

Contribution ID: 15

Type: Poster

Characterization of the magnetic phase transitions in double perovskite $\text{Nd}_2\text{NiMnO}_6$

Through neutron powder diffraction, we confirm the double perovskite $\text{Nd}_2\text{NiMnO}_6$ adopts a monoclinic $P2_1/n$ structure with nearly complete B-site ordering of Ni^{2+} and Mn^{4+} . Below $T_1 = 198$ K, magnetic susceptibility and neutron data reveal the Ni^{2+} and Mn^{4+} sublattices undergo ferromagnetic ordering, driven by strong 3d-3d exchange interactions. Upon cooling through $T_2 = 22$ K, a secondary transition occurs, where we discover an additional noncollinear, symmetry-breaking order of Nd^{3+} moments. We propose this rare-earth canting stems from the competition between f-d and f-f Heisenberg exchanges, finely balanced in the perovskite framework. The ground state symmetry also implies significant Nd^{3+} easy-plane anisotropy and a decoupling of the anti-ferromagnetic spin canting from the transition metal lattice.

Between T_1 and T_2 , anomalous frequency-dependent ac susceptibility appears, characteristic of reentrant spin-glass-like behavior, attributed to antiferrodisorder and competing interactions. Furthermore, analysis of isothermal magnetization reveals magnetic entropy changes, suggesting potential for magnetic refrigeration. A peak entropy change of $2.25 \text{ J kg}^{-1}\text{K}^{-1}$ at T_1 under a 7 T field was observed. The scaling of this entropy, alongside other critical exponents, confirms the ferromagnetic transition at T_1 is a mean-field second-order phase transition. Collectively, our results provide crucial details on $\text{Nd}_2\text{NiMnO}_6$'s magnetism, reinforcing double perovskites as model systems for studying competing interactions, magnetocaloric effects, and reentrant spin-glass phenomena

Session

Magnetism

Primary author: ATTAAH-BAAH, John Matthias (Federal University of Sergipe, Federal University of Minas Gerais.)

Co-authors: Dr D. KHLYAVIN, Dmitry (ISIS Pulsed Neutron Source, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom); Dr S. FERREIRA, Nilson (Federal University of Sergipe); Dr MANUEL, Pascal (ISIS Pulsed Neutron Source, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom); Dr D. JOHNSON, Roger (Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom, ISIS Pulsed Neutron Source, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, United Kingdom, London Centre for Nanotechnology, University College London, Gordon Street, London WC1H 0AH, United Kingdom 5Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom)

Presenter: ATTAAH-BAAH, John Matthias (Federal University of Sergipe, Federal University of Minas Gerais.)

Session Classification: Magnetism