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Clean energy research spanning many applications
Understanding function & reactivity from atoms to applications

Gas capture (e.g. CO,) Designing
Catalysts

Materials



llluminating structure, function & reactivity

X-rays can penetrate working
systems without damage,
to allow us to probe their function
and reactivity




Exploring materials function with advanced tools

We probe the atomic structure of functional materials

During operation, reaction or changing environmental variable

To develop a predictive understanding of functional properties




Multimodal correlation of local & long range structure
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MOFs as a versatile platform for exploring catalysis

ICDC #

INORGANOMETALLIC
CATALYST DESIGN CENTER

The crystallinity of the MOF
lattice favors
chemically uniform active sites.

This facilitates characterization
and understanding of the catalyst
structure-activity relationship

The MOF structure and
chemistry can be tuned, and
the surface functionalized
to systematically explore
catalysis



NU-1000 MOF: A highly porous framework

A Northwestern University MOF

The metal-organic framework NU1000 is of interest as a catalyst and catalyst support

ZrO,node  +  yrene-based i 4000 MOF
ligand

Farha, Hupp et al. J. Am. Chem. Soc., 2013, 135, 10294-10297



J. Am. Chem. Soc., 2016 4178-4185
Subtle changes to powder diffraction

The strength of Zr'V-O bonds within zirconia nodes imparts high stability to NU-1000,
allowing it to tolerate reaction conditions.

There are no obvious changes to crystal symmetry/structure.
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J. Am. Chem. Soc., 2016 4178-4185
A local structure picture from PDF
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J. Am. Chem. Soc., 2016 4178-4185
PDF identifies a large irreversible transition

Variable temperature PDF studies reveal
an unexpected and irreversible change in the local atomic structure
— reducing the symmetry of the Zr.-based nodes.

Zr,Og nodes, while chemically robust are not static

Local Zr; node
symmetry
is reduced

2.0 ' 25 ' 3.0 35 4.0 ' 4!5 r/A
Experimental PDF data collected at 11-ID-B
at the Department of Energy’s Advanced Photon Source
heating from 50 °C to 350 °C




Consider the phase transitions of zirconia

Transitions between cubic, tetragonal and monoclinic forms of
bulk zirconia occur at high temperature




J. Am. Chem. Soc., 2016 4178-4185
MOF nodes are the ultimate nanoparticles

Local structure changes within node
matches those in bulk zirconia,
but occur at much lower temperatures
and in the reverse direction.

Distorted node is more catalytically active
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Decorated NU-1000s have same structure
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Decorated NU-1000s have same structure

But different temperature dependence

-Cl and Formate free NU-1000 lose crystallinity at 250 °C
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Zr, node distorts reversibly
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J. Am. Chem. Soc. 2023, 145, 1, 268-276
PDF shows different node distortions
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Multivariate analysis separates distinct local states

Dimensional reduction algorithms such as Non-Negative Matrix
Factorization (NMF) cluster features that change together

This provides a model-free approach to separate and quantify
distinct “states” or phases of the system.

Datasets - H !
|||‘ - -

1 2 3 4 5 J. Appl. Cryst, 2015, 1619-1626
J. Appl. Cryst. 2020 662-670




J. Am. Chem. Soc. 2023, 145, 1, 268-276
Multivariate analysis decouples distinct states

Simplifies data by isolating the components of the
data that change together,

N 250 and re-factorizes the data as those discrete
components and their time-dependent weightings
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J. Am. Chem. Soc. 2023, 145, 1, 268-276

Local distortion linked to long-range lattice flexing

Contract with heating
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Thermal Expansion - What is normal?
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J. Am. Chem. Soc. 2023, 145, 1, 268-276

Node distortion as a novel mechanism for NTE

Negative thermal expansion along the a axis is directly
correlated with the distorted node population
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J. Am. Chem. Soc. 2023, 145, 1, 268-276

Node distortion as a novel mechanism for NTE

Increasing the relative population of distorted (smaller) nodes
with increasing temperature leads to a contraction of the MOF lattice

- Contraction with Heating

Pl =
M/\M' regular distorted /V
node node

larger smaller



J. Am. Chem. Soc. 2023, 145, 1, 268-276

Node distortion as a novel mechanism for NTE

Increasing the relative population of distorted (smaller) nodes
with increasing temperature leads to a contraction of the MOF lattice.

’:*\o /‘ Distinct from established NTE mechanisms
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Zr, nodes in other MOFs




Evaluating NTE in UiO66
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J. Am. Chem. Soc. 2024, 16977

50

UiO-66 shows isotropic NTE.

The lattice expands as the
temperature decreases

time




J. Am. Chem. Soc. 2024, 16977

Evaluating NTE in UiO66, the original Zr6-MOF
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J. Am. Chem. Soc. 2024, 16977
Unexpected hysteresis

Pronounced hysteresis in the cubic UiO-66 lattice
dimension is evident between cooling and heating steps
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J. Am. Chem. Soc. 2024, 16977

Unexpected hysteresis & rate-dependence

The hysteresis and apparent thermal expansion depend on
both the thermal history and ramp rates
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Rapid-Actuating Pneumatic Thermal Reactor - RAPTR

The RAPTR quickly heats and cools samples by translating
them into and out of a pre-heated hot zone.

So the heating is only limited by the
thermal mass of the sample itself

It adapts the resistive heating elements from
the original or thermal gradient heater.

J. Appl. Crystallogr. 2024 88-93



Fast heating & cooling performance
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J. Am. Chem. Soc. 2024, 16977

Decoupling time- & temperature-dependence

Use the RAPTR to quantify isothermal relaxation.

Lattice equilibrates faster at high T, but changes more at low T
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G(r)

J. Am. Chem. Soc. 2024, 16977
Correlation to local node transformation

Rate-dependences and lattice hysteresis is a direct consequence of
kinetic trapping of the node-distorted state.
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J. Am. Chem. Soc. 2024, 16977
Node transformation frustrated by framework links

While node distortion is a local phenomenon,
the physical connection between nodes via the organic linker ligand
means that distortion at connected nodes are coupled
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Implications for catalysis and gas capture

Kinetic trapping of the node-distorted state has broad implications for
characterizing and applying these of these Zr-MOFs.

The cooling following activation can alter the node and lattice critically
impacting gas binding, pore volume, & accessible catalytic sites
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Hypothesis: The node structure and distortions impact nanoparticle formation




Tig nodes in MIL-125

The cyclic Tig node contains alternating
edge- and corner-shared TiO, octahedra.
These are connected by 12 BDC ligands.

Benzene
dicarboxylate ligand 4

Ferey J. Am. Chem. Soc. 2009, 131, 10857-10859



Lattice distortion precedes disassembly

The large contraction in the a-direction

(& small expansion in ¢-)
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Unusual metastable TiO, polymorph observed

Temperature | °C

Previously, only anatase and rutile have been seen.

3 nm Brookite 58 wt.%
7 nm Anatase 42 wt.%

10 A 2

3 nm brookite is unexpected!

Angew. Chem. 2025, €202501813



TiO, is highly polymorphic

Most
photoactive
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4 edge sharing 3 edge sharing 2 edge sharing
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Tig node distorts

Change from equal number of edge- and

corner-shared TiOg (like anatase) to

more corner-shared TiOg (like brookite)
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Distorted Tiz node resembles brookite polymorph

The structure of the distorted node matches the
o lOcal structure of the metastable polymorph formed
when the MOF destabilizes

1nm “brookite” model
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Atmosphere enhances distortion AND brookite

o . -
Changing to inert atmosphere shifts
MOF decomposition Weighiing X Comeoaca'®
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MOFs at the edge of stability

MOFs can serve as unconventional precursors for nanoparticles.

The preorganization of species within the metal-oxo nodes can
guide the transformation to unusual nanoparticle polymorphs
under mild conditions
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Modern in situ PDF measurements




Modern X-ray Pair Distribution Function measurements

A specialized synchrotron powder diffraction experiment
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A primer on integrating area detectors

Amorphous Si-based area detectors such as the Varex/PerkinElmer can
measure up to 64,000 counts per pixel.
This includes the sample scattering and a dark baseline signal
originating from detector electronics.

Multiple detector read outs are summed to improve signal-to-noise

Raw Image DEIINETe[ Dark-Subtracted Image




Raw Image Dark Image Dark-Subtracted Image
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Limited dynamic range of area detectors

Intensities above 64,000 counts are truncated
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Noise in
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Peaks may become overexposed during in situ study
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Peaks may become overexposed during in situ study

intensity
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Restoring over-exposed experimental data

intensity

Scaling & merging data: Substitute truncated intensity data by
intensity data from a less exposed image, for which
all the data remain on-scale
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Bonus: weak intensities in over-exposed image are
retained. These are much higher than the dark
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Patched PDF data are better!

Propose this as a deliberate strategy for

detailed (e.g. RMC) analysis, MOF808

or weakly scattering/porous systems h 015
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Summary

In situ / operando studies allow you to derive

mechanistic insights from individual features,

e.g. bondlengths, in the data. Independent of
complex structural modeling

Temperai.

- - [
Mutivariate data analytics such as

Weighting X Cgmpoge.”ts NMF & PCA are powerful tools to
help simplify and interpret the

/‘N\/\\- interpretation of large volumes
of in situ data




Summary

Designing new in situ reactors and operando
sample environments can be critical to enable
materials to be probe under relevant
reaction/operating conditions and timescales

Raw Image

Sometimes, making mistakes and
breaking the rules can lead to a
better way to do measurements
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