17–21 Jul 2023
MAISON MINATEC
Europe/Paris timezone

Absolute electromagnetic transition rates in semi-magic N = 50 and 126 isotones as a test for $(\pi_{9/2})^n$ single particle calculations.

18 Jul 2023, 09:45
25m
Amphitheater (MAISON MINATEC)

Amphitheater

MAISON MINATEC

Centre de Congrès Maison MINATEC 3 parvis Louis Néel 38054 Grenoble Cedex 9
Invited Oral Experimental Nuclear Structure Session 4

Speaker

Jan Jolie (IKP, Universitaet zu Koeln,)

Description

Assuming the presence of one- and two-body interactions, single-j calculations for $(j)^n$ configurations with n = 1,..,2j+1 can be performed using a semi-empirical approach, provided that the energies and absolute electromagnetic transition rates are known for the two-particle (hole) nucleus. Using those and the coefficients of fractional parentage, all needed matrix elements for the $(j)^n$ configurations can be predicted.

At the Cologne Tandem Accelerator of the Institute for Nuclear Physics we have tested these relations by measuring lifetimes of excited states in the $(\pi_{9/2})^n$ isotones with N = 50 and N = 126 over the last years. We started the studies in the two-proton nucleus $^{210}$Po where the abnormal B(E2:$2^+_1 \rightarrow 0^+_1$) value was remeasured, providing important input for the other configurations [1]. Then lifetimes of excited states in $^{211}$At were measured using the electronic $\gamma$-$\gamma$ fast timing technique, the Recoil Distance Doppler Shift (RDDS) method, and the Doppler Shift Attenuation (DSA) method~[2,3]. Very good agreement with the analytical single-j calculation is obtained. We will also shortly report on our study of $^{213}$Fr.

For N=50 isotones, we recently started by remeasuring the previously unknown B(E2:$4^+_1 \rightarrow 2^+_1$) value needed for the prediction of other N=50 isotones with Z= 41-50 [4]. We will also report on experiments on $^{93}$Tc, $^{94}$Ru and $^{96}$Pd, as well on $^{94}$Ru and $^{95}$Rh at FAIR Phase-0 [5].\

$[1]$ D. Kocheva, G. Rainovski, J. Jolie, N. Pietralla, A. Blazhev, ${\it et~al.}$ Eur. Phys. J. A 53 (2017) 175
$[2]$ V. Karayonchev, A. Blazhev, A. Esmaylzadeh, J. Jolie, M. Dannhoff, F. Diel, F. Dunkel, C. Fransen, L. M. Gerhard, R.-B. Gerst, L. Knafla, L. Kornwebel, C. Müller-Gatermann, J.-M. Régis, N. Warr, K. O. Zell, M. Stoyanova, and P. Van Isacker, Phys. Rev. C 99 (2019) 024326
$[3]$ V. Karayonchev, A. Blazhev, J. Jolie, A. Dewald, A. Esmaylzadeh, C. Fransen, G. Häfner, L. Knafla, C. Müller-Gatermann, G. Rainovski, J. -M. Régis, K. Schomacker, and P. Van Isacker, Phys. Rev. C 106, (2022) 044321.
$[4]$ M. Ley ${\it et~al.}$ in preparation.
$[5]$ B. Das ${\it et~al.}$, Phys. Rev. C 105 (2022) L031304 and submitted.

$*$: present address: Argonne National Laboratory, Chicago, USA
\end{document}

Primary authors

Jan Jolie (IKP, Universitaet zu Koeln,) Vasil* Karayonchev (Zuelpicher Str. 77, D-50937 Koeln, Germany) Andrey Blazhev (Universitaet zu Koeln) Arwin Esmaylzadeh (IKP, Universitaet zu Koeln) Andreas Harter (IKP, Universitaet zu Koeln) Lukas Knafla (IKP, Universitaet zu Koeln) Mario Ley (IKP, Universitaet zu Koeln) Jean-Marc Regis (IKP, Universitaet zu Koeln,) Diana Kocheva (Faculty of Physics, St. Kliment Ohridski University of Sofia,) Georgi Rainovski (Faculty of Physics, St. Kliment Ohridski University of Sofia,) Pieter Van Isacker (GANIL, CEA/DRF–CNRS/IN2P3, )

Presentation materials