

Contribution ID: 20

Type: Oral

On the origin of the non-dispersive mode in glass-forming liquids: the case of squalane

In spite of its fundamental interest, the collective dynamics of molecular liquids and glass-forming systems at the mesoscale –and its relationship with self-dynamics– is still poorly understood [1,2]. Mesoscale means distances long enough compared to intermolecular dimensions but not yet in the hydrodynamic region. Neutron scattering experiments addressing the coherent dynamic structure factor $S(Q,t)$ there are extremely challenging due to very weak intensities, strong incoherent contributions –even in deuterated samples– and multiple scattering [1,3]. As shown by us [1,3,4], it is possible to isolate $S(Q,t)$ by NSE combining measurements on deuterated and protonated versions of the same molecule. This procedure has allowed us to proof the dominance at the mesoscale of a Q -independent process [3,5,6]. This process observed for $S(Q,t)$ also appears in the self-motions at the mesoscale at shorter times than diffusion [3].

Experiments in [3,5,6] were restricted to high T in a narrow range where the non-dispersive mode can be described by a single exponential. To discern the origin of the non-dispersive process its complete characterization over a large T range is crucial, addressing questions as its connection with viscosity and/or diffusion, the impact of cooperativity on the T - dependence of the characteristic time and functional form, etc.

Here we present new NSE results on squalane, trying to contribute to answering these questions.

REFERENCES: [1] B. Farago et al, Phys. Rev. E 65, 051803 (2002); [2] Z. Shen et al, J. Chem. Phys. 159, 114501 (2023); [3] A. Arbe et al, Phys. Rev. Lett. 134, 098001 (2025); [4] Experimental Report 6-02-678; [5] A. Arbe et al, J. Chem. Phys. 158, 184502 (2023); [6] A. Arbe et al, Phys. Rev. Research 2, 022015 (2020)

Session

Liquids

Primary author: ARBE, Arantxa (Centro de Fisica de Materiales (CSIC-UPV/EHU))

Co-authors: Dr FARAGO, Bela (ILL, Grenoble, France); Prof. COLMENERO, Juan (Centro de Fisica de Materiales (CSIC-UPV/EHU)); Dr ARRESE-IGOR, Silvia (Centro de Fisica de Materiales (CSIC-UPV/EHU))

Presenter: ARBE, Arantxa (Centro de Fisica de Materiales (CSIC-UPV/EHU))

Session Classification: Liquids