The increasing emergence of resistant bacteria is a great concern in terms of public health as available conventional antibiotics drugs are not able to kill them. One strategy proposed is the use of bacterial membranes as a therapeutic target so that their basic properties are perturbed, altering the membrane potential and inhibiting the control functions on the signalling, communication or...
Lipid asymmetry is a hallmark of biological membranes [1]. In particular, prototypical mammalian plasma membranes are known to be composed of an outer leaflet enriched in cholinephospholipids, while the majority of the aminophospholipids are confined to the inner leaflet [2]. Asymmetric large unilamellar lipid vesicles (aLUVs), produced via cyclodextrin-mediated lipid exchange [3], are a new...
Over the past few years, our lab has put forth an effort to measure the rate and energetics of the diffusion of cholesterol and lipids. Using small angle neutron scattering (SANS), we found that the diffusion rate of cholesterol was much slower (hundreds of minutes) rather than the accepted value of under a second. Our group’s work showed that the discrepancy was likely due to artifacts...
Non-lamellar lipid aqueous phases, such as reverse cubic or hexagonal phases, can be used to entrap smaller biomolecules. The curvature of the lipid aqueous interfaces in these phases and hence the size of the aqueous cavities depends on the composition, water content and temperature. Normally the size of the cavities is similar or smaller than biomacromolecules, such as large enzymes. This...
There are numerous techniques able to gauge diffusion in biomembranes. For instance, quasi-elastic neutron scattering measures diffusion in a non-perturbative manner over nanosecond time scales, yet sampling is space is here done over large distances. Meanwhile, single-particle tracking allows one to track the dynamics of individual molecules in almost nanometer resolution, but these...