This Pitch-presentation will present the French Technological Research Institute Nanoelec and its technoloical programs.
This pitch-presentation will focus on the large-scale instruement characterisation program of the IRT Nanoelec. It will introduce the idea of a center of expertise in radiation hardness testing based in Grenoble. It will also briefly mention de PAC-G, service platform of the program.
The RADNEXT H2020 project, recently approved for funding by the European Commission, will enable access to worldwide radiation effects scientist and engineers to a broad network of facilities, aiming also at improving the quality of the related user support and making progress on the irradiation procedures covering emerging needs.
“Standard Radiation test methods recommend specific sources and beams in order to emulate space radiation environment for testing electronic components. Such facilities are quite rare and generally dedicated to other activities as research in medical or physics. The following points will be presented:
- Main characteristics of standard facilities
- Introduction to irradiation facilities...
- ESCC Test Guidelines, single event effects, Total Ionising Dose, Displacement Damage
- Facilities (type, species, energies) for assessment or qualification, commonly used facilities, identified facility needs
- Evolution in space industry wrt EEE components, increasing utilisation of COTS
- Classification of space missions, results of the COTS initiative working group at ESA
According to Moore's law, technologies sizes decreases rapidly and allows the integration of multiple functions of integrated circuits into a single component. State-of-the-art radio frequency integrated circuits (RFIC), for instance the AD9361, integrates analog-to-digital converters , digital-to-analog converters , synthesizers, filters, amplifiers, mixers as well as several logics and...
GANIL/SPIRAL2 is one of the major nuclear physics facilities in the world with SPIRAL2 selected in the ESFRI list. The accelerator complex can deliver high-intensity light- and heavy-ion beams, ranging from protons up to 238U in the energy range between a few keV to 95 MeV/u, and a wide range of high intensity exotic beams produced either in flight with the LISE fragment separators or with the...
The Cyclotron Resources Centre of UCLouvain has 3 beam lines dedicated to radiation hardness tests (heavy ions, protons and neutrons). The heavy ion and proton facilities are recognized and supported by ESA. The presentation will focus mainly on these two facilities. The beam parameters and equipment will be described. Some new projects for the future will be presented
The AGOR cyclotron (K=600) is capable of producing proton and heavy ion beams for radiation hardness testing. The experimental setup for proton irradiations (10-190 MeV) and the in-air experimental setup for heavy ion irradiations with O, Ne, Ar, Kr and Xe beams at 30 MeV/u will be presented.
The National Centre for Accelerators (CNA - US/CSIC/JA) is one of the Unique Scientific and Technical Infrastructures, declared in Spain. Nowadays, the irradiation testing is one of the strategic lines of this research center and the facility is open to other institutions and private companies.
The progress of different national research projects has contributed significantly to consolidate...
TID testing is fundamental for nearly all components or systems that operate in radiation environments. Successful TID testing is based on the combination of suitability of the test approach, selection of facility, understanding of radiation effects and test procedure and sophisticated analysis of the results. While much of that seems well established for typical scenarios, new approaches,...
Current and future automotive and autonomous applications are complex, forward-looking systems, involving large quantities of silicon, machine computing power and human brains and tears.
Their quality is prescribed, described and expected by demanding standards. These benevolent dictators set requirements for functional safety and reliability targets and development and manufacturing...
Terrestrial cosmic radiation (CR) is a significant factor for the reliability of power electronic devices, for all voltage classes from 150V to 6500V, for all device types and irrespective of the base material. Exact failure rate data are required to balance CR hardness and electrical performance for an optimum system design. Accelerated irradiation testing methods depend on the availability...
This talk will detail the aeronautic industry needs in radiation testing of avionic equipment and the applicable standards. It will also explore new foreseeable needs and constraints.
Chipir: A Fast Neutron Beamline for Single-Event-Effect Testing
Chris Frost
Neutron single-event-effects are an increasing problem in modern electronic devices and systems, causing a range of substantial reliability issues and failures. To address this problem the UK's ISIS Neutron and Muon Source designed and now operates ChipIr, a fast-neutron beamline that mimics the atmospheric-like...
TENIS the new irradiation station at ILL will be introduced to the community. The station is under construction and is foreseen to be operational at the beginning of 2021. Details about the project will be given concerning beam characteristics, dosimetry control, mechanical options and beamtime available.
We describe NEPIR, the fast-neutron irradiation facility under development at the 70 MeV cyclotron SPES facility of the INFN laboratory of Legnaro (LNL). The facility will be used to investigate neutron-induced Single Event Effects (SEE) in microelectronic devices and systems. It will be constructed in stages, according to the available funds. The initial funded configuration, based on a novel...
The main scope of this presentation is the test of SEEs induced by neutrons on electronics intended to be operated in a neutron flux in a fusion reactor (DT plasma neutrons).
Regardless of the intensity of the gamma and neutron fluxes, this presentation focuses on the energy spectra of neutrons, whose energy degradation can vary from one place to another in the reactor building depending on...
This contribution aims at presenting the challenges and requirements associated with radiation testing of measuring technology used in the field of medical radiology. The focus lies on radiation testing workflows of devices used for medical LINAC QA, one major market of PTW Dosimetry. Needs related to testing facilities as well as test standardization approaches will be discussed.
Pulsed x-rays have been demonstrated as a powerful tool that is complementary and supplementary to energetic particle and pulsed laser SEE testing. This talk will address the application of pulsed x-rays for SEE testing of microelectronic devices. Advantages and limitations of x-ray SEE testing will be discussed. The current test setup at the Advanced Photon Source at Argonne National...
Pulsed-laser approaches have demonstrated to be a very interesting tool for SEE testing and offers a great complementarity to heavy ions. This talk will address the basic mechanisms for laser charge generation in semiconductor materials and review the various SEE analyses for which laser testing can have an interest. Several applications performed at Airbus Defence and Space are detailed.
At the accelerator facility PIAF of Physikalisch-Technische Bundesanstalt (PTB), proton and deuteron beams are used to produce monoenergetic neutron fields in open geometry (full solid angle) in a low scatter hall using various nuclear reactions. The energy range of the monoenergetic neutron fields ranges from 140 keV to 19 MeV with a gap between 8 MeV and 14 MeV where no monoenergetic neutron...
Laser testing offers an exciting opportunity for the impact of the natural space radiation environment on electronic components to be assessed in your own lab or workshop, without waiting for beam time and travelling to a remote facility. The value of laser testing for radiation tolerant product development and the screening of COTS parts is becoming appreciated ever more widely. When...
Radiation hardness assurance procedures nowadays often require tests with high-energetic protons, heavy ions or neutron for simulating the harsh radiation environment close to reality. These particles are generated by nuclear physics facilities – like particle accelerator or research reactors – which are located exclusively at universities or national research institutions. Thus, industry...
This expert panel will focus on the access modes and organisational aspects of facilities. The convergence between industrial and academic needs in the use of these large-scale facilities will be addressed.
Recommendations for facilitating and strengthening successful cooperation between industry (radiation testing) users and research facilities will be drawn from these discussions.