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What is magnetic diffuse scattering?

 Broad features beneath and between the sharp (Bragg) peaks

e e.g. magnetic scattering from MnO

Clifford Shull
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F1G. 1. Neutron diffraction patterns for MnO at room
temperature and at 80°K,

# OAK RIDGE Shull and Smart, Phys Rev 76, 1256 (1949)
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What does diffuse scattering measure?

 Deviations from long-range order (either chemical or magnetic)

» Correlated disorder - structured diffuse scattering
- e.g. “icerules” in water ice

Water ice Model Neutron data*
Real space, r Reciprocal space, Q

¥ OAK RIDGE
Nat *Wehinger et al., JPCM 26 265401 (2014)
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What does diffuse scattering measure?

 Deviations from long-range order (either chemical or magnetic)

» Correlated disorder - structured diffuse scattering
— e.g. “icerules” in spin ice

Spinice Model Neutron data*

Real space, r '
% OAK RIDGE P Reciprocal space, Q
National Laboratory *Fennell et al,, Science 326, 415 (2009)
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Diffuse scattering provides information about a material's Hamiltonian

e.g. colossal magnetoresistance manganites

.U
>
©
@)
@)
e
N
| -
()]
©
(o
-
e
N
Q -
e Q
@) ©
7 o
[— 2
() C
|m ()
5 3
o
- T
Q -
(- Q
> O
© o
mn.m
=% &
©
cE u
.m%d
g9 32
20 £
S wn £
Cbp
O O
< c
o—= £
h.mw
N
50 ©
nsw.
> ]
a..._.._mg
=T o
| [

— Behaviour often driven by local structure distortions

National Laboratory

Why do we study diffuse scattering?
 Exotic (possibly quantum) magnetic states

* Insight into interactions

e Functional materials

%OAK RIDGE



How do we measure diffuse scattering using neutrons?

/'I detector ~ Energy transfer [ — F. — [,
ke, E
v Wavevector transfer QQ — k; — k¢

ki, £y 20 47 sin 0
" rETE—AE) Q=1Q)-

source sample A

o

Quantity of interest is E-integrated intensity /(Q) = / 1(Q,E)dE
— Approximated by diffraction measurements if E «< E; %

For magnetic crystals: Measure large volume of Q (e.g. SXD @ ISIS, Corelli @ SNS)

For magnetic powders: Maximise flux at small Q (e.g. D20 @ ILL, POWDER @ HFIR)

Polarisation analysis can effectively isolate magnetic signal

e Otherwise, important to measure and subtract background signal
%QA RIDGE
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How can we visualise diffuse scattering data?

 Fourier transform of magnetic single-crystal data yields 3D magnetic PDF (spin-
pair correlation function)

— Positive (negative) peaks indicate ferromagnetic (antiferromagnetic) correlations
- e.g. magnetically-enhanced thermoelectric MnTe at T > T,

Reciprocal space, Q Real space, r
I:Iuclear scattering subtracted . Magnetic PDF .
20 0.10
Fourier transform 10 0.05

e

2 g 0.00
5 005
_20 ~0.10
_30 015

-30 -20 -10 0 10 20 30
[H,0,0] x (A)

%, OAK RIDGE Baral et al., Matter 5, 1853 (2022)
NadenalLaboratery diffpy. mpdf software: Frandsen et al., J Appl. Cryst. 5, 1377 (2022). https://www.diffpy.org/products/mPDF.html



How can we analyse diffuse scattering data?

Data* Model**
m
refinement

interaction
modelling

Reciprocal space Real space

*Fennell et al., Science 326, 415 (2009)
**Castelnovo, Moessner & Sondhi, Nature 451, 42 (2008)



How can we analyse diffuse scattering data?

Big-box refinement Small-box refinement

structure
refinement

Many unit cells (~10% Single unit cell to
atoms) to capture long- capture short-range

range and short-range order ("real-space
order Rietveld”)

e.g. reverse Monte Carlo e.g. mPDF analy:sis
- See also RMCProfile - Ben Frandsen’s talk

%OAK RIDGE
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Reverse Monte Carlo (RMC) method

Create ~1032 spins with random orientations and fixed
positions

Flip or rotate a randomly-chosen spin

Calculate change in goodness-of-fit to data

Accept flip if fit improved; otherwise accept flip with
some probability

RMCProfile software: Tucker et al., JPCM 19, 335218 (2007)
Spinvert software: Paddison, Stewart, Goodwin JPCM 25, 454220 (2013). www.joepaddison.com/software



RMC: Proof of principle for spinice

e e.g. fit to virtual “data” for spinice

100

0 1 2 3 4 5
0 (A 0

% tetrahedra obeying ice rule
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-
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Paddison & Goodwin, PRL 108, 017204 (2012)
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e e.g. fit to virtual “data” for spinice

100

0 1 2 3 4 5
O(A™ 0

% tetrahedra obeying ice rule
O
-

Paddison & Goodwin, PRL 108, 017204 (2012)



RMC: Proof of principle for spinice
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Paddison & Goodwin, PRL 108, 017204 (2012)



RMC example: Kagome ice Dy;Mg,Sh,0,,

Pyrochlore Dy,Ti,0,

Space group FAd-3m

Kagome Dy;Mg,Sb;0,,

Space group R-3m

Sanders et al., J. Mater. Chem. C 4, 541-550 (2016)
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RMC example: Kagome ice Dy;Mg,Sh,0,,

Diffuse scattering Local magnetic structure “Emergent charge” correlations
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Paddison et al., Nature Commun. 7, 13842 (2016)



How can we analyse diffuse scattering data?

Data* Model**

Reciprocal space Real space

*Fennell et al., Science 326, 415 (2009)
**Castelnovo, Moessner & Sondhi, Nature 451, 42 (2008)



Interaction refinement

Define spin Hamiltonian and guess interaction values

H = les S—|—JQZS .S,

(,5) (1,5))

Calculate diffuse scattering via field theory

Send goodness-of-fit to least-squares optimiser

Receive new values of interactions from optimiser

Spinteract software: Paddison, J Phys Cond Matt 35, 495802 (2023). www.joepaddison.com/software
Sunny software: Dahlbom et al., arXiv:2507.13095 (2025). https://github.com/SunnySuite/Sunny:.jl



Interaction refinement example 1: KYbSe,

 Triangular lattice of Yb3* with effective spin-%

Allen Scheie
ORNL/LANL

Alan Tennant
ORNL/UTK

Scheie, Ghioldi, Xing, Paddison et al., Nat. Phys. 20, 74 (2024)
Scheie et al., PRB 109, 014425 (2022)



Interaction refinement example 1: KYbSe,

* Fits show <3% deviation from Heisenberg model

1K 2K
LD
1.0 Quantum critical
< ] @ regime
Q = N
e ~ ! o)
0.5 >,
. B e Tnv=290 mK
: QSL
oo’ . " Lo
-0.5 0.0 0.5 -0.5 0.0 0.5 0 ~0.06
(h, O, O) (hﬁ 09 0) J2/J1
Theoretical technique J1 (meV) Jr /)4
Onsager reaction field NA 0.047 +0.007
Nonlinear spin waves 0.456 £ 0.013 0.043 +£0.010
Heat capacity 0.429 + 0.010 0.037 +£0.013
Weighted mean: 0.438 + 0.008 0.044 + 0.005

Scheie, Ghioldi, Xing, Paddison et al., Nat. Phys. 20, 74 (2024)
Scheie et al.,, PRB 109, 014425 (2022)



Interaction refinement example 2: (Mo, ;RE, ;),AlC

* Quasi-2D magnets with triangular lattice of rare-earth (RE) ions

Potashniknov et al., PRB 112, 064407 (2025)



Interaction refinement example 2: (Mo, ;Ln, ;),AlC

« Fits show good agreement with magnetic force theorem (DFT) simulations
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Thanks for listening (and hope to see you at the tutorials!)

 Diffuse scattering is a powerful technique to understand quantum materials
— Powder data can be information rich

 We can combine real space, reciprocal space, and interaction space methods

Tutorial files, also at

. : Tutorial Zoom link
www.joepaddison.com/software

%QA RIDGE
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