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Flash Sintering
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Conventional FS LVP
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LVP decomposition is driven by Li* volatility,

leading to LVOP formation
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Conventional FS of LATP
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~trochemical Flash Sintering

- Utilizing e <> Li* coupling can unlock new EFS pathways

" Electrode

Pure Li*-conductor
I\/IIEC + Li*-conductor |

- Promising, but reactions are fast and difficult to control.

- In-situ total scattering/PDF as a route to understand EFS

reactions and densification mechanism(< 2 s)
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Electrochemical Flash Sintering as a new tool to obtain all solid-state
IEGNPAIWAYS batteries in few seconds — FLASHBAT (ANR, Bouchet LEPMI)
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Electrochemical FS of Composite
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EFS LATP
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Conclusion

In Conventional FS

- LVP decomposition is driven by Li* volatility, leading to LVOP formation

- LATP decomposition arises from Ti** redox instability at high temperature, producing Ti**/Ti3*-
containing polymorphs

In Electrochemical FS

- Rapid sintering mitigates LATP—LVP interfacial reactivity in composites
- LATP can be densified under milder conditions in multilayers

In Future Work:

- Flash triggers instantaneous local structural changes.
- Future work should aim to control reaction outcome by tuning frequency and current
parameters, not by current hold time.

uuuuuuuuu

25



Thank you for your attention

Contributors:

/\/Ef[ !L e P__ M_I diamond

Renaud Bouchet : -
Mang Dlaz-Lo_pez Marlu César Steil )?lga[)rgo(lrf;_'llg)hé;o&ri%i
Claire V. Colin Timothée Fabre (PhD) Philip Chater
Eduardo R. Goncalves
(stagiaire)



