The lattice thermal conductivity of many different materials is displaying a ‘glass like behavior’ [1], with a relatively small value of the lattice thermal conductivity at ambient temperature and an almost independent temperature dependence in the range 20 to 300 K. This is the case for disordered crystals [1], for clathrates [2], but also for aperiodic crystals [3] such as the icosahedral...
In this work, following our previous work on molybdate glasses, we employ a combination of neutron diffraction and neutron Compton scattering, augmented by ab initio harmonic lattice dynamics and Reverse Monte Carlo modelling to characterise the force-constant disorder in the tungsten oxidebased glasses. Specifically, we discuss the correlations between the average interatomic force constant...
Organometal Halide Perovskites (OHPs) have emerged as a prospective class of materials holding great promises for efficient conversion of solar energy. While understanding their atomic structure and dynamics is critical to rationalize their exceptional photovoltaic performance and improve their environmental and operational stability, this task remains a formidable challenge for both...
Recently, BaTiO3(BT)-based compounds have received much attention as Pb-free piezo-electric materials. It has been reported that Ca-doping is effective in enhancing the piezo-electric performance of BT, which was confirmed in several compounds such as (Ba, Ca)(Zr, Ti)O3, (Ba, Ca)(Sn, Ti)O3, and (Ba, Ca)(Hf, Ti)O3 [1]. Therefore, it is important to investigate the effect of Ca-doping on the...