Sep 11 – 15, 2022
Europe/Paris timezone

Local structure and dynamics of tungsten oxide-based glasses: insights from concurrent neutron diffraction and Compton scattering

Sep 15, 2022, 9:45 AM


Dr Krzystyniak Matthew (Rutherford Appleton Laboratory)


In this work, following our previous work on molybdate glasses, we employ a combination of neutron diffraction and neutron Compton scattering, augmented by ab initio harmonic lattice dynamics and Reverse Monte Carlo modelling to characterise the force-constant disorder in the tungsten oxidebased glasses. Specifically, we discuss the correlations between the average interatomic force constant magnitudes inferred from neutron Compton scattering and the glass formation ability, measured in terms of the value of the glass transition temperature, as well as the average bond-lengths and interatomic distances obtained from diffraction data analysis. Moreover, we provide a comparative analysis of the widths of force-constant distributions of individual atomic species in glasses and their precursor metal oxides based on the distributions of the widths of nuclear momentum distributions. Furthermore, we assess the degree of softening of atom-projected vibrational densities of states induced by the force-constant disorder in the glasses

Primary authors

Dr Krzystyniak Matthew (Rutherford Appleton Laboratory) Dr Margit Fabian (Centre for Energy Research) Dr Kacper Druzbicki (Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences) Dr Istvan Tolnai (Centre for Energy Research)

Presentation materials

There are no materials yet.