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Diffraction section includes 2 groups with 2 instruments
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NOMAD and POWGEN
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The Reverse Monte Carlo algorithm

Generate initial configuration |
- Move a randomly selected atom a
random distance

- Compute new experimental functions

and compare with data

- Only reject change if comparison is
worse and with some probability
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RMC In action: Cé60
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RMC In action: Cé60

Cliffe M J et al, PRL 104 (2010) 1255013
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RMC In action
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RMC In action
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8 RMC programs

@& rmcprofile.pages.ornl.gov U ¢ » 0O @ :

&m& ASEARCH  ABOUT POSTS™ PACKAGEY COMMUNITY~  OTHERS ¥
I f. | |
RMCProfile rmcprotile.ornl.gov
Reverse Monte Carlo for crystalline and disordered materials
Welcome to the RMCProfile website hosted at Oak Ridge National Laboratory (ORNL) in US. Here you can download the ®
RMCProfile software, view documentation and examples, join community for discussion and learn about updates of the Ext e r n a I I I n ks
package, etc.
, < c h % » 0@ :

Distance window

Bendungle ﬁgl& UT POSTSY PACKAGE™ COMMUNITY~  OTHERS ™

Polyhedral, etc.

M o nte c a r I o ssion. Discussions are hosted as
ssion, one does need a GitHub
X-ray RMC
Neutron 777 > PrOﬁle
L N DISCUS
- L 'l:‘ logy
X-ray !
Il’wulrun RMC++
This version of RMC was built from the original RMCA code of cGreevy & Pusztai to determine the local structure of H RMC
crystalline materials while still being capable of analyzing disordered systems. The current version of RMCProfile
results from a collaboration between scientists at ISIS facility (UK), Spallation Neutron Source (SNS at Oak Ridge f ]1
https:/rmeprofile.pages.oml.gov/# | Natinnal T.ahoratorv. 118\, Universitv of Cambridoe (1K), Universitv of Oxford (1JK). Oueen Marv Universitv of Tondon u mlc

Facilities

RMC for EXAFS US - ORNL - NOMAD

US - ORNL - POWGEN

US - APS - 11-ID-B
E PS R US - BNL - 28-ID-1

UK - ISIS - GEM

UK - ISIS - Polaris

RMC at ISIS facility

Japan - J-PARC - NOVA
Japan - SPRINGS - BL14B1

RMCProfile website - legacy fapan- SERINGE- 512K
Wikipedia for RMC

Yuanpeng
/hang
(ORNL)
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Big box vs small box models
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PDFqui
(r-space Reitveld) (Reverse Monte Carlo)
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Big box models
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Disordered materials

Simple Disordered

crystals crystals Amorphisation Amorphous
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The RMC Method

Reverse Monte Carlo Simulation:
a new technique for the determination of disordered

structures
McGreevy R L and Pusztai L, Molecular Simulation 1(1988) 359

We have developed a new technique, based on the standard Monte
Carlo simulation method with Markov chain sampling, where a set
of three dimensional particle configurations are generated that

are consistent with the experimentally measured structure
factor, A(Q), and radial distribution function, g(r), of a
ligquid or other disordered system. Consistency is determined by
a standard X“ test using the experimental errors. No input

potential 1is required. We present initial results for 1liquid
argon. Since the technique can work directly from the structure
factor it promises to be extremely powerful for modelling the
structures of glasses or amorphous materials. It also has many
other advantages in multicomponent systems and as a tool for
experimental data analysis.

Key words: Monte Carlo, structure factor, radial distribution
function, liquid, glass.

PACS numbers: 02.50, 61.25, 61.40.
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The Reverse Monte Carlo algorithm
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RMC 2
XRMC = Z X

_ 5. |
Xﬁ(Q) - ;[ ) — FbOX(QJ.)] /6pq(Q;) Total scattering
2 _ >
o - 2j:[Gca'c(rj)_Gexm(rj)] 66r)(1}) PDF

/ ? :
Xz = Z[ calc(t') - Iexpt(t )] /Gf(i)(tj) Bragg profile

profile

Zw f calc _ req] Constraints/restraints
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” Single Crystal Diffuse
PDF - Bragg :, . 7 -
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PRL 96, 047209 (2006) PHYSICAL REVIEW LETTERS 3 FEBRUARY 2006

Magnetic Structure of MnO at 10 K from Total Neutron Scattering Data

Andrew L. Goodwin,'! Matthew G. Tucker,! Martin T. Dove,"* and David A. Keen”"

'Department of Earth Sciences, Cambridge University, Downing Street, Cambridge CB2 3EQ, United Kingdom
*Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom

SIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 00X, United Kingdom
(Received 24 October 2005; published 2 February 2006)

Total neutron scattering data from a powdered sample of MnO collected at 10 K have been analyzed
using the reverse Monte Carlo method to refine the nuclear and magnetic structure. The results give the
first unambiguous assignment of the average magnetic structure. The magnetic moments are aligned
ferromagnetically within (111) sheets with the magnetization vectors of alternate sheets along axes
parallel and antiparallel to the {112} directions, albeit with a small modulated out-of-plane component.
Small displacements of Mn and O (modulated with the same periodicity) accompany the magnetic

ordering and both atomic and magnetic structures may be described in the monoclinic space group C2.

Polyhedral

DOI: 10.1103/PhysRevLett.96.047209 PACS numbers: 75.25.4z, 02.70.Uu, 61.12.Ex reSYtraln tS
é 0.20+
¢ ' “0.104

000 —=Z———— M G Tucker et al, J. Phys.: Condens.
- 'F\)"O"tfrﬁ‘l‘;'f‘sr T Bowvaee  Matter 19, 335218 (2007).
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RMCProfile refinement ..
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RMCProfile refinement ..
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RMCProfile refinement
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RMCProfile refinement ..
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Collapsed to unit cell

box models
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RMCProfile/

 Multiphase refinement

e calculation of all dataset types can be done for multiple phases*

e RMCProfile7 can fit

* real space dataset (X-Ray and neutron) can be calculated as a back Fourier
Transform of reciprocal space dataset
e full GSAS-Il compatibility (easy Bragg data extraction)

e Variety of additional constraints

 molecular potentials (distances, angles, torsion angle, inversion angle,
planarity + variants)
 potentials and swaps are now compatible

e Molecule (rigid body) move type

 molecule (rigid body) type move
 swap between atoms and atoms, atoms to molecules and molecules to
molecules

OAK RIDGE *W. Stawinski, J. Appl. Cryst. (2018). 51, 919-923
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Example 1.
Sc,V,.,0,_s X-Ray and neutron
complementarity

x-ray diffraction neutron diffraction

T ' T ' T ' T ' T ' 1.8 —
200007 experiment - 164 —— experiment
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40000 difference _ il difference _
_E' 1 E 1.2 .
S 30000 - i S 104 )
e _ S . _
©, 5, 0.8- i
20000 - . 7 '
= = 064 _
(73] 7]
o ' ' S -
£ 10000 4 § £ 047 \ L
i | 02 - -
0 JLJ L A I P -] 00 _-M jJ\ jk ]
P S I
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Sc, V,,0,  X-Ray and neutron
complementarity

Average structure with 6 = 0.25

¢ Sc/v

@O0

b

L.

¢ ¢ ¢
. .
¢ ¢ ¢
. .

¢ ¢ ¢

General
Origin 5cVO2.5
Bibliographic data
Phase data
Space-group Frm -3 m (225) - cubic

a=4,0823 A
Cell )
V=12413 A2 7=1

Atomic parameters

Atom Wyck. Site S.0.F. x/a y/b z/c U [A?)
v 4a m-3m 03333 0 0 0O 0.0620
5C 4a m-3m 06667 0 0 0O 0.0435
o1 B -43m 0873 1/4 1/4 174 01003
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Sc,V,,0,.s X-Ray and neutron complementarity

Average sfructure
General

‘ ‘/ ‘ Origin  Scv025

. . Bibliographic data

Phase data

‘/ ‘/ ‘ Space-group Frmm -3 m (225) - cubic
- a=4,9883 A
Cell )
V=124.13 A3 7=1

Atomic parameters

b
Atom Wyck. Site S.0.F. x/a y/b z/c U [A7)
v 4a m-3m 03333 0 0 0O 0.0620

s 5c 4a m-3m 06667 0 0 0 0.0435

i- i i 01 8  -43m 0875 1/4 1/4 1/4 01003
OAK RIDGE

National Laboratory A D D 2 02 6
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Sc,V,,0,.s X-Ray and neutron complementarity

from Bragg diffraction from Total Scattering
unit cell size - |ocal crystal structure
crystallographic lattice - local distortions and
average atom positions and dislocations
average distances - individual atom
d;; = (r;) — (r}) positions and distances
structure composition d;j = (r; = 7)

OAK RIDGE
National Laboratory A D D 2 02 6




Sc,V,,0,.s X-Ray and neutron complementarity

x-ray diffraction neutron diffraction

8 7 - i - i - | - i - 4 ' | ' T ' T ' T '
. ; —— X-ray structure factor ] — neutron structure factor |
6 3 i
g 5- g - _
LL TH |
L. 4__ — 4 J
g 82 :
8 3 S ] 1
o ] O ] T
3 2- 2 '
o ] o ]
D 4 2 14 7
% 1 13 :
R — | |
-1 _J 0__ /VU ]
-2 : ' | ' | ' | ' | ' : 1 J | ' | ' | ' | ' :
0 5 10 15 20 25 0 5 10 15 20 25

scattering vector Q [A™] scattering vector Q [A™]
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Sc,V,,0,.s X-Ray and neutron complementarity

—
|

neutron PDF - X-Ray PDF

-
]

Pair Distribution Function Gir)
Pair Distribution Function G(r)

.D_
.D_
=
0 1 2 3 4 2 0 1 2 3 4 2
interatomic distance r[ A ] interatomic distance r[ A ]
2.13 A 1.75A

2.11A

dscy _ o = 2.16 A (from average structure)
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Sc,V,,0,.s X-Ray and neutron complementarity

—
|

neutron PDF - X-Ray PDF

Pair Distribution Function Gir)
Pair Distribution Function G(r)

.[] -
.|:| ]
Sc-0 1 V-0
! ' ! ' | ' ' ' ! | ! ' ! ' | ' ! ' ! | ! ' ' ' ' ! ' ' 1 ' ' ! ' I ' ! ' ! 1 ! ' ! ' I ' ' ' '
0 1 2 3 4 2 0 1 2 3 4 2
interatomic distance r[ A ] interatomic distance r[ A ]
213 A 1.75A

211A

el
..
¢ ¢«
| 0&\..\ ds.yv _ o = 2.16 A (from average structure)
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Fair Distribution Function Gir)

OAK RIDGE

National Laboratory

Sc,V,,0,.s X-Ray and neutron complementarity

—
]

=
l

e ——

1 2 3 4 5
interatomic distance r[ A |

neutrons Sc \Y O

Sc 0.202 -0.006 0.501
Vv 0.000 -0.008
O 0.311

Fair Distribution Function Gir)

i | ’ i ’ ’ | i ’ ’ i | ’ i ’ ’ | ’ ’ ’ i
—y_expt
——y_calc |
—y_diff

=
]
l

.|:|_

_-1_ ]
{ 1.75A V-0 J\M&ﬂ—
o 1 2 3 4 s

interatomic distance r[ A ]
X-Rays Sc V O
Sc 0.154 0.169 0.308
\% 0.046 0.169
O 0.154

ADD2026



ion

L

inal configura

jal vs f

In

S(:xv1 -Xx~2-0

10N

{

igura

final conf

" . . . . .
T T L L

il ol = il

L T T T

il el el il il o el el el Al ol E

il il el il il -

I il el el el il

10N

Ly T T0

initial configurat

¥ |& & = e
il el =l el = -l

B Bl e B
® 1® 1F & 1@ 1F e 1F 18 18
o ) g g e e i e e e o el e e e
. T L T TLAL T
=T TR e il il Tl = il =l
#1F I E F F F E F F E e
=l el el el ol il il il =
* ® 1® 1F la® f 1 o o * 1 F

= I e e e e S T

T TS 1F TF TERTETe ¥ 1é
gl gl el el il gl
T e IE T T T T IETE e

e ) o L T T T e e Y g e T e N Ty T g e Ty N e gy et

Ll T LT LT T TUNT TLANLN LT T T
il il sl el e e il el e e el el s i T )
g g T T LT TLCA L TUT T

-l ) il =i

T TERI® TS
g e e g g g
T 14 L L B 3 3
= = = =1
™ ¢

il T ) g el e il e AT
T O TUNCT T L L
i L T

16x16x16 supercell

ADD2026

National Labox

=
o
=
@)
A




Sc,V,,0,.5 parials
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Sc, V1,0, post refinement analysis
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Sc,V..,0, s post refinement analysis
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Example 2.
BaSc, Ti, 055 neutron elemental contrast

BaScy:Ti;:055 neutron diffraction
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Example 2.
BaSc, Ti, 055 neutron elemental contrast

BaScy:Ti;:055 neutron diffraction

OAK RIDGE

National Laboratory
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Example 2.
BaSc, Ti, 055 neutron elemental contrast

BaScy:Ti;:055 neutron diffraction
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Example 2.
BaSc, Ti, 055 neutron elemental contrast

BaScy:Ti;:055 neutron diffraction
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Example 2.
BaSc, Ti, 055 neutron elemental contrast

BaScy:Ti;:055 neutron diffraction

average big box local structure modelling
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