
 - Anisotropic correlation lengths!



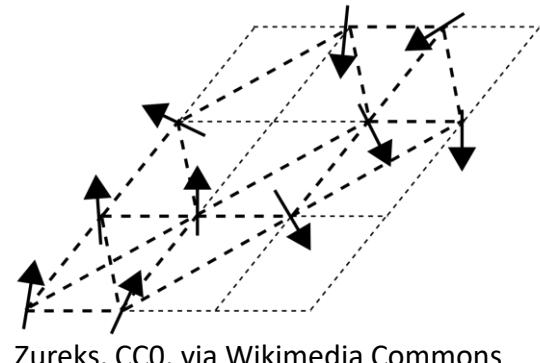
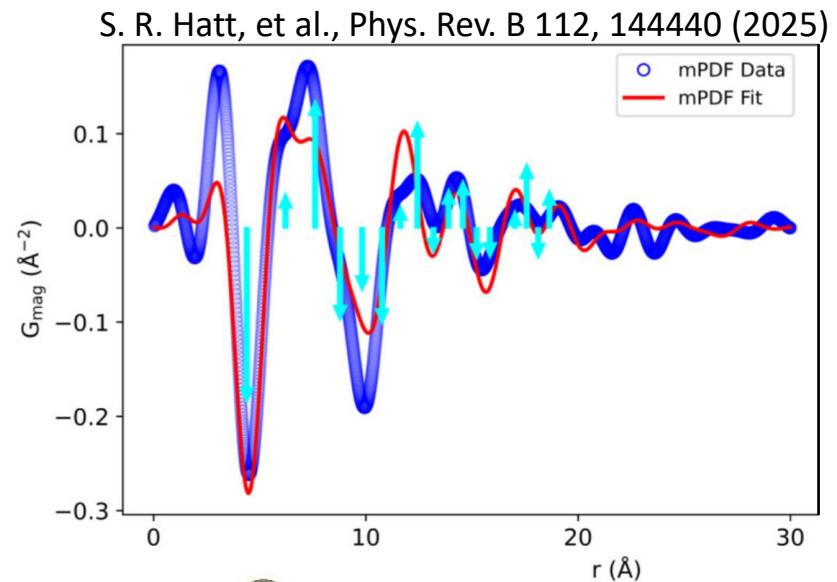
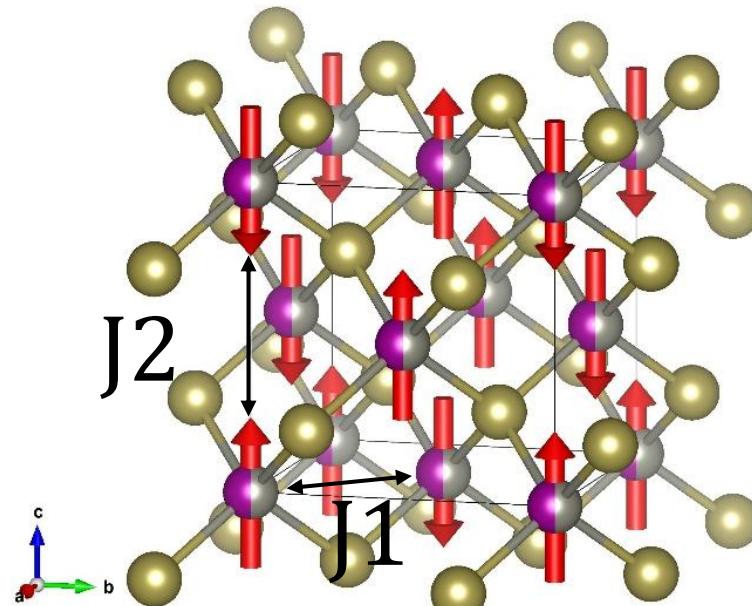
Baral et al, *Matter* **5**, 1853 – 1864 (2022)

How to find exchange interactions from mPDF?

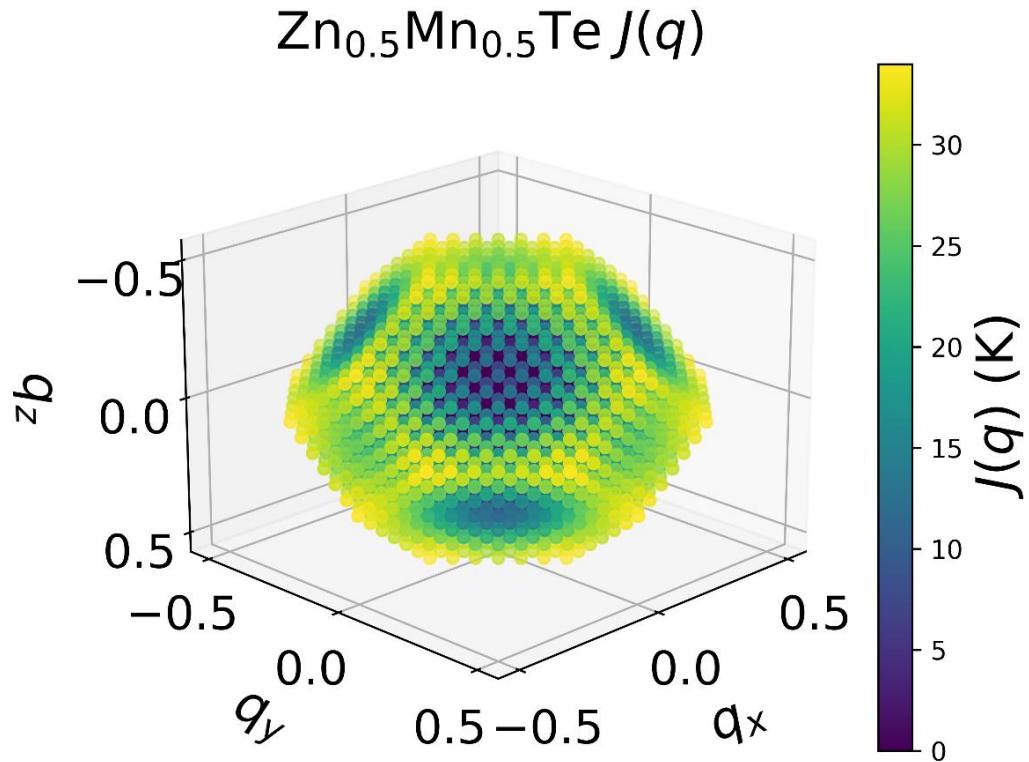


Example 1: $\text{Zn}_{0.5}\text{Mn}_{0.5}\text{Te}$

- Cluster spin glass
 - No long-range order, $T_F \sim 22 - 25 \text{ K}$
 - mPDF fits find local type III AFM order
- $S = 5/2$ for Mn2+
 - $|S|^2 = S(S + 1) = 35/4$
 - $|S|^2 = 35/8$ for $\text{Zn}_{0.5}\text{Mn}_{0.5}\text{Te}$
- $J_1 = -9.5 \text{ K}$, $J_2 = \frac{1}{5}J_1 = -1.9 \text{ K}$
 - J. Furdyna and N. Samarth, J. Appl. Phys. 61, 3526 (1987)



Example 1: $\text{Zn}_{0.5}\text{Mn}_{0.5}\text{Te}$

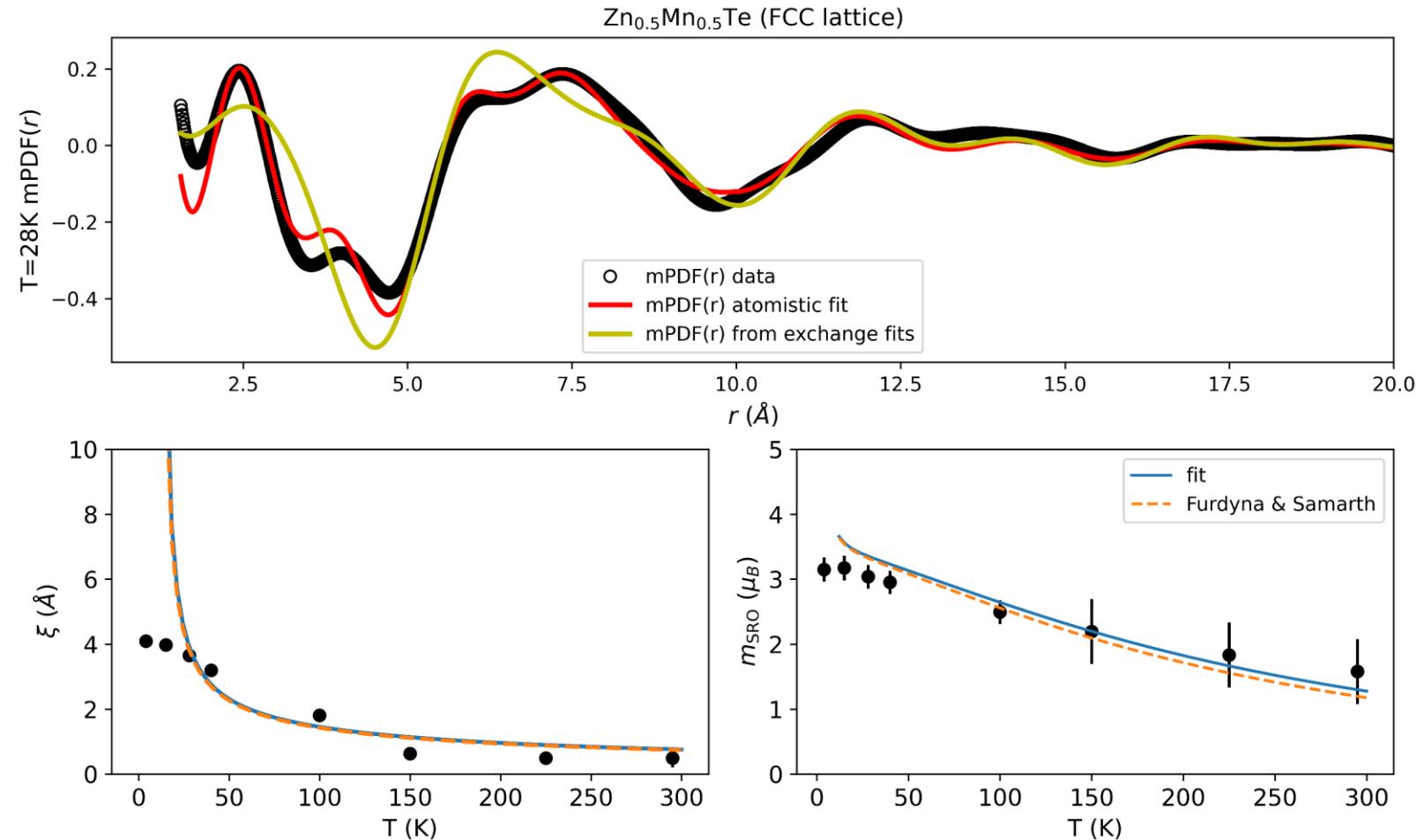


q_0 found to be points equivalent to $(1, 1/2, 0)$ in units of $(2\pi/a)$

- Located on BZ vertices
- Recreates type III AFM order
- 24 vertices, but each point is only fractionally in BZ
 - Only 6 points needed to describe magnetic structure

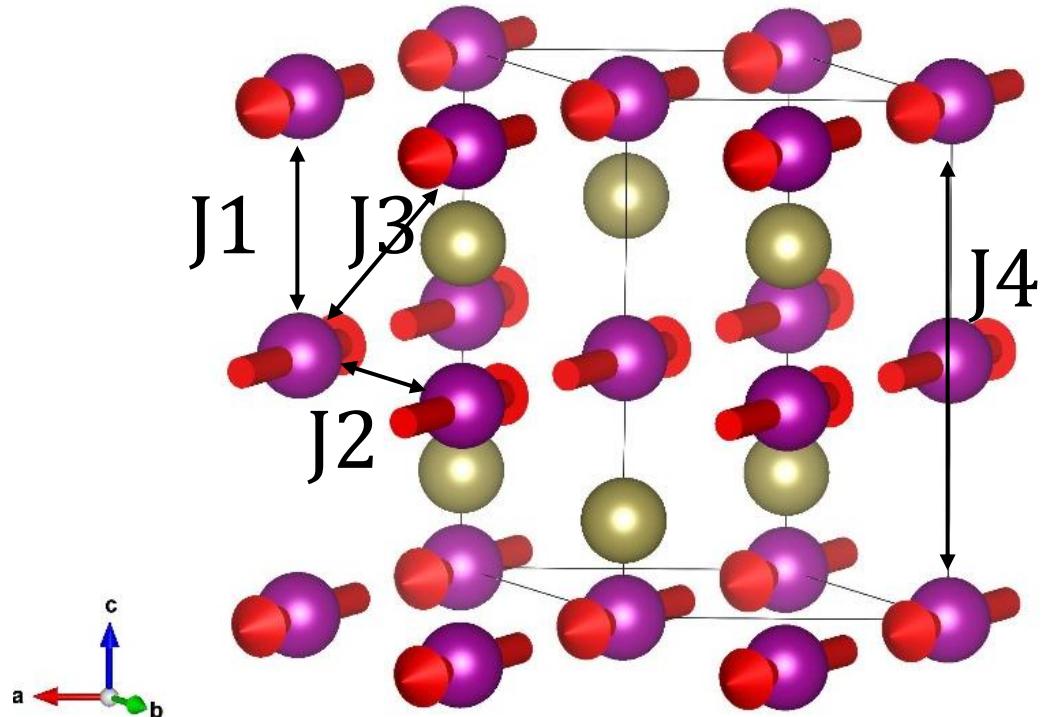
Example 1: $\text{Zn}_{0.5}\text{Mn}_{0.5}\text{Te}$

	J1	J2
Furdyna & Samarth	-9.5 K	-1.9 K
Our fit	-9.8 ± 0.2 K	-1.9 ± 0.1 K



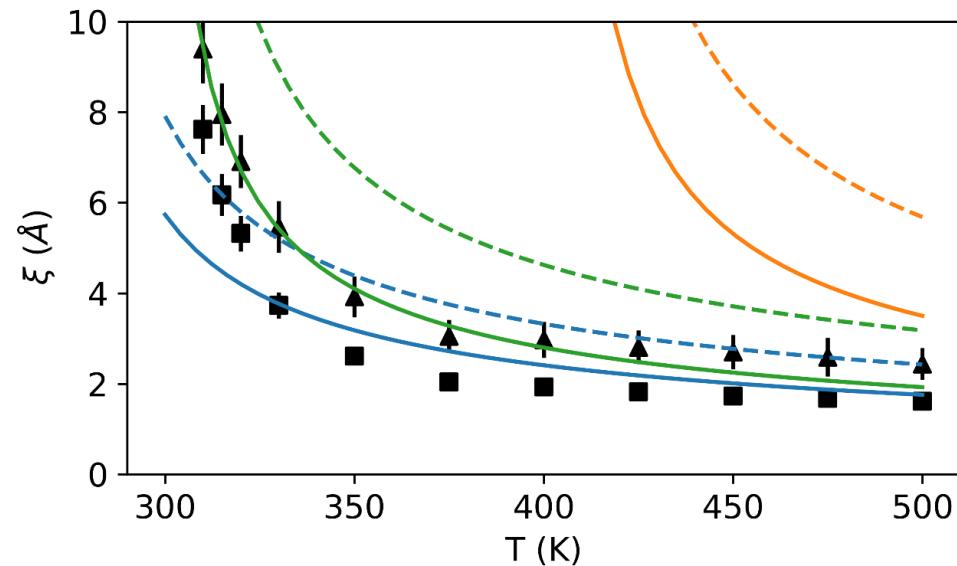
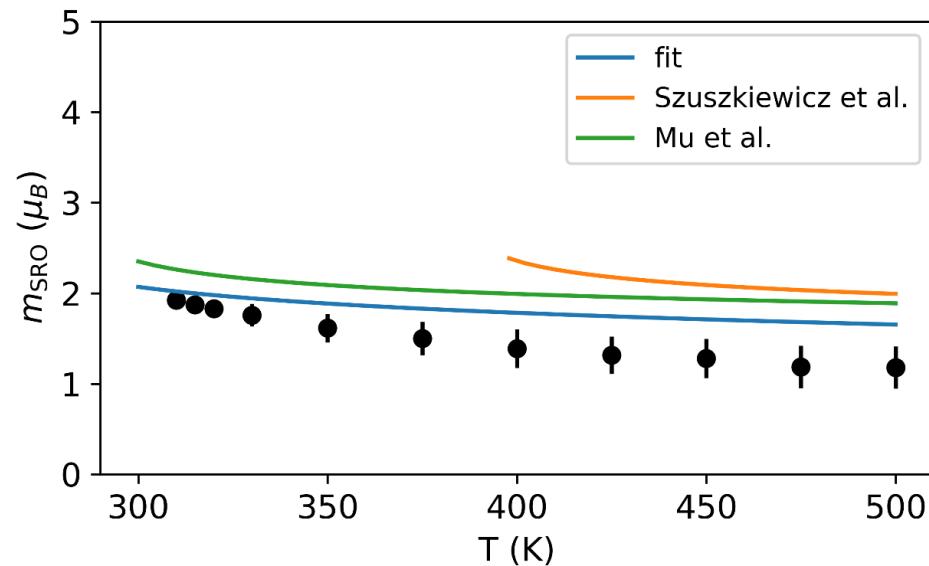
Example 2: MnTe

- Altermagnet
 - $T_N = 307$ K
 - Magnetic moments lie within plane
 - FM order in plane, AFM order out of plane
- mPDF analysis done in Baral et al,
Matter **5**, 1853 – 1864 (2022)
- Exchange interactions are anisotropic
 - J_1 is much stronger than J_2
 - Correlations are stronger out-of-plane than in-plane



Example 2: MnTe

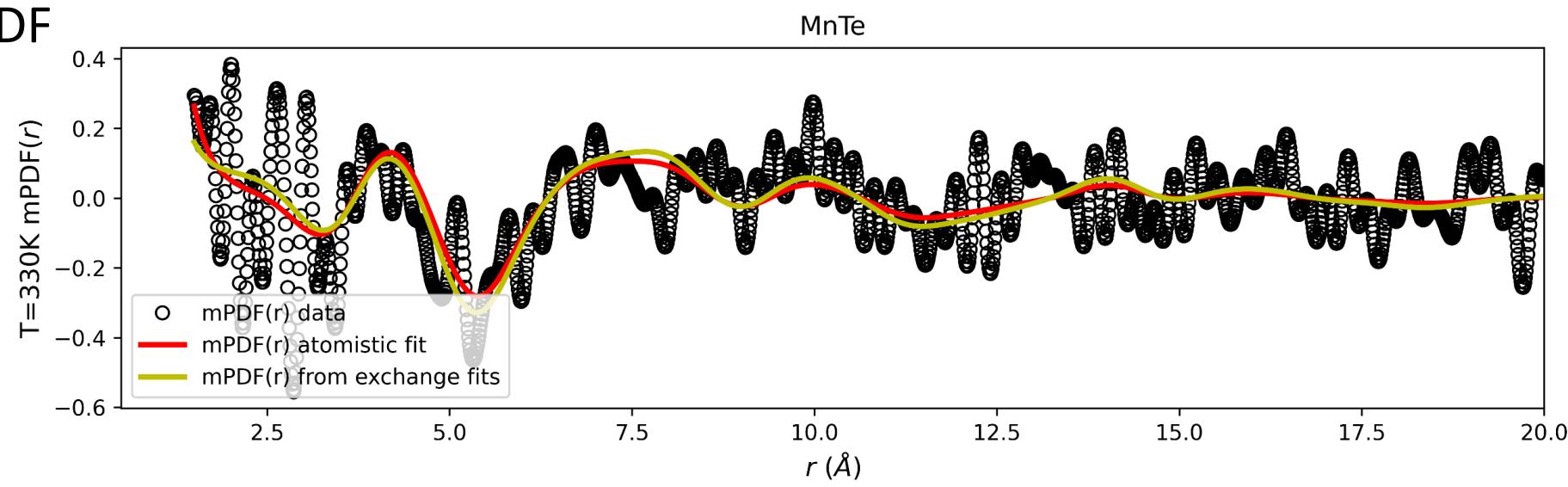
	MnTe			
	J1	J2	J3	J4
Mu et al.	-35.6 K	-0.32 K	-4.64 K	-1.86 K
Szuszkiewicz et al.	-43.0 K	1.34 K	-5.74 K	-
Our Fit	-29.6 ± 1.6 K	6.0 ± 1.4 K	-1.2 ± 0.8 K	-



Conclusions and Outlook

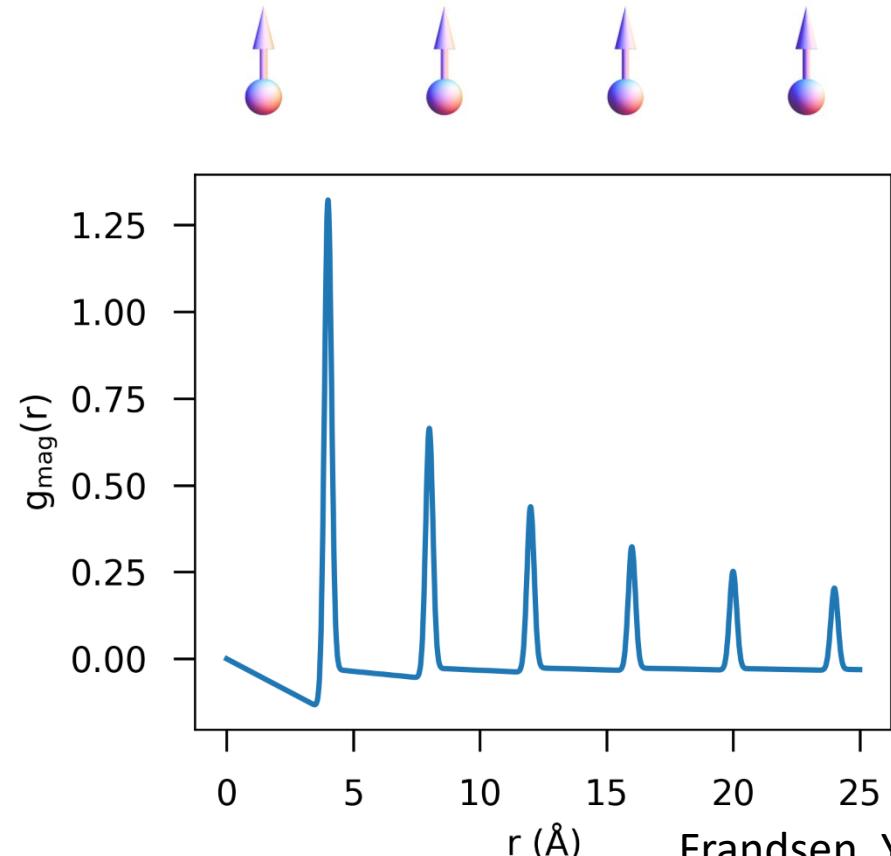
- mPDF can tell us more than just the structure!
- Local correlations contain information about local interactions
- Will test method on other materials e.g. 2D frustrated magnets
- More functionality to be developed
 - Anisotropy terms
 - exchange matrices (J_{ij}^{ab})
 - Fit directly to mPDF

Thank you!

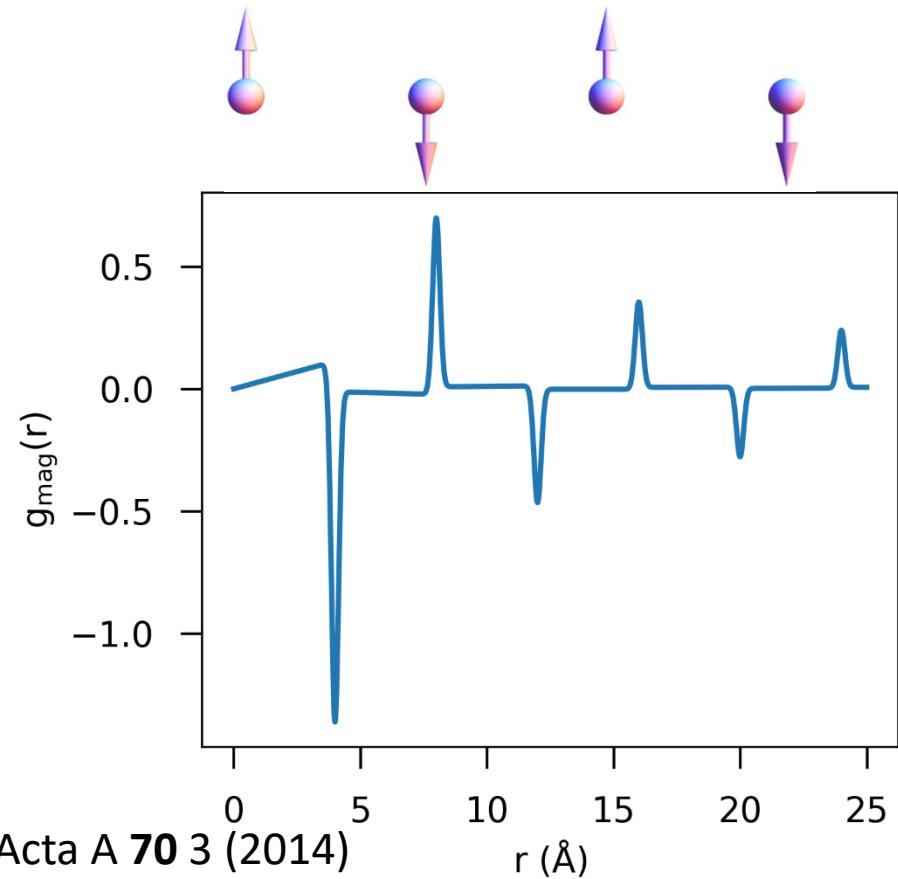


Example: One-dimensional chain

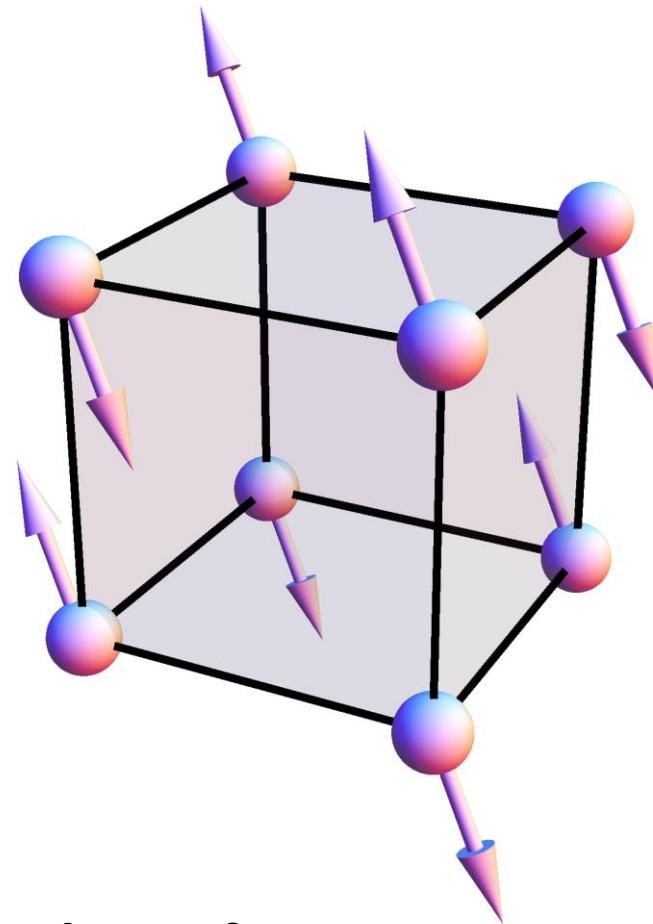
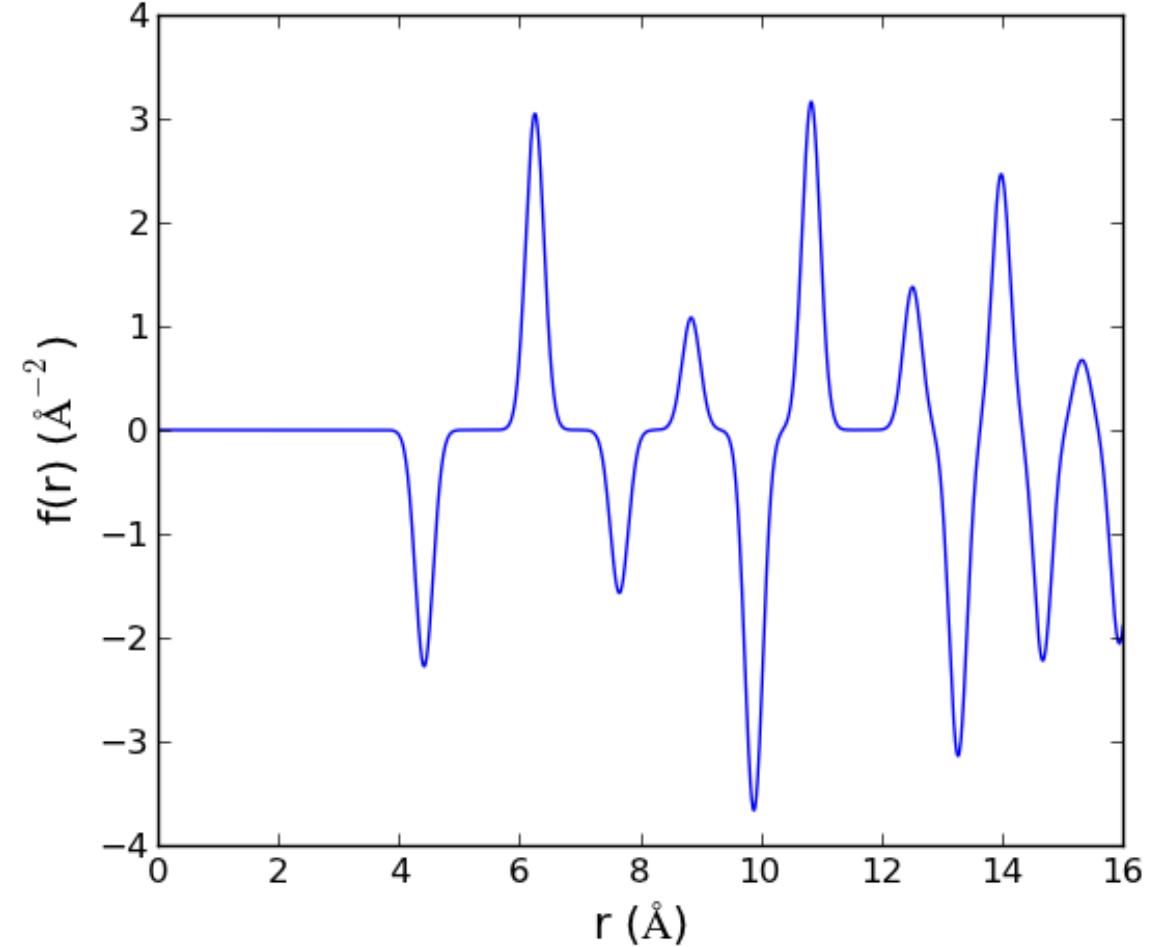
$$G_{\text{mag}}(r) = \frac{3}{2\langle g\sqrt{J(J+1)} \rangle^2} \left(\frac{1}{N_s} \sum_{i \neq j} g_i g_j \left[\frac{A_{ij}}{r} \delta(r - r_{ij}) + B_{ij} \frac{r}{r_{ij}^3} \Theta(r_{ij} - r) \right] - 4\pi r \rho_0 \frac{2}{3} m^2 \right)$$



Frandsen, Yang, & Billinge, Acta A 70 3 (2014)



Example: Simple cubic antiferromagnet



Further references

- *Acta A* **70** 3 (2014)
- *Acta A* **71** 325 (2015)

- *PRL* **116** 197204 (2016)
- *PRB* **94** 094102 (2016)

