



Contribution ID: 27

Type: **Poster**

## Using applied magnetic fields to induce unconventional magnetic order in the frustrated quantum magnet, clinoatacamite, Cu<sub>2</sub>Cl(OH)<sub>3</sub>

The natural mineral clinoatacamite, [Cu<sub>2</sub>Cl(OH)<sub>3</sub>], exhibits low-temperature, frustrated magnetic behaviour where competing interactions are responsible for novel magnetic properties. Attempts to establish the magnetic phases in this material have been undertaken and an unconventional applied field ( $H \parallel b$ ) phase diagram has been revealed [1]. Two critical transition temperatures at zero field have been identified with long range antiferromagnetic (AFM) order for  $T_1 < 6\text{K}$ , and paramagnetic behaviour for  $T_2 > 18\text{K}$ . In-field magnetisation data collected between 6-18K reveal three distinct phases for  $H \parallel b$  which are not completely understood. Until now, the phase diagram of clinoatacamite has not been probed for  $H \parallel a$  or  $H \parallel c$ . We will present neutron scattering measurements of single crystal clinoatacamite in applied fields up to 10T. With these measurements we have mapped out the phase diagram of the antiferromagnetic structure for  $H \parallel a^*$ .

I will be conducting TOF experiments in future to determine accurate exchange interactions in this frustrated material.

### Session

Magnetism

**Primary authors:** ALLEN, Jackson (University of Wollongong); AVTAROVSKI, Juliana (University of Wollongong); RULE, Kirrily (ANSTO); TOBIN, Siobhan (ANSTO)

**Presenter:** AVTAROVSKI, Juliana (University of Wollongong)

**Session Classification:** Magnetism